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1. Introduction

There have been a number of generalizations of metric space. One such generalization

is Menger space initiated by Menger [6]. The theory of probabilistic metric spaces is of

fundamental importance in probabilistic function analysis. It is a probabilistic general-

ization in which we assign a distribution function Fx,y to any two points x and y. Sehgal

et al [14] initiated the study of fixed points in probabilistic metric spaces. Moreover, this

theory is studied in Menger probabilistic metric space by many authors such as Schweizer

and Sklar [16], Razani et-al [11] and etc. It is observed by many authors that contraction

condition in metric space may be exactly translated into PM-space endowed with min
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norms. Mishra [7] introduced the concept of compatible self-maps in Menger space and

proved the existence of a common fixed point of a pair of compatible maps using a contrac-

tive condition. Subsequently, Singh et al [17] introduced the concept of semi-compatible

mapping in Menger space and proved a fixed point theorem using semi-compatibility.

Ranadive et-al [12] introduced the concept of absorbing mapping in metric space and

prove a common fixed point theorem in this space. Moreover they [12] observe that the

new notion of absorbing map is neither a subclass of compatible maps nor a subclass of

non-compatible maps. In [9], Ranadive et-al introduced absorbing maps in fuzzy metric

space and prove a common fixed point theorem in this spaces. Recently we [13] introduce

absorbing maps in Menger space and prove a fixed point theorem in this space.

In this paper we prove, a common fixed point theorem using reciprocally continuity

and employing absorbing mapping with semi-compatibility.In order to do this, we recall

some definitions,Lemmas, prepositions and known results from [7], [17], and [18].

2. Preliminaries

Definition 2.1. A mapping F : R → R+ is called a distribution if it is non decreasing

left-continuous with inf{F (t) : t ∈ R = 0} and sup{F (t) : t ∈ R = 1}.We shall denote by

L the set of all distribution functions while H will always denote the specific distribution

function denoted by

H(t) =

 0, if t ≤ 0,

1, if t > 0.

Definition 2.2. A probabilistic metric space (PM-space) is an ordered pair (X,F ) where

X is a nonempty set and F : X ×X → L is defined by (p, q) 7→ Fp,q where L is the set of

all distribution function, i.e., L = {Fp,q : p, q ∈ X}, where the functions Fp,q satisfy:

(1) Fp,q(x) = 1 for all x > 0, if and only if p = q,

(2) Fp,q(0) = 0,

(3) Fp,q = Fq,p,

(4) if Fp,q(x) = 1 and Fq,r(y) = 1 then Fp,r(x+ y) = 1, for all p, q, r ∈ X x, y ≥ 0.
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Definition 2.3. A mapping t : [0, 1] × [0, 1] → [0, 1] is called a t-norm if the following

conditions are satisfied:

(1) t(a, 1) = a for every a ∈ [0, 1],

(2) t(a, b) = t(b, a) for every a, b ∈ [0, 1],

(3) t(c, d) ≥ t(a, b) for c ≥ a, d ≥ b a, b, c, d ∈ [0, 1];

(4) t(t(a, b), c) = t(a, t(b, c))a, b, c ∈ [0, 1].

Definition 2.4. A Menger probabilistic metric space is a triplet (X,F, t), where (X,F )

is PM-space and t is a t-norm and the following inequality holds:

Fp,r(x+ y) ≥ t(Fp,q(x), Fq,r(y))

for all p, q, r ∈ X and for all x, y ≥ 0.

Definition 2.5. Let (X,F, t) be a Menger space with t-norm

(1) A sequence {xn} in X is said to convergent to x in X (written as xn → x) if for every

∈> 0 and λ > 0, there exists a positive integer N = N(∈, λ) such that Fxn,x(∈) > 1− λ

whenever n ≥ N .

(2) The sequence {xn} in X is called a Cauchy sequence if for any ∈> 0 and λ > 0, there

is a positive integer N = N(∈, λ) such that Fxn,xm(∈) ≥ 1− λ, whenever n,m ≥ N .

(3) A Menger space (X, F, t) is said to be complete if every Cauchy sequence in X if

each Cauchy sequence in X is convergent to some point in X.

