Available online at http://scik.org

Advances in Fixed Point Theory, 2 (2012), No. 2, 108-119

ISSN: 1927-6303

ABSORBING MAPS AND COMMON FIXED POINT THEOREM IN

MENGER SPACE

ANUJA P. CHOUHAN^{1,*}, ABHAY S. RANADIVE²

¹Department of Mathematics, Govt. Dr. W.W. Patankar PG Girls College, Durg (C. G.) INDIA

²Department of Pure and Applied Mathematics, Guru Ghasidas Central University, Bilaspur, (C.G.),

INDIA

Abstract. In this paper, we prove a common fixed point theorem, using newly defined absorbing maps

in Menger space. Our result generalizes the result of Razani et al [11].

Keywords: Menger space, absorbing map, reciprocal continuous, semi-compatible mapping.

2000 AMS Subject Classification: 47H10; 54H25.

1. Introduction

There have been a number of generalizations of metric space. One such generalization

is Menger space initiated by Menger [6]. The theory of probabilistic metric spaces is of

fundamental importance in probabilistic function analysis. It is a probabilistic general-

ization in which we assign a distribution function $F_{x,y}$ to any two points x and y. Sehgal

et al [14] initiated the study of fixed points in probabilistic metric spaces. Moreover, this

theory is studied in Menger probabilistic metric space by many authors such as Schweizer

and Sklar [16], Razani et-al [11] and etc. It is observed by many authors that contraction

condition in metric space may be exactly translated into PM-space endowed with min

*Corresponding author

Received March, 12, 2012

108

norms. Mishra [7] introduced the concept of compatible self-maps in Menger space and proved the existence of a common fixed point of a pair of compatible maps using a contractive condition. Subsequently, Singh et al [17] introduced the concept of semi-compatible mapping in Menger space and proved a fixed point theorem using semi-compatibility. Ranadive et-al [12] introduced the concept of absorbing mapping in metric space and prove a common fixed point theorem in this space. Moreover they [12] observe that the new notion of absorbing map is neither a subclass of compatible maps nor a subclass of non-compatible maps. In [9], Ranadive et-al introduced absorbing maps in fuzzy metric space and prove a common fixed point theorem in this spaces. Recently we [13] introduce absorbing maps in Menger space and prove a fixed point theorem in this space.

In this paper we prove, a common fixed point theorem using reciprocally continuity and employing absorbing mapping with semi-compatibility. In order to do this, we recall some definitions, Lemmas, prepositions and known results from [7], [17], and [18].

2. Preliminaries

Definition 2.1. A mapping $F: R \to R^+$ is called a distribution if it is non decreasing left-continuous with $\inf\{F(t): t \in R = 0\}$ and $\sup\{F(t): t \in R = 1\}$. We shall denote by L the set of all distribution functions while H will always denote the specific distribution function denoted by

$$H(t) = \begin{cases} 0, & \text{if } t \le 0, \\ 1, & \text{if } t > 0. \end{cases}$$

Definition 2.2. A probabilistic metric space (PM-space) is an ordered pair (X, F) where X is a nonempty set and $F: X \times X \to L$ is defined by $(p, q) \mapsto F_{p,q}$ where L is the set of all distribution function, i.e., $L = \{F_{p,q} : p, q \in X\}$, where the functions $F_{p,q}$ satisfy:

- (1) $F_{p,q}(x) = 1$ for all x > 0, if and only if p = q,
- (2) $F_{p,q}(0) = 0$,
- (3) $F_{p,q} = F_{q,p}$,
- (4) if $F_{p,q}(x) = 1$ and $F_{q,r}(y) = 1$ then $F_{p,r}(x+y) = 1$, for all $p, q, r \in X$ $x, y \ge 0$.

