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Abstract. The purpose of this paper is twofold. We first give erratum to a proof given by Woldeamanuel et

al. [Strong convergence theorems for a common fixed point of a finite family of Lipschitz hemicontractive-type

multivaled mappings, Adv. Fixed Point Theory, 5 (2015), No. 2, 228-253]. In addition, we study an algorithm

which approximates a common fixed point of a finite family of Lipschitz pseudocontractive multi-valued mappings

under appropriate conditions.

Keywords: Demiclosed, Hausdorff metric; k-strictly pseudocontractive multi-valued mapping; Lipschitz pseudo-

contractive multi-valued mapping; Monotone multi-valued mapping; Strong convergence.

2010 AMS Subject Classification: 47H10, 65J15.

1. Introduction

∗Corresponding author.

E-mail address: habtuzh@yahoo.com (H. Zegeye)

Received October 11, 2015

67



68 S.T. WOLDEAMANUEL1, M.G. SANGAGO2, H. ZEGEYE

Let E be a nonempty real normed linear space. A subset K of E is called proximinal if for

each x ∈ E there exists k ∈ K such that

‖x− k‖= inf{‖x− y‖ : y ∈ K}= d(x,K).

It is known that every closed convex subset of a uniformly convex Banach space is proximinal.

In fact, if K is a closed and convex subset of a uniformly convex Banach space E, then for any

x ∈ E there exists a unique point ux ∈ K such that (see, e.g., [26], [25], [15] and [8])

‖x−ux‖= inf{‖x− y‖ : y ∈ K}= d(x,K).

Let E be a nonempty real normed space. We denote the family of all nonempty proximinal

subsets of E by P(E), the family of all nonempty closed, convex and bounded subsets of E by

CBC(E), the family of all nonempty closed and bounded subsets of E by CB(E) and the family

of all nonempty subsets of E by 2E for a nonempty normed space E.

Let D be the Hausdorff metric induced by the metric d on E, that is, for every A,B ∈CB(E),

D(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)}.

A multi-valued mapping T : D(T ) ⊆ E →CB(E) is called L-Lipschitzian if there exists L ≥ 0

such that,

(1) ∀ x,y ∈ D(T ), D(T x,Ty)≤ L‖x− y‖.

In (1), if L ∈ [0,1), T is said to be a contraction, while T is nonexpansive if L = 1. A point

x ∈C is a fixed point of T if x ∈ T x and we denote by F(T ) the set of fixed points of T ; that is,

F(T ) = {x ∈C : x ∈ T x}.

A mapping T : D(T )⊂ E →CB(E) is said to be hemicontractive-type in the terminology of

Hicks and Cubicek [17], if F(T ) 6= /0 and for all p ∈ F(T ),x ∈ D(T )

(2) D2(T x,T p)≤ ‖x− p‖2 +‖x−u‖2,∀ u ∈ T x,

while, a mapping T : D(T ) ⊂ E →CB(E) is said to be demicontractive-type, if F(T ) 6= /0 and

for all p ∈ F(T ),x ∈ D(T ) there exists k ∈ [0,1) such that

(3) D2(T x,T p)≤ ‖x− p‖2 + k‖x−u‖2,∀ u ∈ T x.



APPROXIMATING FIXED POINTS OF PSEUDOCONTRACTIVE MULTI-VALUED MAPPINGS 69

For the definitions of k-strictly pseudocontractive-type, quasi-nonexpansive-type, pseudocontractive-

type and nonexpansive-type multivalued mappings we refer the reader to the paper [31].

Recently, Woldeamanuel et. al. [31] introduced an iteration scheme x1 = w ∈ K by

(4)


yn = (1−βn)xn +βnun, un ∈ Tnxn,

zn = γnwn +(1− γn)xn, wn ∈ Tnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where Tn := Tn(mod N) and {αn}, {βn}, {γn} ⊂ (0,1) satisfy some conditions.

They stated a theorem (Theorem 3.1 [31]) and proved strong convergence of the scheme to

a common fixed point p, which is nearest to w, of Ti, i = 1, . . . ,N. The proof depends on the

argument that T : K→CB(K) satisfies ‖u− v‖ ≤ 2D(T x,Ty), ∀x,y ∈ K,u ∈ T x,v ∈ Ty.

Remark 1.1. A close look at the property of T shows that the argument considered may not be

in general true. To see this, one may consider the following example.

Example 1.1. Let T : R→ 2R be given by

T x =


[−
√

2x,0] x ∈ [0,∞],

[0,−
√

2x], x ∈ [−∞,0].

It can be shown that T is hemicontractive-type. Now, for x = 3 and y = 2, we have T x =

[−3
√

2,0] and Ty = [−5
√

2,0], so that

D(tx,Ty) = D([−3
√

2,0], [−5
√

2,0]) = 2
√

2.

Now for u = o ∈ T x and v =−5
√

2 ∈ Ty, we have

‖u− v‖= 5
√

2 > 4
√

2 = 2D(T x,Ty).

A mapping T : K→CB(H) is said to be pseudocontractive (see [19, 20, 24]), if the inequality

(5) 〈u− v,x− y〉 ≤ ‖x− y‖2,
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holds for each x,y ∈ K,u ∈ T x, v ∈ Ty. In this case,

‖x− y− (u− v)‖2 +2〈u− v,x− y〉 ≤ 2‖x− y‖2 +‖x− y− (u− v)‖2,

which implies that

‖u− v‖2 ≤ ‖x− y‖2 +‖x− y− (u− v)‖2.