Definition 2.6. Two self maps A and S of a Menger space (X,F, t) are said to be

reciprocal continuous if and only if limn→∞ASxn = Az and limn→∞ SAxn = Sz, whenever

there exists a subsequence in X such that limn→∞Axn = limn→∞ Sxn = z, for some z in

X. It is well known that if A and S are both continuous then obviously they are reciprocal

continuous but converse is not true.

Definition 2.7. Self maps A and S of a Menger space (X,F, t) are said to be weakly

compatible if they commute at their coincidence points, i.e. if Ap = Sp for some p ∈ X

then ASp = SAp.
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Definition 2.8. Self maps A and S of a Menger space (X,F, t) are said to be compat-

ible if FASpn ,SApn (x) → 1 for all x > 0, whenever {pn} is a sequence in X such that

Apn, Spn(x)→ z, for some z in X, as n→∞.

Definition 2.9. Self maps A and S of a Menger space (X,F, t) are said to be semi-

compatible if FASpn ,Sz (x)→ 1 for all x > 0 , whenever {pn} is a sequence in X such that

Apn, Spn → z for some z in X, as n → ∞. It follows that if (A, S) is semi-compatible

and Ay = Sy, then ASy = SAy. Thus if the pair (A, S) is semi-compatible, then it is

weak-compatible. But the converse is not true.

Recently we [13] define a new notion of mappings called absorbing mapping in Menger

space as follows.

Definition 2.10. Let A and S be two self maps on a Menger space (X,F, t), then

A is called S-absorbing if there exist some real number R > 0 such that FSx ,SAx (t) ≥

FSx ,Ax ( t
R

) for all x in X. Similarly S is called A-absorbing if there exist some real number

R > 0 such that FAx ,ASx (t) ≥ FAx ,Sx ( t
R

) for all x in X. Thus we see that, the notion of

absorbing maps is different from other generalizations of commutativity.

Lemma 2.11. Let {pn} be a sequence in a Menger space (X,F, t) with continuous t-norm

and t(x, x) ≥ x. Suppose for all x ∈ [0, 1], ∃k ∈ (0, 1) such that for all x > 0 and n ∈ N ,

Fpn, pn+1(kx) ≥ Fpn−1, pn(x)

Then {pn} is a Cauchy sequence in X.

Lemma 2.12. Let (X,F, t) be a Menger space if there exists k ∈ (0, 1) such that for

p, q ∈ X and x > 0

Fp,q(kx) ≥ Fp,q(x).

Then p = q.

The following theorem is proved by Razani, and Shirdaryazdi [11].

Theorem RS. Let P1, P2, ..., P2n, Q0 and Q1 are self maps on a complete Menger space

(X,F,∆) with continuous t-norm with ∆(x, x) ≥ x for all x ∈ [0, 1],satisfying conditions:

(1) Q0(X) ⊆ P1P3...P2n−1(X), Q1(X) ⊆ P2P4...P2n(X),
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(2) P2(P4...P2n) = (P4...P2n)P2,

P2P4(P6...P2n) = (P6...P2n)P2P4,
...

P2...P2n−2(P2n) = (P2n)P2...P2n−2,

Q0(P4...P2n) = (P4...P2n)Q0,

Q0(P6...P2n) = (P6...P2n)Q0,
...

Q0P2n = P2nQ0,

P1(P3...P2n−1) = (P3...P2n−1)P1,

P1P3(P5...P2n−1) = (P5...P2n−1)P1P3,
...

P1...P2n−3(P2n−1) = (P2n−1)P1...P2n−3,

Q1(P3...P2n−1) = (P3...P2n−1)Q1,

Q1(P5...P2n−1) = (P5...P2n−1)Q1,
...

Q1P2n−1 = P2n−1Q1,

(3) P2...P2n or Q0 is continuous,

(4) (Q0, P2...P2n) is compatible and (Q1, P1...P2n−1) is weakly compatible,

(5) There exists α ∈ (0, 1) such that

FQ0u,Q1v(αx) ≥Min{FP2P4...P2nu,Q0v(x), FP1P3...P2n−1u,Q1v(x), FP1P3...P2n−1v,Q0u(βx),

FP2P4...P2nu,Q1v((2− β)x), FP2P4...P2nu,P1P3...P2n−1v(x)},

for all u, v ∈ X, β ∈ (0, 2) and x > 0. Then P1, P2, ...P2n, Q0 and Q1 have a unique

common fixed point in X.