Definition 2.3. A mapping $t : [0,1] \times [0,1] \to [0,1]$ is called a t-norm if the following conditions are satisfied:

- (1) t(a, 1) = a for every $a \in [0, 1]$,
- (2) t(a, b) = t(b, a) for every $a, b \in [0, 1]$,
- (3) $t(c, d) \ge t(a, b)$ for $c \ge a, d \ge b$ $a, b, c, d \in [0, 1]$;
- (4) $t(t(a, b), c) = t(a, t(b, c))a, b, c \in [0, 1].$

Definition 2.4. A Menger probabilistic metric space is a triplet (X, F, t), where (X, F) is PM-space and t is a t-norm and the following inequality holds:

$$F_{p,r}(x+y) \ge t(F_{p,q}(x), F_{q,r}(y))$$

for all $p, q, r \in X$ and for all $x, y \ge 0$.

Definition 2.5. Let (X, F, t) be a Menger space with t-norm

- (1) A sequence $\{x_n\}$ in X is said to convergent to x in X (written as $x_n \to x$) if for every $\in > 0$ and $\lambda > 0$, there exists a positive integer $N = N(\in, \lambda)$ such that $F_{x_n,x}(\in) > 1 \lambda$ whenever $n \ge N$.
- (2) The sequence $\{x_n\}$ in X is called a Cauchy sequence if for any $\in > 0$ and $\lambda > 0$, there is a positive integer $N = N(\in, \lambda)$ such that $F_{x_n,x_m}(\in) \geq 1 \lambda$, whenever $n, m \geq N$.
- (3) A Menger space (X, F, t) is said to be complete if every Cauchy sequence in X if each Cauchy sequence in X is convergent to some point in X.

Definition 2.6. Two self maps A and S of a Menger space (X, F, t) are said to be reciprocal continuous if and only if $\lim_{n\to\infty} ASx_n = Az$ and $\lim_{n\to\infty} SAx_n = Sz$, whenever there exists a subsequence in X such that $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z$, for some z in X. It is well known that if A and S are both continuous then obviously they are reciprocal continuous but converse is not true.

Definition 2.7. Self maps A and S of a Menger space (X, F, t) are said to be weakly compatible if they commute at their coincidence points, i.e. if Ap = Sp for some $p \in X$ then ASp = SAp.

Definition 2.8. Self maps A and S of a Menger space (X, F, t) are said to be compatible if $F_{ASp_n,SAp_n}(x) \to 1$ for all x > 0, whenever $\{p_n\}$ is a sequence in X such that $Ap_n, Sp_n(x) \to z$, for some z in X, as $n \to \infty$.

Definition 2.9. Self maps A and S of a Menger space (X, F, t) are said to be semi-compatible if $F_{ASp_n,Sz}(x) \to 1$ for all x > 0, whenever $\{p_n\}$ is a sequence in X such that $Ap_n, Sp_n \to z$ for some z in X, as $n \to \infty$. It follows that if (A, S) is semi-compatible and Ay = Sy, then ASy = SAy. Thus if the pair (A, S) is semi-compatible, then it is weak-compatible. But the converse is not true.

Recently we [13] define a new notion of mappings called absorbing mapping in Menger space as follows.

Definition 2.10. Let A and S be two self maps on a Menger space (X, F, t), then A is called S-absorbing if there exist some real number R > 0 such that $F_{S_x, SA_x}(t) \ge F_{S_x, A_x}(\frac{t}{R})$ for all x in X. Similarly S is called A-absorbing if there exist some real number R > 0 such that $F_{A_x, AS_x}(t) \ge F_{A_x, S_x}(\frac{t}{R})$ for all x in X. Thus we see that, the notion of absorbing maps is different from other generalizations of commutativity.

Lemma 2.11. Let $\{p_n\}$ be a sequence in a Menger space (X, F, t) with continuous t-norm and $t(x, x) \ge x$. Suppose for all $x \in [0, 1]$, $\exists k \in (0, 1)$ such that for all x > 0 and $n \in N$,

$$Fp_n, p_{n+1}(kx) \ge Fp_{n-1}, p_n(x)$$

Then $\{p_n\}$ is a Cauchy sequence in X.

