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1. Introduction-preliminaries

Variational inclusion problems, which include many important problems in nonlinear func-

tional analysis and optimization such as the Nash equilibrium problem, complementarity prob-

lems, vector optimization problems, fixed point problems, saddle point problems and game the-

ory, recently have been studied as an effective and powerful tool for studying many real world

problems which arise in economics, finance, image reconstruction, ecology, transportation, and

network; see [1-8] and the references therein.

Let H be a real Hilbert space and let C be a closed convex subset of C. Let Recall that a

mapping S : C→ C is said to be α-contractive iff there exists a constant α ∈ [0,1) such that

‖Sx−Sy‖ ≤ α‖x− y‖ ∀x,y ∈C. S is said to be nonexpansive if ‖Sx−Sy‖ ≤ ‖x− y‖ ∀x,y ∈ H.
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In this paper, we use F(S) to denote the set of fixed points of S. If C is bounded, then F(S) is

not empty. Recall that a mapping A on H is said to be strongly positive if there is a constant

γ̄ > 0 such that 〈Ax,x〉 ≥ γ̄‖x‖2, ∀x ∈H. Recall that a mapping B : H→H is said to be inverse-

strongly monotone, if there exists an α > 0 such that 〈Bx−By,x− y〉 ≥ α‖Bx−By‖2 for all

x,y ∈ H. Recall that a set-valued mapping M : H → 2H is called monotone if for all x,y ∈ H,

f ∈Mx and g ∈My imply 〈x− y, f −g〉 ≥ 0. The domain of M is denoted by Dom(B).

In this paper, we consider the following so-called quasi-variational inclusion problem: Find

an u ∈ H such that 0 ∈ Bu+Mu, where B : H → H and M : H → 2H are two nonlinear map-

pings. In this paper, we use V I(H,B,M) to denote the solution of the problem (1). A number

of problems arising in structural analysis, mechanics and economic can be studied in the frame-

work of this class of variational inclusions. Next, we consider two special cases of the inclusion

problem.

(I) If M = ∂δC, where C is a nonempty closed convex subset of H and δC : H→ [0,∞] is the

indicator function of C, ie.,

δC(x) =


0, x ∈C,

+∞, x /∈C,

then the quasi-variational inclusion problem is equivalent to the classical variational inequality

problem, denoted by V I(C,B), is to find u ∈C such that

〈Bu,v−u〉 ≥ 0, ∀v ∈C.

(II) If M = ∂φ : H→ 2H , where φ : H→R∪{+∞} is a proper convex lower semi-continuous

function and ∂φ is the sub-differential of φ , then the quasi-variational inclusion problem is

equivalent to finding u ∈H such that 〈Bu,v−u〉+φ(v)−φ(u)≥ 0, ∀v ∈H, which is said to be

the mixed quasi-variational inequality.

In this paper, we introduce an general iterative algorithm for finding a common element

of the set of common fixed points of an infinite family of nonexpansive mappings and of the

set of solutions to the inclusion problem. Strong convergence theorems are established in the

framework of Hilbert spaces.

In order to prove our main results, we need the following conceptions and lemmas.
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Lemma 1.1. [9] Assume that {αn} is a sequence of nonnegative real numbers such that αn+1 ≤

(1−γn)αn+δn, where {γn} is a sequence in (0,1) and {δn} is a sequence such that ∑
∞
n=1 γn =∞

and limsupn→∞ δn/γn ≤ 0. Then limn→∞ αn = 0.

Definition 1.2. [10] Let H be a real Hilbert space and let C be convex closed subset of C. Let

{Si} be a family of infinitely nonexpansive mappings and {γi} be a nonnegative real sequence

with 0≤ γi < 1, ∀i≥ 1. For n≥ 1, define a mapping Wn as follows:

Un,n+1 = I,

Un,n = γnSnUn,n+1 +(1− γn)I,

...

Un,2 = γ2S2Un,3 +(1− γ2)I,

Wn =Un,1 = γ1S1Un,2 +(1− γ1)I.

(1.1)

Such a mapping Wn is nonexpansive and it is called a W -mapping generated by Sn,Sn−1, . . . ,S1

and γn,γn−1, . . . ,γ1.