Hence, T : K→CB(H) is said to be pseudocontractive multi-valued mapping, if ∀ x,y ∈ K

(6) ‖u− v‖2 ≤ ‖x− y‖2 +‖x− y− (u− v)‖2, ∀u ∈ T x, v ∈ Ty.

We observe that (6) implies that ∀ x,y ∈ K,

(7) D2(T x,Ty)≤ ‖x− y‖2 +‖x− y− (u− v)‖2, ∀u ∈ T x, v ∈ Ty,

known as pseudocontractive-type multi-valued mapping (see, [31]).

For an example of pseudocontractive multi-valued mapping, see [32].

A mapping T : K→CB(H) is said to be k-strongly pseudocontractive (see [19, 20]), if there

exists k ∈ (0,1) such that the inequality

(8) 〈u− v,x− y〉 ≤ k‖x− y‖2,

holds for each x,y ∈ K,u ∈ T x, v ∈ Ty.

Again we refer the reader to [32] for an example of k-strongly pseudocontractive multi-valued

mapping.

Remark 1.2. Note that the class of pseudocontractive multi-valued mappings properly includes

the class of k-strongly pseudocontractive multi-valued mappings.

Multi-valued pseudocontractive mappings are also related with the important class of nonlin-

ear monotone mappings, where A : K→CB(H) is called monotone, if for any x,y ∈ K,

(9) 〈u− v,x− y〉 ≥ 0, ∀u ∈ Ax,v ∈ Ay.

A mapping A : K→CB(H) is said to be k-strongly monotone mapping if for all x,y ∈ K, there

exists k ∈ [0,1), such that

(10) 〈u− v,x− y〉 ≥ k‖x− y‖2, ∀u ∈ Ax, v ∈ Ay.
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We note that T is pseudocontractive if and only if A := I−T is monotone and hence x ∈ F(T )

if and only if x ∈ N(A) := {x ∈ K : 0 ∈ Ax}.

Recently, Woldeamanuel et al. [32] introduced an iteration scheme x1 = w ∈ K by

(11)


yn = (1−βn)xn +βnun,

zn = γnwn +(1− γn)xn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where un ∈ T xn,wn ∈ Tyn such that ||un−wn|| ≤ 2D(T xn,Tyn), and {αn}, {βn}, {γn} ⊂ (0,1)

satisfy certain mild conditions.

They proved the strong convergence of the Scheme (11) to the fixed point of Lipschitz pseu-

docontractive multi-valued mapping T . This brings us to the next question.

Question: Can we extend the results of [32] to a common fixed point of a finite family of

Lipschitz pseudocontractive multi-valued mappings?

The purpose of this paper is twofold. In section three, motivated by the result of Woldea-

manuel et al. [31] and Remark 1.1, we consider the scheme studied in [31] with appropriate

assumptions on T and give a modified proof which will enable us to correct the anomalies point-

ed out in Remark 1.1. In section four, we extend the work of Woldeamanuel et al. [32] to a finite

family of Lipschitz pseudocontractive multi-valued mappings under appropriate conditions.

2. Preliminaries

Definition 2.1 Let E be a Banach space. Let T : D(T ) ⊆ E → 2E be a multi-valued mapping.

(I−T ) is said to be demiclosed at zero, if for any sequence {xn} ⊆ D(T ) such that {xn} con-

verges weakly to p and D({xn},T xn)→ 0, then p ∈ T p.

Lemma 2.1. [30] Let H be a real Hilbert space. Then, the following equations hold:

(1) ‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2,∀t ∈ [0,1],

(2) Given any x,y in H, ‖x− y‖2 = ‖x− z‖2 +‖z− y‖2 +2〈x− z,z− y〉.
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Lemma 2.2. [11] Let H be a real Hilbert space. Then, the following equation holds: If {xn} is

a sequence in H such that xn ⇀ z ∈ H, then

limsup
n→∞

‖xn− y‖2 = limsup
n→∞

‖xn− z‖2 +‖z− y‖2,∀y ∈ H.

Lemma 2.3. [1] Let K be a nonempty, closed and convex subset of a real Hilbert space H. Let

x ∈ H. Then, x0 = PK(x) if and only if 〈z− x0,x− x0〉 ≤ 0,∀z ∈ K.

Lemma 2.4. [4] Let K be a nonempty closed convex subset of a real Hilbert space H. Let

T : K→CBC(K) be a multivalued mapping and PT (x) = {y ∈ T x : ‖x− y‖= d(x,T x)}. Then,

for any x ∈ K,x0 ∈ PT (x) if and only if 〈z− x0,x− x0〉 ≤ 0,∀z ∈ T x.

Lemma 2.5. [17] Let {an} be a sequence of real numbers such that there exists a subsequence

{ni} of {n} such that ani < ani+1, for all i ∈ N. Then, there exists a nondecreasing sequence

{mk} ⊂N such that mk→∞ and the following properties are satisfied by all (sufficiently large)

numbers k ∈ N: amk ≤ amk+1 and ak ≤ amk+1, In fact, mk := max{ j ≤ k : a j < a j+1}.

Lemma 2.6. [28] Let K be a metric space. Let T : K→ P(K) be a multivalued mapping. Then,

the following are equivalent:

(1) x ∈ T x, (2) PT x = {x}, (3) x ∈ F(PT ). Moreover, F(T ) = F(PT ).

Lemma 2.7. [33] Let H be a real Hilbert space, C a closed convex subset of H and T : C→C

be a continuous pseudo-contractive mapping, then (I−T ) is demiclosed at zero, i.e., if {xn} is

a sequence in C such that xn ⇀ x and T xn− xn→ 0, as n→ ∞, then x = T x.