Lemma 2.12. Let (X, F, t) be a Menger space if there exists $k \in (0, 1)$ such that for $p, q \in X$ and x > 0

$$F_{p,q}(kx) \ge F_{p,q}(x).$$

Then p = q.

The following theorem is proved by Razani, and Shirdaryazdi [11].

Theorem RS. Let $P_1, P_2, ..., P_{2n}, Q_0$ and Q_1 are self maps on a complete Menger space (X, F, Δ) with continuous t-norm with $\Delta(x, x) \geq x$ for all $x \in [0, 1]$, satisfying conditions:

(1)
$$Q_0(X) \subseteq P_1P_3...P_{2n-1}(X), Q_1(X) \subseteq P_2P_4...P_{2n}(X),$$

$$(2) P_{2}(P_{4}...P_{2n}) = (P_{4}...P_{2n})P_{2},$$

$$P_{2}P_{4}(P_{6}...P_{2n}) = (P_{6}...P_{2n})P_{2}P_{4},$$

$$\vdots$$

$$P_{2}...P_{2n-2}(P_{2n}) = (P_{2n})P_{2}...P_{2n-2},$$

$$Q_{0}(P_{4}...P_{2n}) = (P_{4}...P_{2n})Q_{0},$$

$$Q_{0}(P_{6}...P_{2n}) = (P_{6}...P_{2n})Q_{0},$$

$$\vdots$$

$$Q_{0}P_{2n} = P_{2n}Q_{0},$$

$$P_{1}(P_{3}...P_{2n-1}) = (P_{3}...P_{2n-1})P_{1},$$

$$P_{1}P_{3}(P_{5}...P_{2n-1}) = (P_{5}...P_{2n-1})P_{1}P_{3},$$

$$\vdots$$

$$P_{1}...P_{2n-3}(P_{2n-1}) = (P_{2n-1})P_{1}...P_{2n-3},$$

$$Q_{1}(P_{3}...P_{2n-1}) = (P_{3}...P_{2n-1})Q_{1},$$

$$\vdots$$

$$Q_{1}P_{2n-1} = P_{2n-1}Q_{1},$$

- (3) $P_2...P_{2n}$ or Q_0 is continuous,
- (4) $(Q_0, P_2...P_{2n})$ is compatible and $(Q_1, P_1...P_{2n-1})$ is weakly compatible,
- (5) There exists $\alpha \in (0, 1)$ such that

$$F_{Q_0u,Q_1v}(\alpha x) \geq Min\{F_{P_2P_4...P_{2n}u,Q_0v}(x), F_{P_1P_3...P_{2n-1}u,Q_1v}(x), F_{P_1P_3...P_{2n-1}v,Q_0u}(\beta x),$$

 $F_{P_2P_4...P_{2n}u,Q_1v}((2-\beta)x), F_{P_2P_4...P_{2n}u,P_1P_3...P_{2n-1}}v(x)\},$
for all $u, v \in X, \beta \in (0,2)$ and $x > 0$. Then $P_1, P_2, ...P_{2n}, Q_0$ and Q_1 have a unique common fixed point in X .

3. Main results

In this paper, we prove a fixed point theorem using reciprocally continuity and employing absorbing mappings with semi-compatibility. **Theorem 3.1.** Let $R_1, R_2, ..., R_{2n}, S_0$ and S_1 are self maps on a complete Menger space (X, F, Δ) with continuous t-norm with $\Delta(x, x) \geq x$ for all $x \in [0, 1]$, satisfying conditions:

$$\begin{aligned} &(1) \ S_0(X) \subseteq R_1 R_3...R_{2n-1}(X), S_1(X) \subseteq R_2 R_4...R_{2n}(X), \\ &(2) \ R_2(R_4...R_{2n}) = (R_4...R_{2n})R_2, \\ &R_2 R_4(R_6...R_{2n}) = (R_6...R_{2n})R_2 R_4, \\ &\vdots \\ &R_2...R_{2n-2}(R_{2n}) = R_{2n}(R_2...R_{2n-2}), \\ &S_0(R_4...R_{2n}) = (R_4...R_{2n})S_0, \\ &S_0(R_6...R_{2n}) = (R_6...R_{2n})S_0, \\ &\vdots \\ &S_0 R_{2n} = R_{2n}S_0, \\ &R_1(R_3...R_{2n-1}) = (R_3...R_{2n-1})R_1, \\ &R_1 R_3(R_5...R_{2n-1}) = (R_5...R_{2n-1})R_1 R_3, \\ &\vdots \\ &R_1...R_{2n-3}(R_{2n-1}) = R_{2n-1}(R_1...R_{2n-3}), \\ &S_1(R_3...R_{2n-1}) = (R_3...R_{2n-1})S_1, \\ &\vdots \\ &S_1 R_{2n-1} = R_{2n-1}S_1; \\ &(3) \ S_1 \ is \ (R_1...R_{2n-1}) \ absorbing \ ; \\ &(4) \ There \ exists \ k \in (0, 1) \ such \ that \\ &F_{S_0p, \ S_1q}(kx) \geq min\{F_{R_2R_4...R_{2n}p, \ S_1q}((2-\beta)x), F_{R_2R_4...R_{2n}p, \ S_0p}(x), \\ &F_{R_1R_3...R_{2n-1}q}, \ S_1q(x), F_{R_2R_4...R_{2n}p, \ R_1R_3...R_{2n-1q}(x)\} \\ &for \ all \ p, \ q \in X, \ \beta \in (0,2) \ and \ x > 0.lf \ (S_0, \ R_2...R_{2n}) \ is \ reciprocal \ continuous \ , \\ &semi-compatible \ maps. Then \ R_1, R_2, ...R_{2n}, S_0 \ and \ S_1 \ have \ a \ unique \ common \ fixed \end{aligned}$$

Proof Let $x_0 \in X$, from condition (1) there exists $x_1, x_2 \in X$ such that $S_0x_0 = R_1R_3...R_{2n-1}x_1 = y_0$ and $S_1x_1 = R_2R_4...R_{2n}x_2 = y_1$, in general we can construct $\{x_n\}$ and $\{y_n\}$ in X such that $S_0x_{2n} = R_1R_3...R_{2n-1}x_{2n+1} = y_{2n}$ or $S_0x_{2n} = R_1R_3...R_{2n-1}x_{2n+1} = y_{2n}$

point in X.

$$R'_2x_{2n+1} = y_{2n}$$
 and $S_1x_{2n+1} = R_2R_4...R_{2n}x_{2n+2} = R'_1x_{2n+2} = y_{2n+1}$ for $n \in \mathbb{N}$.

Putting $p = x_{2n}, q = x_{2n+1}, x > 0$ and $\beta = 1 - \alpha$ with $\alpha \in (0, 1)$ in contractive condition, we have

$$F_{S_0x_{2n}, S_1x_{2n+1}}(kx) \ge \min\{F_{R'_1x_{2n}, S_1x_{2n+1}}((2-(1-\alpha)x), F_{R'_1x_{2n}, S_0x_{2n}}(x), F_{R'_2x_{2n+1}, S_1x_{2n+1}}(x), F_{R'_1x_{2n}, R'_2x_{2n+1}}(x)\},$$

$$F_{y_{2n},y_{2n+1}}(kx) \geq \min\{F_{y_{2n-1},y_{2n+1}}((1+\alpha)x),F_{y_{2n-1},y_{2n}}(x),F_{y_{2n},y_{2n+1}}(x),F_{y_{2n-1},y_{2n}}(x)\},$$

$$\geq \min\{F_{y_{2n-1},y_{2n}}(x),F_{y_{2n},y_{2n+1}}(\alpha x),F_{y_{2n-1},y_{2n}}(x),F_{y_{2n-1},y_{2n}}(x)\},$$