3. Main results

In this paper, we prove a fixed point theorem using reciprocally continuity and employ-

ing absorbing mappings with semi-compatibility.



ABSORBING MAPS AND COMMON FIXED POINT THEOREM 113

Theorem 3.1. Let R1, R2, ..., R2n, S0 and S1 are self maps on a complete Menger space

(X,F,∆) with continuous t-norm with ∆(x, x) ≥ x for all x ∈ [0, 1], satisfying conditions:

(1) S0(X) ⊆ R1R3...R2n−1(X), S1(X) ⊆ R2R4...R2n(X),

(2) R2(R4...R2n) = (R4...R2n)R2,

R2R4(R6...R2n) = (R6...R2n)R2R4,
...

R2...R2n−2(R2n) = R2n(R2...R2n−2),

S0(R4...R2n) = (R4...R2n)S0,

S0(R6...R2n) = (R6...R2n)S0,
...

S0R2n = R2nS0,

R1(R3...R2n−1) = (R3...R2n−1)R1,

R1R3(R5...R2n−1) = (R5...R2n−1)R1R3,
...

R1...R2n−3(R2n−1) = R2n−1(R1...R2n−3),

S1(R3...R2n−1) = (R3...R2n−1)S1,

S1(R5...R2n−1) = (R5...R2n−1)S1,
...

S1R2n−1 = R2n−1S1;

(3) S1 is (R1...R2n−1) absorbing ;

(4) There exists k ∈ (0, 1) such that

FS0p, S1q(kx) ≥ min{FR2R4...R2np, S1q((2− β)x), FR2R4...R2np, S0p(x),

FR1R3...R2n−1q, S1q(x), FR2R4...R2np, R1R3...R2n−1q(x)}

for all p, q ∈ X, β ∈ (0, 2) and x > 0.If (S0, R2...R2n) is reciprocal continuous ,

semi-compatible maps.Then R1, R2, ...R2n, S0 and S1 have a unique common fixed

point in X.

Proof Let x0 ∈ X, from condition (1) there exists x1, x2 ∈ X such that S0x0 =

R1R3...R2n−1x1 = y0 and S1x1 = R2R4...R2nx2 = y1,in general we can construct {xn} and

{yn} in X such that S0x2n = R1R3...R2n−1x2n+1 = y2n or S0x2n = R1R3...R2n−1x2n+1 =
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R′2x2n+1 = y2n and S1x2n+1 = R2R4...R2nx2n+2 = R′1x2n+2 = y2n+1 for n ∈ N .

Putting p = x2n, q = x2n+1, x > 0 and β = 1−α with α ∈ (0, 1) in contractive condition,

we have

FS0x2n, S1x2n+1(kx) ≥ min{FR′1x2n, S1x2n+1
((2− (1− α)x), FR′1x2n, S0x2n

(x),

FR′2x2n+1, S1x2n+1
(x), FR′1x2n, R′2x2n+1

(x)},

Fy2n,y2n+1(kx) ≥ min{Fy2n−1,y2n+1((1 + α)x), Fy2n−1,y2n(x), Fy2n,y2n+1(x), Fy2n−1,y2n(x)},

≥ min{Fy2n−1,y2n(x), Fy2n,y2n+1(αx), Fy2n−1,y2n(x), Fy2n−1,y2n(x)},

As t-norm is continuous, letting α→ 1, we have,

Fy2n,y2n+1(kx) ≥ min{Fy2n−1,y2n(x), Fy2n,y2n+1(x)}.

Fy2n,y2n+1(kx) ≥ Fy2n−1,y2n(x).