Lemma 2.8. Let H be a real Hilbert space. Then,

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ H.

Proposition 2.1. [3] Let H be a Hilbert space. Let K be a nonempty closed and convex subset

of H. Let T : K→CB(K) be k-strictly pseudocontractive-type multivalued mapping. Then T is

L-Lipschitz mapping.
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Lemma 2.9. [34] Let {an} be a sequence of nonnegative real numbers satisfying the following

relation: an+1 ≤ (1−αn)an +αnδn,n ≥ n0, where {αn} ⊂ (0,1) and {δn} ⊂ R satisfying the

following conditions:

lim
n→∞

αn = 0,
∞

∑
n=1

αn = ∞, and limsup
n→∞

δn ≤ 0. Then, lim
n→∞

an = 0.

Lemma 2.10. [21] Let E be a complete metric space. Let A,B ∈CB(E) and a ∈ A.

(1) If γ > 0, then there exists b ∈ B such that d(a,b)≤ H(A,B)+ γ .

(2) If x ∈ E, then d(x,A)≤ d(x,B)+D(A,B).

The proof of the following are given in [32].

Lemma 2.11. Let H be a real Hilbert space. Suppose K is a closed, convex, nonempty subset

of H. Assume that T : K→CB(K) is pseudocontractive multi-valued mapping with F(T ) 6= /0.

Then, F(T ) is closed and convex.

Lemma 2.12. Let H be a real Hilbert space. Suppose K is a closed, convex, nonempty subset

of H. Assume that T : K→CB(K) is Lipschitz pseudocontractive multi-valued mapping. Then,

there is a single-valued nonexpansive mapping S : K→K, such that for some λ > 0 and for any

y ∈ K, S(y) is a fixed point of Ty(x) := (1−λ )y+λT x.

Lemma 2.13. Let H be a real Hilbert space. Suppose K is a closed, convex, nonempty subset

of H. Assume that T : K→CB(K) is Lipschitz pseudocontractive multi-valued mapping. Then

(I−T ) is demiclosed at zero.

3. Convergence results for a finite family of lipschitz hemicontractive-type
mappings

Now, we give the modification of the statement and proof of Theorem 3.1 of [31].

Theorem 3.1. Let K be a non-empty, closed and convex subset of a real Hilbert space H. Let

Ti : K → CB(K), i = 1,2, . . . ,N, be a finite family of Lipschitz hemicontractive-type mappings

with Lipschitz constants Li, i = 1,2, . . . ,N, respectively. Assume that (I−Ti), i = 1, . . . ,N are

demiclosed at zero and F =∩N
i=1F(Ti) is non-empty, closed and convex with Ti(p) = {p}, ∀p∈

F(T ) and for each i = 1,2, . . . ,N. Let {xn} be the sequence generated from an arbitrary x1 =
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w ∈ K by

(12)


yn = (1−βn)xn +βnun,

zn = γnwn +(1− γn)xn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where, un ∈ Tnxn,wn ∈ Tnyn such that ||un−wn|| ≤ 2D(Tnxn,Tnyn) and Tn := Tn(mod N)+1, {αn},

{βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p ∈F nearest to w.

Proof. Let p = PF (w). Now, using (1) of Lemma 2.1,

‖xn+1− p‖2 = ‖αn(w− p)+(1−αn)(zn− p)‖2

≤ αn‖w− p‖2 +(1−αn)‖zn− p‖2

= αn‖w− p‖2 +(1−αn)‖γn(wn− p)+(1− γn)(xn− p)‖2

= αn‖w− p‖2 +(1−αn)γn‖wn− p‖2 +(1−αn)(1− γn)‖xn− p‖2

−(1−αn)γn(1− γn)‖wn− xn‖2,

= αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn‖wn− p‖2

−(1−αn)γn(1− γn)‖wn− xn‖2,

(13)

which implies that

‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γnD(Tnyn,Tn p)2

−(1−αn)γn(1− γn)‖wn− xn‖2

≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn[
‖yn− p‖2 +‖yn−wn‖2]− (1−αn)γn(1− γn)‖wn− xn‖2.
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Thus,

(14) ‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)

× γn‖yn− p‖2 +(1−αn)γn‖yn−wn‖2− (1−αn)γn(1− γn)‖wn− xn‖2.

On the other hand, using (12) and using the assumption that ‖un−wn‖ ≤ 2D(Tnxn,Tnyn) we

have

‖yn−wn‖2 = ‖(1−βn)(xn−wn)+βn(un−wn)‖2

= (1−βn)‖xn−wn‖2 +βn‖un−wn‖2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +βn4D2(Tnxn,Tnyn)−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +βn4L2‖xn− yn‖2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +4L2
β

3
n ‖xn−un‖2−βn(1−βn)‖xn−un‖2.

Hence,

(15) ‖yn−wn‖2 ≤ (1−βn)‖xn−wn‖2−βn(1−βn−4L2
β

2
n )‖xn−un‖2.

Again,

‖yn− p‖2 = ‖(1−βn)xn +βnun− p)‖2

= ‖(1−βn)(xn− p)+βn(un− p)‖2

= (1−βn)‖xn− p‖2 +βn‖un− p‖2−βn(1−βn)‖xn−un‖2,

which gives that

‖yn− p‖2 ≤ (1−βn)‖xn− p‖2 +βnD2(Tnxn,Tn p)−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn− p‖2 +βn
[
‖xn− p‖2 +‖xn−un‖2]

−βn(1−βn)‖xn−un‖2.

Thus,

(16) ‖yn− p‖2 ≤ ‖xn− p‖2 +β
2‖xn−un‖2.