As t-norm is continuous, letting $\alpha \to 1$, we have,

$$F_{y_{2n},y_{2n+1}}(kx) \ge min\{F_{y_{2n-1},y_{2n}}(x),F_{y_{2n},y_{2n+1}}(x)\}.$$

$$F_{y_{2n},y_{2n+1}}(kx) \ge F_{y_{2n-1},y_{2n}}(x).$$

Again $p = x_{2n+2}, q = x_{2n+1}$, in contractive condition, gives

$$F_{S_0x_{2n+2}, S_1x_{2n+1}}(kx) \ge \min\{F_{R'_1x_{2n+2}, S_1x_{2n+1}}((1+\alpha)x), F_{R'_1x_{2n+2}, S_0x_{2n+2}}(x), F_{R'_2x_{2n+1}, S_1x_{2n+1}}(x), F_{R'_2x_{2n+2}, R'_2x_{2n+1}}(x)\},$$

$$F_{y_{2n+2},y_{2n+1}}(kx) \ge \min\{F_{y_{2n+1},y_{2n+1}}((1+\alpha)x), F_{y_{2n+1},y_{2n+2}}(x), F_{y_{2n},y_{2n+1}}(x), F_{y_{2n+1},y_{2n}}(x)\},$$

$$F_{y_{2n+2},y_{2n+1}}(kx) \geq \min\{F_{y_{2n+1},y_{2n+2}}(x),F_{y_{2n},y_{2n+1}}(x)\}.$$

$$F_{y_{2n+2},y_{2n+1}}(kx) \ge F_{y_{2n},y_{2n+1}}(x).$$

Consequently; for all n we have

$$F_{y_n,y_{n+1}}(x) \ge \min\{F_{y_{n-1},y_n}(k^{-1}x), F_{y_n,y_{n+1}}(k^{-m}x)\}.$$

So, $F_{y_n,y_{n+1}}(k^{-m}x) \to 1$ as $m \to \infty$ for any t > 0, it follows that

$$F_{y_n,y_{n+1}}(\alpha x) \ge F_{y_{n-1},y_n}(x),$$

for all $n \in N$ and x > 0. Therefore, by Lemma 2.11 $\{y_n\}$ is a Cauchy sequence in X. Since X is complete, therefore $\{y_n\} \to z$ in X and its subsequences $\{S_1x_{2n+1}\}, \{R_1R_3...R_{2n-1}x_{2n+1}\}, \{S_0x_{2n}\}$ and $\{R_2R_4...R_{2n}x_{2n}\} \to z$

Case (I): By the reciprocally continuity and Semi-compatibility of maps $(S_0, R_2R_4...R_{2n})$, we have $\lim_{n\to\infty} S_0(R_2R_4...R_{2n}x_{2n}) = S_0z$,

$$\lim_{n \to \infty} R_2 R_4 \dots R_{2n}(S_0 x_{2n}) = R_2 R_4 \dots R_{2n} z = R_1' z,$$

and

$$\lim_{n \to \infty} S_0(R_2 R_4 \dots R_{2n} x_{2n}) = R_2 R_4 \dots R_{2n} z = R_1' z$$

which implies that $S_0z = R'_1z$. We claim $S_0z = R'_1z = z$.