Lemma 1.3. [10] Let H be a real Hilbert space and let C be a convex subset of H. Let {Si} be

an infinite family of nonexpansive mappings with ∩∞
i=1F(Si) 6= /0, {γi} be a real sequence such

that 0 < γi ≤ l < 1, ∀i≥ 1. Then

(1) Wn is nonexpansive and F(Wn) = ∩∞
i=1F(Si), for each n≥ 1;

(2) the mapping W defined by Wx := limn→∞Wnx = limn→∞Un,1x, is a nonexpansive map-

ping satisfying F(W )=∩∞
i=1F(Si) and it is called the W-mapping generated by S1,S2, . . .

and γ1,γ2, . . . .

(3) for each x ∈C and for each positive integer k, the limit limn→∞Un,k exists.

Lemma 1.4. [11] Let {xn} and {yn} be bounded sequences in a Banach space E and let {βn}

be a sequence in [0,1] with 0 < liminfn→∞ βn ≤ limsupn→∞ βn < 1. Suppose that xn+1 = (1−

βn)yn +βnxn for all n≥ 0 and limsupn→∞(‖yn+1−yn‖−‖xn+1−xn‖)≤ 0. Then limn→∞ ‖yn−

xn‖= 0.

Lemma 1.5. [12] Let H be a Hilbert space H and {Si} a family of infinitely nonexpansive

mappings with ∩∞
i=1F(Si) 6= /0, {γi} a real sequence such that 0 < γi ≤ l < 1, ∀i≥ 1. If K is any
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bounded subset of H, then limn→∞ supx∈K ‖Wx−Wnx‖ = 0. Throughout this paper, we always

assume that 0 < γi ≤ l < 1, ∀i≥ 1.

2. Main results

Theorem 2.1. Let H be a real Hilbert space and let C be a closed and convex subset of H.

Let M1 and M2 be two maximal monotone operators on H. Let B1 : be a δ1-inverse-strongly

monotone mapping on H and let B2 a δ2-inverse-strongly monotone mapping on H. Let {Si}∞
i=1

be an infinitely family of nonexpansive mappings from C into itself and let f : C→C be an α-

contraction. Let A be a strongly positive linear bounded self-joint operator with the coefficient

γ̄ > 0. Assume that 0 < γ < γ̄/α , Ω = ∩∞
i=1F(Si)∩V I(H,B1,M1)∩V I(H,B2,M2) 6= /0 and

Dom(B1)⊂C. Let x1 ∈C and {xn} be a sequence generated by
zn = (I +ηM2)

−1(xn−ηB2xn),

yn = (I +λM1)
−1(zn−λB1zn),

xn+1 = αnγ f (xn)+βnxn +((1−βn)I−αnA)Wnyn, ∀n≥ 1,

where {Wn} is the sequence defined by (1.1), λ ∈ (0,2δ1),η ∈ (0,2δ2), {αn} and {βn} are

sequences in (0,1) such that 0 < a≤ βn ≤ b < 1, limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞. Then {xn}

converges strongly to z ∈Ω, which solves uniquely the following variational inequality

〈(A− γ f )z,z− x∗〉 ≤ 0, ∀x∗ ∈Ω. (2.1)

Equivalently, we have z = PΩ(I−A+ γ f )z.

Proof. The uniqueness of the solution of the variational inequality (2.1), which is indeed a con-

sequence of the strong monotonicity of A− γ f . Below we use z to denote the unique solution.

Note that both I−λB1 and I−ηB2 are nonexpansive. Indeed, for ∀x,y ∈C, from the condition

λ ∈ (0,2δ1], we have

‖(I−λB1)x− (I−λB1)y‖2 ≤ ‖x− y‖2−2λδ1‖B1x−B1y‖2 +λ
2‖B1x−B1y‖2

≤ ‖x− y‖2,
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which implies mapping I−λB1 is nonexpansive. For ∀x,y∈C, from the condition η ∈ (0,2δ2],

we have

‖(I−ηB2)x− (I−ηB2)y‖2 ≤ ‖x− y‖2−2ηδ2‖B2x−B2y‖2 +η
2‖B2x−B2y‖2

≤ ‖x− y‖2,

which implies mapping I−ηB2 is nonexpansive. Taking x∗ ∈Ω, we have

x∗ = (I +λM1)
−1(x∗−λB1x∗) = (I +ηM2)

−1(x∗−ηB2x∗).