76 S.T. WOLDEAMANUEL1, M.G. SANGAGO2, H. ZEGEYE

Now substituting (16), (15) into (14), we have

‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn||xn− p||2

+ (1−αn)γnβ
2
n ‖xn−un‖2 +(1−αn)γn(1−βn)‖xn−wn‖2

− βn(1−αn)γn(1−βn−4L2
β

2
n )‖un− xn‖2

−(1−αn)γn(1− γn)‖wn− xn‖2,

which reduces to

(17) ‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)‖xn− p‖2−βn(1−αn)

× γn(1−2βn−4L2
β

2
n )‖un− xn‖2 +(1−αn)γn(γn−βn)‖xn−wn‖2.

From hypothesis (ii) in (12) we have that

1−2βn−4L2
β

2
n ≥ 1−2β −4L2

β
2 and γn ≤ βn.(18)

Using (18) in (17), we get that

(19) ‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2 +αn‖w− p‖2.

Thus, by induction

‖xn+1− p‖2 ≤max{‖x1− p‖2,‖w− p‖2}, ∀n≥ 1.
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This implies that {xn},{yn} and {zn} are all bounded. Furthermore, from (12), Lemma 2.8 and

(17), we get that

‖xn+1− p‖2 = ‖(1−αn)(γnwn +(1− γn)xn)+αnw− p‖2

= ‖(1−αn)((γnwn +(1− γn)xn)− p)+αn(w− p)‖2

≤ (1−αn)‖γnwn +(1− γn)xn− p‖2 +2αn〈w− p,xn+1− p〉

= (1−αn)
[
γn‖wn− p‖2 +(1− γn)‖xn− p‖2

−γn(1− γn)‖xn−wn‖2
]
+2αn〈w− p,xn+1− p〉

≤ (1−αn)
[
γnD(Tnyn,Tn p)2 +(1− γn)‖xn− p‖2

−γn(1− γn)‖xn−wn‖2
]
+2αn〈w− p,xn+1− p〉,

which implies that

‖xn+1− p‖2 ≤ (1−αn)
[
γn(‖yn− p‖2 +‖yn−wn‖2)+(1− γn)‖xn− p‖2

−γn(1− γn)‖xn−wn‖2]+2αn〈w− p,xn+1− p〉

= (1−αn)
[
γn(‖yn− p‖2 +‖yn−wn‖2)+(1− γn)‖xn− p‖2]

−(1−αn)γn(1− γn)‖xn−wn‖2 +2αn〈w− p,xn+1− p〉

≤ (1−αn)γn‖xn− p‖2 +(1−αn)γnβ
2
n ‖xn−un‖2 +(1−αn)γn

×
[
(1−βn)‖xn−wn‖2−βn(1−βn−4L2

β
2
n )‖xn−un‖2]

−(1−αn)γn(1− γn)‖wn− xn‖2 +2αn〈w− p,xn+1− p〉

= (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )‖xn−un‖2

+2αn〈w− p,xn+1− p〉+(1−αn)γn(γn−βn)‖xn−wn‖2.

That is, we get that

‖xn+1− p‖2 = (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )‖xn−un‖2

+2αn〈w− p,xn+1− p〉+(1−αn)γn(γn−βn)‖xn−wn‖2,(20)
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which implies

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )(21)

×‖xn−un‖2 +2αn〈w− p,xn+1− p〉,

and

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1− c)α2(1−2β −4L2
β

2)(22)

×‖xn−un‖2 +2αn〈w− p,xn+1− p〉.

Now we consider the following two cases:

Case 1. Suppose that there exists n0 ∈N such that {‖xn− p‖} is non-increasing, ∀n≥ n0. Then,

we get that {‖xn− p‖} is convergent. So, from (22) and the fact that αn→ 0, we have that

(1− c)α2(1−2β −4L2
β

2)‖xn−un‖2 ≤ (1−αn)‖xn− p‖2−‖xn+1− p‖2,

which gives that

xn−un→ 0.(23)

Now, from (12) and (23) we get

yn− xn = βn(un− xn)→ 0,

and hence we get that

‖zn− xn‖ = γn‖wn− xn‖= γn‖wn−un +un− xn‖

≤ γn‖wn−un‖+ γn‖un− xn‖

≤ γn2D(Tnyn,Tnxn)+ γn‖un− xn‖

≤ γn2L‖yn− xn‖+ γn‖un− xn‖→ 0.(24)

By (12), (24), the fact that ‖w− zn‖ is bounded and αn→ 0, we have

‖xn+1− xn‖ = ‖xn+1− zn + zn− xn‖

≤ ‖xn+1− zn‖+‖zn− xn‖

= αn‖w− zn‖+‖zn− xn‖→ 0.(25)
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But then, since, ‖xn+i− xn‖ ≤ ‖xn+i− xn+i−1‖+ . . .+‖xn+1− xn‖, we get that

(26) ‖xn+i− xn‖→ 0, ∀i = 1,2, . . . ,N.

Thus, from (23) and (26), we obtain that

(27) ‖un+i− xn‖ ≤ ||un+i− xn+i||+ ||xn+i− xn|| → 0, ∀i = 1,2, . . . ,N.

Now we show that for i ∈ {1,2, ...,N}, lim
n→∞

d(xn,Tn+ixn) = 0. But from Lemma 2.10, (23), (26)

and Lipschitz property of Ti for each i ∈ {1,2, ...,N} we get that

d(xn,Tn+ixn) = d(xn,Tn+ixn+i)+D(Tn+ixn,Tn+ixn+i)

≤ ‖xn−un+i‖+L‖xn− xn+i‖→ 0,(28)

which is the required result. The rest of the proof is the same as Theorem 3.1 of [31]

If, in Theorem 3.1, we consider a single hemicontractive-type mapping we get the following

corollary.