Step(i): By using contractive condition, with $p=z, q=x_{2n+1}$ and $\beta=1, R'_1=R_2R_4...R_{2n}, R'_2=R_1R_3...R_{2n-1}$ we have

$$F_{S_0z,\ S_1x_{2n+1}}(kx) \geq \min\{F_{R_1'z,\ S_1x_{2n+1}}(x), F_{R_1'z,\ S_0z}(x), F_{R_2'x_{2n+1},\ S_1x_{2n+1}}(x), F_{R_1'z,\ R_2'x_{2n+1}}(x)\},$$

Letting $n \to \infty$, we get

$$F_{S_0z,z}(kx) \ge \min\{F_{S_0z,z(x)}, F_{S_0z,S_0z}(x), F_{z,z}(x), F_{S_0z,z}(x)\}.$$

Thus by Lemma 2.12, we have

$$S_0 z = R_1' z = z.$$

Step (ii): Putting $p = R_4...R_{2n}z$, $q = x_{2n+1}$, $\alpha = 1$ with $R'_1 = R_2R_4...R_{2n}$, $R'_2 = R_1R_3...R_{2n-1}$, in contractive condition, we have

$$F_{S_0R_4...R_{2n}z}, \, S_{1}x_{2n+1}(kx) \ge \min\{F_{R'_1R_4...R_{2n}z}, \, S_{1}x_{2n+1}(x), F_{R'_1R_4...R_{2n}z}, \, S_{0}R_{4}...R_{2n}z(x), \, S_{0}R_{4}...$$

$$F_{R'_2x_{2n+1}, S_1x_{2n+1}}(x), F_{R'_1R_4...R_{2n}z, R'_2x_{2n+1}}(x)\},$$

Letting $n \to \infty$, we see that

$$F_{R_4\dots R_{2n}z,z}(kx) \geq \min\{F_{R_4\dots R_{2n}z,z}(x), F_{R_4\dots R_{2n}z,R_4\dots R_{2n}z(x)}, F_{z,z}(x), F_{R_4\dots R_{2n}z,z}(x)\},$$

$$F_{R_4...R_{2n}z,z}(kx) \ge F_{R_4...R_{2n}z,z}(x).$$

Because $R_2(R_4...R_{2n}) = (R_4...R_{2n})R_2$ and $S_0(R_4...R_{2n}) = (R_4...R_{2n})S_0$, in (2); So $R_4...R_{2n}z = z$. Therefore $R_2z = z$. Continuing this procedure, we can obtain the following result:

$$S_0z = z = R_2z = R_4z = \dots = R_{2n}z = z.$$

Since $S_0(X) \subseteq R_1 R_3 ... R_{2n-1}(X)$, there exists $u \in X$, such that

$$z = S_0 z = R_1 R_3 ... R_{2n-1} u \text{ or } z = S_0 z = R'_2 u.$$

Step (iii): Putting $p = x_{2n}, q = u, R'_1 = R_2 R_4 ... R_{2n}$ and $R'_2 = R_1 R_3 ... R_{2n-1}$ with $\beta = 1$ in contractive condition, we have

$$F_{S_0x_{2n}, S_1u}(kx) \ge \min\{F_{R'_1x_{2n}, S_1u}(x), F_{R'_1x_{2n}, S_0x_{2n}}(x), F_{R'_2u, S_1u}(x), F_{R'_1x_{2n}z, R'_2u}(x)\},$$

Letting $n \to \infty$, we obtain that

$$F_{z,S_{1}u}(kx) \ge min\{F_{z,S_{1}u}(x), F_{z,z}(x), F_{z,S_{1}u}(x), F_{z,z}(x)\}.$$

Therefore $z = S_1 u$. Hence $z = S_1 u = R'_2 u = R_1 R_3 ... R_{2n-1} u$.