Again p = x2n+2, q = x2n+1, in contractive condition, gives

FS0x2n+2, S1x2n+1(kx) ≥ min{FR′1x2n+2, S1x2n+1
((1 + α)x), FR′1x2n+2, S0x2n+2

(x),

FR′2x2n+1, S1x2n+1
(x), FR′1x2n+2, R′2x2n+1

(x)},

Fy2n+2,y2n+1(kx) ≥ min{Fy2n+1,y2n+1((1 + α)x), Fy2n+1,y2n+2(x),

Fy2n,y2n+1(x), Fy2n+1,y2n(x)},

Fy2n+2,y2n+1(kx) ≥ min{Fy2n+1,y2n+2(x), Fy2n,y2n+1(x)}.

Fy2n+2,y2n+1(kx) ≥ Fy2n,y2n+1(x).

Consequently; for all n we have

Fyn,yn+1(x) ≥ min{Fyn−1,yn(k−1x), Fyn,yn+1(k
−mx)}.

So, Fyn,yn+1(k
−mx)→ 1 as m→∞ for any t > 0, it follows that

Fyn,yn+1(αx) ≥ Fyn−1,yn(x),
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for all n ∈ N and x > 0. Therefore, by Lemma 2.11 {yn} is a Cauchy sequence in X. Since

X is complete, therefore {yn} → z inX and its subsequences {S1x2n+1}, {R1R3...R2n−1x2n+1}, {S0x2n}

and {R2R4...R2nx2n} → z

Case (I): By the reciprocally continuity and Semi-compatibility of maps (S0, R2R4....R2n),

we have limn→∞ S0(R2R4...R2nx2n) = S0z,

lim
n→∞

R2R4...R2n(S0x2n) = R2R4...R2nz = R′1z,

and

lim
n→∞

S0(R2R4...R2nx2n) = R2R4...R2nz = R′1z

which implies that S0z = R′1z.We claim S0z = R′1z = z.

Step(i): By using contractive condition, with p = z, q = x2n+1 and β = 1, R′1 =

R2R4...R2n, R
′
2 = R1R3...R2n−1 we have

FS0z, S1x2n+1(kx) ≥ min{FR′1z, S1x2n+1
(x), FR′1z, S0z(x), FR′2x2n+1, S1x2n+1

(x), FR′1z, R′2x2n+1
(x)},

Letting n→∞, we get

FS0z,z(kx) ≥ min{FS0z,z(x), FS0z,S0z(x), Fz,z(x), FS0z,z(x)}.

Thus by Lemma 2.12, we have

S0z = R′1z = z.

Step (ii): Putting p = R4...R2nz, q = x2n+1, α = 1 with R′1 = R2R4...R2n, R
′
2 =

R1R3...R2n−1, in contractive condition, we have

FS0R4...R2nz, S1x2n+1(kx) ≥ min{FR′1R4...R2nz, S1x2n+1
(x), FR′1R4...R2nz, S0R4...R2nz(x),

FR′2x2n+1, S1x2n+1
(x), FR′1R4...R2nz, R′2x2n+1

(x)},

Letting n→∞, we see that

FR4...R2nz,z(kx) ≥ min{FR4...R2nz,z(x), FR4...R2nz,R4...R2nz(x), Fz,z(x), FR4...R2nz,z(x)},

FR4...R2nz,z(kx) ≥ FR4...R2nz,z(x).
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BecauseR2(R4...R2n) = (R4...R2n)R2 and S0(R4...R2n) = (R4...R2n)S0, in (2); SoR4...R2nz =

z. Therefore R2z = z. Continuing this procedure, we can obtain the following result:

S0z = z = R2z = R4z = ... = R2nz = z.

Since S0(X) ⊆ R1R3...R2n−1(X) ,there exists u ∈ X, such that

z = S0z = R1R3...R2n−1u or z = S0z = R′2u.

Step (iii): Putting p = x2n, q = u,R′1 = R2R4...R2n and R′2 = R1R3...R2n−1 with β = 1 in

contractive condition, we have

FS0x2n, S1u(kx) ≥ min{FR′1x2n, S1u(x), FR′1x2n, S0x2n
(x), FR′2u, S1u(x), FR′1x2nz, R′2u

(x)},

Letting n→∞, we obtain that

Fz,S1u (kx) ≥ min{Fz,S1u (x), Fz,z(x), Fz,S1u (x), Fz,z(x)}.