Corollary 3.1. Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let T : K→CB(K), be Lipschitz hemicontractive-type mapping with Lipschitz constant L.

Assume that I−T is demiclosed at zero and F(T ) is non-empty with T (p) = {p}, ∀p ∈ F(T ).

Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(29)


yn = (1−βn)xn +βnun, un ∈ T xn,

zn = γnwn +(1− γn)xn, wn ∈ Tyn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where un ∈ T xn,wn ∈ Tyn such that ||un−wn|| ≤ 2D(T xn,Tyn), {αn}, {βn}, {γn}⊂ (0,1) satisfy

the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
.

Then, {xn} converges strongly to some point p ∈F nearest to w.
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If, in Theorem 3.1 we assume that PTi, i = 1, . . . ,N are Lipschitz hemicontractive-type map-

pings, then by Lemma 2.6 , the requirement that Ti(p) = {p} may not be needed. Thus, we

obtain the following corollary.

Corollary 3.2. Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K → CB(K), i = 1,2, . . . ,N, be a finite family of multivalued mappings. Let

PTi, i = 1,2, . . . ,N, be Lipschitz hemicontractive-type mappings with Lipschitz constants Li, i =

1,2, . . . ,N, respectively. Assume that I−PTi, i = 1, . . . ,N are demiclosed and F = ∩N
i=1F(Ti) is

non-empty. Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(30)


yn = (1−βn)xn +βnun, un ∈ PTnxn,

zn = γnwn +(1− γn)xn, wn ∈ PTnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where un ∈ PTnxn,wn ∈ PTnyn such that ||un−wn|| ≤ 2D(PTnxn,PTnyn) and Tn := Tn(mod N)+1,

{αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p ∈F nearest to w.

If, in Theorem 3.1 , we assume that Ti, i = 1, . . . ,N, are k-strictly pseudocontractive-type

mappings then by Proposition 2.1, Ti are Lipschitz with Li =
1+
√

ki

1−
√

ki
, i = 1, . . . ,N. Hence, we

have the following theorem.

Theorem 3.2. Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K→CB(K), i = 1,2, . . . ,N, be a finite family of k-strictly pseudocontractive-type

mappings. Assume that F = ∩N
i=1F(Ti) is non-empty with Ti(p) = {p}, ∀p ∈ F(T ) and for

each i = 1,2, . . . ,N. Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(31)


yn = (1−βn)xn +βnun, un ∈ Tnxn,

zn = γnwn +(1− γn)xn, wn ∈ Tnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1,
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where un ∈ Tnxn,wn ∈ Tnyn such that ||un−wn|| ≤ 2D(Tnxn,Tnyn) and Tn := Tn(mod N)+1, {αn},

{βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{1+

√
ki

1−
√

ki
, i = 1, . . . ,N}.

Then, {xn} converges strongly to some point p ∈F nearest to w.

The following follows from Theorem 3.2. For the detail we refer the reader to [31]

Corollary 3.3. Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K→CB(K), i = 1,2, . . . ,N, be a finite family of nonexpansive-type mappings. As-

sume that F =∩N
i=1F(Ti) is non-empty with Ti(p)= {p}, ∀p∈F(T ) and for each i= 1,2, . . . ,N.

Let {xn} be the sequence generated from an arbitrary x1 = w ∈ K by

(32)


yn = (1−βn)xn +βnun, un ∈ Tnxn,

zn = γnwn +(1− γn)xn, wn ∈ Tnyn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where un ∈ Tnxn,wn ∈ Tnyn such that ||un−wn|| ≤ 2D(Tnxn,Tnyn) and Tn := Tn(mod N)+1, {αn},

{βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

5+1
, ∀n≥ 1.

Then, {xn} converges strongly to some point p ∈F nearest to w.

4. Convergence results for finite family of lipschitz pseudocontractive multi-
valued mappings

Theorem 4.1 Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K → CB(K), i = 1,2, . . . ,N, be a finite family of Lipschitz pseudocontractive

multi-valued mappings with Lipschitz constants Li, i = 1,2, . . . ,N, respectively. Assume that

F =∩N
i=1F(Ti) is non-empty. Let {xn} be the sequence generated from an arbitrary x1 = w∈K
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by

(33)


yn = (1−βn)xn +βnun,

zn = γnwn +(1− γn)xn,

xn+1 = αnw+(1−αn)zn, n≥ 1

where un ∈ Tnxn,wn ∈ Tnyn such that ||un−wn|| ≤ 2D(Tnxn,Tnyn) and Tn := Tn(mod N)+1, {αn},

{βn}, {γn} ⊂ (0,1) satisfy the following conditions:

(i) 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

(ii) 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : i = 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p ∈F nearest to w.

Proof. Let p = PF (w). Now, using Lemma 2.1 we get that

‖xn+1− p‖2 = ‖αn(w− p)+(1−αn)(zn− p)‖2

≤ αn‖w− p‖2 +(1−αn)‖zn− p‖2

= αn‖w− p‖2 +(1−αn)‖γn(wn− p)+(1− γn)(xn− p)‖2

= αn‖w− p‖2 +(1−αn)γn‖wn− p‖2 +(1−αn)(1− γn)

×‖xn− p‖2− (1−αn)γn(1− γn)‖wn− xn‖2

≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn[
‖yn− p‖2 +‖yn− p− (wn− p)‖2]
−(1−αn)γn(1− γn)‖wn− xn‖2

= αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn[
‖yn− p‖2 +‖yn−wn‖2]− (1−αn)γn(1− γn)‖wn− xn‖2.