Since S_1 is $R_1R_3...R_{2n-1}$ -absorbing, we have,

$$F_{R_1R_3...R_{2n-1}u,R_1R_3...R_{2n-1}S_1u}(x) \ge F_{R_1R_3...R_{2n-1}u,S_1u}(x/R) \ge 1.$$

$$\Rightarrow R_1 R_3 ... R_{2n-1} u = R'_2 u = R'_2 S_1 u.$$

Therefore

$$z = R_2' z$$

Step(iv): Putting $p = x_{2n}, q = z$ with $\beta = 1$ and $R'_1 = R_2 R_4 ... R_{2n}$ and $R'_2 = R_1 R_3 ... R_{2n-1}$ in contractive condition, we have

$$F_{S_0x_{2n}, S_1z}(kx) \ge \min\{F_{R'_1x_{2n}, S_1z}(x), F_{R'_1x_{2n}, S_0x_{2n}}(x), F_{R'_2z, S_1z}(x), F_{R'_1x_{2n}, R'_2z}(x)\}.$$

Letting $n \to \infty$, we get

$$F_{z, S_1 z}(kx) \ge min\{F_{z, S_1 z}(x), F_{z, z}(x), F_{z, S_1 z}(x), F_{z, z}(x)\},\$$

Therefore

$$z = S_1 z = R_2' z$$

Step (v): Putting $p = x_{2n}, q = R_3...R_{2n-1}$ with $\beta = 1$ and $R'_1 = R_2R_4...R_{2n}$ and $R'_2 = R_1R_3...R_{2n-1}$ in contractive condition, we have

$$F_{S_0x_{2n}, S_1R_3...R_{2n-1}z}(kx) \ge \min\{F_{R'_1x_{2n}, S_1R_3...R_{2n-1}z}(x), F_{R'_1x_{2n}, S_0x_{2n}}(x), F_{R'_2R_3...R_{2n-1}z, S_1R_3...R_{2n-1}z}(x), F_{R'_1x_{2n}, R'_2R_3...R_{2n-1}z}(x)\},$$

Again letting $n \to \infty$, so that

$$F_{z,\ R_3\dots R_{2n-1}z}(kx) \geq \min\{F_{z,\ R_3\dots R_{2n-1}z}(x), F_{z,\ z}(x), F_{R_3\dots R_{2n-1}z,\ R_3\dots R_{2n-1}z}(x), F_{z,\ R_3\dots R_{2n-1}z}(x)\},$$

$$F_{z, R_3...R_{2n-1}z}(kx) \ge min\{F_{z, R_3...R_{2n-1}z}(x)\}$$

Therefore

$$z = R_3 ... R_{2n-1} z$$
.

Because $R_1\{R_3...R_{2n-1}\}=\{R_3...R_{2n-1}\}R_1$ and $S_1\{R_3...R_{2n-1}\}=\{R_3...R_{2n-1}\}S_1$, we obtain $R_3...R_{2n-1}z=z$. Therefore $R_1z=z$. Continuing this procedure, we obtain the following results; $S_1=R_1z=R_3z=...=R_{2n-1}z$. So,

$$S_0z = S_1z = R_1z = R_2z = \dots = R_{2n-1} = R_{2n}z = z.$$

Uniqueness: Let w be another common fixed point of $S_0, S_1, R_1R_3...R_{2n-1}$ and $R_2R_4...R_{2n}$ putting p = z and q = w with $\beta = 1$, $R'_1 = R_2R_4...R_{2n}$, $R'_2 = R_1R_3...R_{2n-1}$ in contractive condition, we have

$$F_{S_0z, S_1w}(kx) \ge \min\{F_{R'_1z, S_1w}(x), F_{R'_1z, S_0z}(x), F_{R'_2w, S_1w}(x), F_{R'_1z, R'_2w}(x)\},\$$

$$F_{z,w}(kx) \ge \min\{F_{z,w}(x), F_{z,z}(x), F_{w,w}(x), F_{z,w}(x)\},\$$

i.e. z = w. Hence z is unique common fixed point of maps.

Example: Let (X, d) be a metric space with the usual metric d where X = [0,1] and (X, F, *) be the induced Menger space with $F_{x,y}(t) = H(t - d(x, y))$ for all $x, y \in X, t > 0$. Clearly (X, F, *) is complete Menger space where t-norm * is defined by $a * b = min\{a, b\}$ for all $a, b \in [0, 1]$.