Therefore z = S1u. Hence z = S1u = R′2u = R1R3...R2n−1u.

Since S1 is R1R3...R2n−1-absorbing, we have,

FR1R3...R2n−1u,R1R3...R2n−1S1u (x) ≥ FR1R3...R2n−1u,S1u (x/R) ≥ 1.

⇒ R1R3...R2n−1u = R′2u = R′2S1u.

Therefore

z = R′2z

Step(iv): Putting p = x2n, q = z with β = 1 and R′1 = R2R4...R2n and R′2 = R1R3...R2n−1

in contractive condition, we have

FS0x2n, S1z(kx) ≥ min{FR′1x2n, S1z(x), FR′1x2n, S0x2n
(x), FR′2z, S1z(x), FR′1x2n, R′2z

(x)}.

Letting n→∞, we get

Fz, S1z(kx) ≥ min{Fz, S1z(x), Fz, z(x), Fz, S1z(x), Fz, z(x)},

Therefore

z = S1z = R′2z
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Step (v): Putting p = x2n, q = R3...R2n−1 with β = 1 and R′1 = R2R4...R2n and R′2 =

R1R3...R2n−1 in contractive condition, we have

FS0x2n, S1R3...R2n−1z(kx) ≥ min{FR′1x2n, S1R3...R2n−1z(x), FR′1x2n, S0x2n
(x),

FR′2R3...R2n−1z, S1R3...R2n−1z(x), FR′1x2n, R′2R3...R2n−1z(x)},

Again letting n→∞, so that

Fz, R3...R2n−1z(kx) ≥ min{Fz, R3...R2n−1z(x), Fz, z(x), FR3...R2n−1z, R3...R2n−1z(x), Fz, R3...R2n−1z(x)},

Fz, R3...R2n−1z(kx) ≥ min{Fz, R3...R2n−1z(x)}

Therefore

z = R3...R2n−1z.

Because R1{R3...R2n−1} = {R3...R2n−1}R1 and S1{R3...R2n−1} = {R3...R2n−1}S1, we

obtain R3...R2n−1z = z. Therefore R1z = z. Continuing this procedure, we obtain the

following results; S1 = R1z = R3z = ... = R2n−1z. So,

S0z = S1z = R1z = R2z = ... = R2n−1 = R2nz = z.

Uniqueness: Let w be another common fixed point of S0, S1, R1R3...R2n−1 andR2R4...R2n

putting p = z and q = w with β = 1, R′1 = R2R4...R2n, R′2 = R1R3...R2n−1 in contractive

condition, we have

FS0z, S1w(kx) ≥ min{FR′1z, S1w(x), FR′1z, S0z(x), FR′2w, S1w(x), FR′1z, R′2w
(x)},

Fz,w(kx) ≥ min{Fz,w(x), Fz,z(x), Fw,w(x), Fz,w(x)},

i.e. z = w. Hence z is unique common fixed point of maps.

Example: Let (X, d) be a metric space with the usual metric d where X= [0,1] and

(X,F, ∗) be the induced Menger space with Fx,y(t) = H(t−d(x, y)) for all x, y ∈ X, t > 0.

Clearly (X,F, ∗) is complete Menger space where t-norm * is defined by a∗ b = min{a, b}

for all a, b ∈ [0, 1].

Let S0, S1, R
′
1 and R′2 be maps from X into it self defined as S0(X) = x/6, S1(X) =
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0, R′1(X) = x/3, R′2(X) = x/2 ∀x ∈ X.Then S0(X)= [0,1/6] ⊆ [0,1/2]= R′2(X) and

S1(X) = {0} ⊆ [0,1/3] = R′1(X). Clearly all conditions of main Theorem are satisfied if

limn→∞xn = 0, where {xn} is a sequence in X such that limn→∞S0xn = limn→∞R
′
2xn = 0

and limn→∞ = S1xn = limn→∞R
′
1xn = 0 for some 0 ∈ X. Thus all condition of the main

Theorem are satisfied. This completes the proof.
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