Thus,

(34) ‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)

× γn‖yn− p‖2 +(1−αn)γn‖yn−wn‖2− (1−αn)γn(1− γn)‖wn− xn‖2.
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On the other hand, using (33), the assumption that ‖un−wn‖ ≤ 2D(Tnxn,Tnyn), Lemma 2.1 and

Tn is Lipschitz ,

‖yn−wn‖2 = ‖(1−βn)(xn−wn)+βn(un−wn)‖2

= (1−βn)‖xn−wn‖2 +βn‖un−wn‖2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +βn4D(Tnxn,Tnyn)
2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn−wn‖2 +βn4L2‖xn− yn‖2−βn(1−βn)‖xn−un‖2

= (1−βn)‖xn−wn‖2 +4β
3
n L2‖xn−un‖2−βn(1−βn)‖xn−un‖2.

Hence,

(35) ‖yn−wn‖2 ≤ (1−βn)‖xn−wn‖2−βn(1−βn−4L2
β

2
n )‖xn−un‖2

Again, using the assumption that Tn is pseudocontractive,

‖yn− p‖2 = ‖(1−βn)xn +βnun− p)‖2

= ‖(1−βn)(xn− p)+βn(un− p)‖2

= (1−βn)‖xn− p‖2 +βn‖un− p‖2−βn(1−βn)‖xn−un‖2

≤ (1−βn)‖xn− p‖2 +βn
[
‖xn− p‖2 +‖xn−un‖2]

−βn(1−βn)‖xn−un‖2

= ‖xn− p‖2 +β
2
n ‖xn−un‖2.

Thus,

(36) ‖yn− p‖2 ≤ ‖xn− p‖2 +β
2
n ‖xn−un‖2.

Now, substituting (35), (36) into (34),

‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)(1− γn)‖xn− p‖2 +(1−αn)γn‖xn− p‖2

+(1−αn)γnβ
2
n ‖xn−un‖2 +(1−αn)γn(1−βn)‖xn−wn‖2

−βn(1−αn)γn(1−βn−4L2
β

2
n )‖un− xn‖2

−(1−αn)γn(1− γn)‖wn− xn‖2,
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which reduces to

(37) ‖xn+1− p‖2 ≤ αn‖w− p‖2 +(1−αn)‖xn− p‖2−βn(1−αn)

× γn(1−2βn−4L2
β

2
n )‖un− xn‖2 +(1−αn)γn(γn−βn)‖xn−wn‖2.

From hypothesis (ii) in (33) we have that

1−2βn−4L2
β

2
n ≥ 1−2β −4L2

β
2(38)

γn ≤ βn.(39)

Using (38) and (39) in (37) we get that

(40) ‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2 +αn‖w− p‖2.

Thus, by induction, we have

‖xn+1− p‖2 ≤max{‖x1− p‖2,‖w− p‖2}, ∀n≥ 1.

This implies that {xn},{yn} and {zn} are all bounded. Furthermore, from (33), Lemma 2.8 and

(37) we get that

‖xn+1− p‖2 = ‖(1−αn)(γnwn +(1− γn)xn)+αnw− p)‖2

= ‖(1−αn)((γnwn +(1− γn)xn)− p)+αn(w− p)‖2

≤ (1−αn)‖γnwn +(1− γn)xn− p‖2 +2αn〈w− p,xn+1− p〉

= (1−αn)
[
γn‖wn− p‖2 +(1− γn)‖xn− p‖2

−γn(1− γn)‖xn−wn‖2
]
+2αn〈w− p,xn+1− p〉

≤ (1−αn)
[
γn(‖yn− p‖2 +‖yn−wn‖2)+(1− γn)‖xn− p‖2

−γn(1− γn)‖xn−wn‖2]+2αn〈w− p,xn+1− p〉

≤ (1−αn)γn‖yn− p‖2 +(1−αn)γn‖yn−wn‖2

+(1−αn)(1− γn)‖xn− p‖2− (1−αn)γn(1− γn)‖xn−wn‖2

+2αn〈w− p,xn+1− p〉,
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which implies that

‖xn+1− p‖2 ≤ (1−αn)γn‖xn− p‖2 +(1−αn)γnβ
2
n ‖xn−un‖2 +(1−αn)γn

×
[
(1−βn)‖xn−wn‖2−βn(1−βn−4L2

β
2
n )‖xn−un‖2]

+(1−αn)(1− γn)‖xn− p‖2− (1−αn)γn(1− γn)‖wn− xn‖2

+2αn〈w− p,xn+1− p〉

≤ (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )‖xn−un‖2

+2αn〈w− p,xn+1− p〉+(1−αn)γn(γn−βn)‖xn−wn‖2.

This implies that,

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )

×‖xn−un‖2 +2αn〈w− p,xn+1− p〉,(41)

and hence by (i) and (ii) we have

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1− c)α2(1−2β −4L2
β

2)‖xn−un‖2

+2αn〈w− p,xn+1− p〉.(42)

Now we consider the following two cases:

Case 1. Suppose that there exists n0 ∈N such that {‖xn− p‖} is non-increasing, ∀n≥ n0. Then,

we get that {‖xn− p‖} is convergent. So, from (42) we have that

(1− c)α2(1−2β −4L2
β

2)‖xn−un‖2 ≤ (1−αn)‖xn− p‖2−‖xn+1− p‖2

+2αn〈w− p,xn+1− p〉.