Let S_0, S_1, R'_1 and R'_2 be maps from X into it self defined as $S_0(X) = x/6$, $S_1(X) = x/6$

 $0, R'_1(X) = x/3, R'_2(X) = x/2 \ \forall x \in X.$ Then $S_0(X) = [0,1/6] \subseteq [0,1/2] = R'_2(X)$ and $S_1(X) = \{0\} \subseteq [0,1/3] = R'_1(X)$. Clearly all conditions of main Theorem are satisfied if $\lim_{n\to\infty} x_n = 0$, where $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} S_0 x_n = \lim_{n\to\infty} R'_2 x_n = 0$ and $\lim_{n\to\infty} S_1 x_n = \lim_{n\to\infty} R'_1 x_n = 0$ for some $0 \in X$. Thus all condition of the main Theorem are satisfied. This completes the proof.

References

- [1] Y.J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy Math. 5 (1997), 949-62.
- [2] M. Grabiec, Fixed points in fuzzy metric space Fuzzy Sets and System, 27 (1998), 385-389.
- [3] A. George, P. Veermani, On some results in fuzzy metric spaces. Fuzzy Sets and System 64 (1994), 395-399.
- [4] O. Hadzik, Fixed point theorems for multivalued maps in PM space, Math. Vesnik 3 (1979), 125-133.
- [5] O. Kramosil , J. Michelak , Fuzzy metric and statistical metric space, Kybernetika, 11 (1975), 326-334.
- [6] K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. USA 28 (1942), 535-537.
- [7] S. N. Mishra, Common fixed point of compatible mappings in PM-spaces, Math.Japon. Thai J. Math.36 (1991), 283-289.
- [8] S. N. Mishra, N. Sharma, S. L. Singh, Common fixed point of maps on fuzzy metric spaces, Int. J. Math. Math. Sci. 17 (1994), 253-8.
- [9] U. Mishra, A. S. Ranadive, D. Gopal, Fixed point theorems via absorbing maps; Thai J. Math., 6 (2008), 49-60.
- [10] U. Mishra, A.S. Ranadive, D.Gopal, Fixed point theorems via absorbing maps; Thai J. Math. 6 (2008) 49-60.
- [11] A. Razani, M. Shirdaryazdi, A common fixed point theorem of compatible maps in Menger spaces, Chaos Solitons and Fractals, 32 (2007), 26-34.
- [12] A. S. Ranadive, D. Gopal, U. Mishra, On some open problems of common fixed point theorems for a pair of non-compatible self-maps. Proc. Math. Soc. 20 (2004), 135-141.
- [13] A. S. Ranadive, A.P. Chouhan and U. Mishra, Semi-compatibility and Fixed Point Theorem in Probabilistic Metric Spaces, Modern Methods in Analysis and its Applications, Edited by M. Musarlean Anamaya Publisher, New Delhi, India 228-238.
- [14] V. M. Sehgal, Bharucha-Reid, Fixed points of contraction mappings in PM-spaces, Math System Theory 6 (1972) 97-102.

- [15] S. Sessa, On a week commutative condition in fixed point consideration, Publ Inst Math (Beograd) 32 (1982), 149-53.
- [16] Schweizer, A. Sklar, Probabilistic metric spaces, North Holland Series in Probability and Applied Math, 5 (1983).
- [17] B. Singh, S. Jain, A fixed point theorem in Menger space through weak compatibility, J. Math. Anal. Appl. 301 (2005), 439-448.
- [18] B. Singh, B. D. Pant, Common fixed point theorems in PM spaces and extension to uniform spaces, Honam Maths. J. 6 (1984), 1-12.
- [19] R. Vasuki, Common fixed point for R-weakly commuting maps in fuzzy metric spaces, Indian J. Pure Appl. Math. (1999) 419-423.
- [20] L.A. Zadeh, Fuzzy sets Inform, Info. Control, 89 (1965), 338-353.