Thus, from the fact that αn→ 0, we get

lim
n→∞
‖xn−un‖= 0.(43)

Now, from (33) we obtain that

yn− xn = βn(un− xn)→ 0,
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and hence we get that

‖zn− xn‖ = γn‖wn− xn‖= γn‖wn−un +un− xn‖

≤ γn‖wn−un‖+ γn‖un− xn‖

≤ 2γnD(Tnyn,Tnxn)+ γn‖un− xn‖

≤ 2γnL‖yn− xn‖+ γn‖un− xn‖→ 0.(44)

Furthermore, from (33), (44), the fact that ‖w− zn‖ is bounded and αn→ 0, we obtain

‖xn+1− xn‖ = ‖xn+1− zn + zn− xn‖

≤ ‖xn+1− zn‖+‖zn− xn‖

= αn‖w− zn‖+‖zn− xn‖→ 0.(45)

But then, since, ‖xn+i− xn‖ ≤ ‖xn+i− xn+i−1‖+ . . .+‖xn+1− xn‖, we get that

(46) ‖xn+i− xn‖→ 0, ∀i = 1,2, . . . ,N.

Thus, from (43) and (46) we obtain that

(47) ‖un+i− xn‖ ≤ ||un+i− xn+i||+ ||xn+i− xn|| → 0, ∀i = 1,2, . . . ,N.

Now we show that for i ∈ {1,2, ...,N}, lim
n→∞

d(xn,Tn+ixn) = 0. But from (46), Lemma 2.10, (47)

and Lipschitz property of Ti for each i ∈ {1,2, ...,N} we get that

d(xn,Tn+ixn) = d(xn,Tn+ixn+i)+D(Tn+ixn,Tn+ixn+i)

≤ ‖xn−un+i‖+L‖xn− xn+i‖→ 0,(48)

which is the required result. Now, since {‖xn− p‖} converges, there exists a subsequence

{xn j+1} of {xn+1} such that

limsup
n→∞

〈w− p,xn+1− p〉= lim
j→∞
〈w− p,xn j+1− p〉,

and xn j+1 ⇀ z, for some z ∈ K. Now, from (45) we get xn j ⇀ z. Hence, from (48) and the fact

that Ti, ∀i = 1, . . . ,N are demiclosed by Lemma 2.13 , we get that z ∈ F(Ti), ∀i = 1, . . . ,N. i.e.,
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z ∈F . Therefore, by Lemma 2.4 we obtain that

limsup
n→∞

〈w− p,xn+1− p〉 = lim
j→∞
〈w− p,xn j+1− p〉

= 〈w− p,z− p〉 ≤ 0.(49)

Now, from (42) we have that

(50) ‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2 +2αn〈w− p,xn+1− p〉.

It then follows from (50), (49) and Lemma 2.9 that ‖xn− p‖→ 0 i.e., xn→ p.

Case 2. Suppose there exists a subsequence {nk} of {n} such that

‖xnk− p‖< ‖xnk+1− p‖, ∀k ∈ N.

Thus, by Lemma 2.5, there is a nondecreasing sequence {mk} ⊂ N such that mk → ∞, ‖xmk −

p‖≤ ‖xmk+1− p‖ and ‖xk− p‖≤ ‖xmk+1− p‖, ∀k ∈N. Now, from (42) and the fact that αn→ 0

we get that xmk−umk→ 0, when umk ∈ Tixmk , ∀i= 1, . . . ,N. Hence as in Case 1, xmk+1−xmk→ 0

and that

(51) limsup
k→∞

〈w− p,xmk+1− p〉 ≤ 0.

From (42) we have that

(52) ‖xmk+1− p‖2 ≤ (1−αmk)‖xmk− p‖2 +2αmk〈w− p,xmk+1− p〉

and since ‖xmk− p‖ ≤ ‖xmk+1− p‖, (52) implies that

αmk‖xmk− p‖2 ≤ ‖xmk− p‖2−‖xmk+1− p‖2 +2αmk〈w− p,xmk+1− p〉

≤ 2αmk〈w− p,xmk+1− p〉,

which implies that

‖xmk− p‖2 ≤ 2〈w− p,xmk+1− p〉.

So, from (51) we get that ‖xmk − p‖2→ 0 and hence this with (52) give that ‖xmk+1− p‖ → 0.

But, ‖xk− p‖ ≤ ‖xmk+1− p‖, ∀k ∈ N. Thus, xk → p. Therefore, {xn} converges strongly to

some point p ∈F nearest to w.
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Remark 4.1. We note that, since every Lipschitz k-strongly pseudocontractive mapping is

Lipschitz pseudocontractive mapping the above theorem holds for a finite family of Lipschitz

k-strongly pseudocontractive mappings.

If, in Theorem 4.1 we consider a single Lipschitz pseudocontractive mapping we get the

following corollary.

Corollary 4.1. Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let T : K→CB(K), be Lipschitz pseudocontractive multi-valued mapping with Lipschitz

constant L. Assume that F(T ) is non-empty and that T (p) = {p}, ∀p ∈ F(T ). Let {xn} be the

sequence generated from an arbitrary x1 = w ∈ K by

(53)


yn = (1−βn)xn +βnun,

zn = γnwn +(1− γn)xn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where un ∈ T xn,wn ∈ Tyn such that ||un−wn|| ≤ 2D(T xn,Tyn), {αn}, {βn}, {γn}⊂ (0,1) satisfy

the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1.

Then, {xn} converges strongly to some point p ∈F nearest to w.

Proof. Put Ti := T, ∀i = 1, . . . ,N in (33) and the scheme reduces to (53). Now, as in (41) and

(42),

‖xn+1− p‖2 ≤ (1−αn)‖xn− p‖2− (1−αn)γnβn(1−2βn−4L2
β

2
n )

×‖xn−un‖2 +2αn〈w− p,xn+1− p〉, un ∈ T xn

≤ (1−αn)‖xn− p‖2− (1− c)α2(1−2β −4L2
β

2)‖xn−un‖2

+2αn〈w− p,xn+1− p〉

≤ (1−αn)‖xn− p‖2 +2αn〈w− p,xn+1− p〉

The rest of the proof is as in Theorem 4.1.
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If, in Theorem 4.1 we assume that PTi, i = 1, . . . ,N are Lipschitz pseudocontractive mappings,

then by Lemma 2.6 , the requirement that Ti(p) = {p} may not be needed. Thus, we get the

following Corollary.

Corollary 4.2. Let H be a real Hilbert space and K be a non-empty, closed and convex

subset of H. Let Ti : K → CB(K), i = 1,2, . . . ,N, be a finite family of multi-valued map-

pings. Let PTi, i = 1,2, . . . ,N, be Lipschitz pseudocontractive mappings with Lipschitz constants

Li, i = 1,2, . . . ,N, respectively. Suppose also that F = ∩N
i=1F(Ti) is non-empty. Let {xn} be the

sequence generated from an arbitrary x1 = w ∈ K by

(54)


yn = (1−βn)xn +βnun,

zn = γnwn +(1− γn)xn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where un ∈ PTnxn,wn ∈ PTnyn such that ||un−wn|| ≤ 2D(PTnxn,PTnyn), and Tn := Tn(mod N)+1,

{αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p ∈F nearest to w.

If, in Theorem 4.1 we assume that PTi : K→CBC(K), i = 1, . . . ,N are Lipschitz pseudocon-

tractive mappings, then PTi(x) is singleton and hence the following corollary follows.

Corollary 4.3 Let H be a real Hilbert space and K be a non-empty, closed and convex subset

of H. Let Ti : K → CBC(K), i = 1,2, . . . ,N, be a finite family of multi-valued mappings. Let

PTi, i = 1,2, . . . ,N, be Lipschitz pseudocontractive mappings with Lipschitz constants Li, i =

1,2, . . . ,N, respectively. Suppose also that F = ∩N
i=1F(PTi) is non-empty. Let {xn} be the

sequence generated from an arbitrary x1 = w ∈ K by

(55)


yn = (1−βn)xn +βnPTnxn,

zn = γnPTnyn +(1− γn)xn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where Tn := Tn(mod N)+1 and {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:
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i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li : 1,2, . . . ,N}.

Then, {xn} converges strongly to some point p ∈F nearest to w.

Next, we state and prove a convergence theorem for a common zero of a finite family of

monotone mappings.

Theorem 4.2 Let H be a real Hilbert space. Let Ai : H → CB(H), i = 1,2, . . . ,N be a family

of Lipschitz monotone mappings with Lipschitz constants, 1+ Li, i = 1,2, . . . ,N, respectively.

Assume F :=∩N
i=1N(Ai) 6= /0. Let {xn} be the sequence generated from an arbitrary x1 =w∈H

by

(56)


yn = xn−βnun,

zn = xn− γnwn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where un ∈ Anxn,wn ∈ Anyn such that ||un−wn|| ≤ 2D(xn−Anxn,yn−Anyn)+ ||xn− yn||, and

An := An(mod N)+1, {αn}, {βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L2 +1+1
, ∀n≥ 1 for L := max{Li, i = 1, . . . ,N}.

Then, {xn} converges strongly to a common zero point of A1,A2, . . . ,An nearest to w.

Proof. Let Tix := (I−Ai)x, i = 1,2, . . . ,N. Then Ti, i = 1,2, . . . ,N are Lipschitz pseudocontrac-

tive mappings with Lipschitz constants Li := (1+Li) and

∩N
i=1F(Ti) = ∩N

i=1N(Ai) 6= /0.

Now replacing Ai with (I−Ti) for each i = 1,2, . . . ,N in (56) we get the Scheme (33). Hence

the result follows from Theorem 4.1 .

In Theorem 4.2 , if we consider a single Lipschitz monotone mapping we obtain,

Corollary 4.4. Let H be a real Hilbert space. Let A : H → CB(H) be a Lipschitz monotone

mapping with Lipschitz constant, L. Assume N(A) 6= /0. Let {xn} be the sequence generated
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from an arbitrary x1 = w ∈ H by

(57)


yn = xn−βnun,

zn = xn− γnwn,

xn+1 = αnw+(1−αn)zn, n≥ 1,

where, un ∈ Axn,wn ∈ Ayn such that ||un−wn|| ≤ 2D(xn−Axn,yn−Ayn)+ ||xn−yn||, and {αn},

{βn}, {γn} ⊂ (0,1) satisfy the following conditions:

i. 0≤ αn ≤ c < 1, ∀n≥ 1 such that lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞,

ii. 0 < α ≤ γn ≤ βn ≤ β <
1√

4L′2 +1+1
, ∀n≥ 1 for L′ := 1+L.

Then, {xn} converges strongly to a zero of A, nearest to w.

Remark 4.2. Our work improves Theorem 1 and Theorem 2 of Song and Wang [29] and

Theorem 2.7 of Shahzad and Zegeye [27] and extends the work of Woldeamanuel et. al. [32]

for Lipschitz pseudocontractive multi-valued case. It also extends the work of Daman and

Zegeye [6] for the multivalued case.
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