It follows that

‖zn− x∗‖= ‖(I +ηM2)
−1(xn−ηB2xn)− (I +ηM2)

−1(x∗−ηB2x∗)‖ ≤ ‖xn− x∗‖.

This implies that

‖yn− x∗‖ ≤ ‖(zn−λB1zn)− (x∗−λB1x∗)‖ ≤ ‖xn− x∗‖.

Without loss of generality, we may assume that αn ≤ (1− βn)‖A‖−1. Since A is a strongly

positive linear bounded self-adjoint operator, we have ‖A‖ = sup{|〈Ax,x〉| : x ∈ H,‖x‖ = 1},

Now for x ∈C with ‖x‖= 1, we see that 〈((1−βn)I−αnA)x,x〉= 1−βn−αn〈Ax,x〉 ≥ 0, that

is, (1−βn)I−αnA is positive. Hence, we have

‖(1−βn)I−αnA‖= sup{1−βn−αn〈Ax,x〉 : x ∈C,‖x‖= 1} ≤ 1−βn−αnγ̄.

It follows that

‖xn+1− x∗‖ ≤ αn‖γ f (xn)−Ax∗‖+βn‖xn− x∗‖+‖(1−βn)I−αnA‖‖Wnyn− x∗‖

≤ [1−αn(γ̄−αγ)]‖xn− x∗‖+αn‖γ f (x∗)−Ax∗‖.

By simple inductions, we obtain that ‖xn− x∗‖ ≤ max
{
‖x1− x∗‖, ‖γ f (x∗)−Ax∗‖

γ̄−αγ

}
, which gives

that the sequence {xn} is bounded, so are {yn} and {zn}. Without loss of generality, we can

assume that there exists a bounded set K ⊂ H such that

xn,yn,zn ∈ K, ∀n≥ 1. (2.2)

Note that

‖zn+1− zn‖ ≤ ‖(xn+1−ηB2xn+1)− (xn−ηB2xn)‖ ≤ ‖xn+1− xn‖,
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and ‖yn+1− yn‖ ≤ ‖zn+1− zn‖ ≤ ‖xn+1− xn‖. Setting xn+1 = (1−βn)vn +βnxn, we see that

‖vn+1− vn‖ ≤
αn+1

1−βn+1
‖γ f (xn+1)−AWnyn‖+

αn

1−βn
‖γ f (xn)−AWnyn‖

+‖Wn+1yn+1−Wnyn‖.
(2.3)

On the other hand, we have

‖Wn+1yn+1−Wnyn‖ ≤ sup
x∈K
{‖Wn+1x−Wx‖+‖Wx−Wnx‖}+‖xn+1− xn‖, (2.4)

where K is the bounded subset of H defined by (2.3). Using (2.3) and (2.4), one finds

‖vn+1− vn‖−‖xn+1− xn‖

≤ αn+1

1−βn+1
‖γ f (xn+1)−AWnyn‖+

αn

1−βn
‖γ f (xn)−AWnyn‖

+ sup
x∈K
{‖Wn+1x−Wx‖+‖Wx−Wnx‖}.

Hence, we have limsupn→∞(‖vn+1− vn‖−‖xn+1− xn‖)≤ 0. Using Lemma 1.4, we obtain that

limn→∞ ‖vn− xn‖= 0. This implies limn→∞ ‖xn+1− xn‖= 0. Putting fn = γ f (xn)−AWnyn, for

∀n≥ 1, we see, for any x∗ ∈Ω, that

‖xn+1− x∗‖2 = ‖αn(γ f (xn)−AWnyn)+ [βn(xn− x∗)+(1−βn)(Wnyn− x∗)]‖2

≤ ‖βn(xn− x∗)+(1−βn)(Wnyn− x∗)‖2 +2αn〈 fn,xn+1− x∗〉

≤ βn‖xn− x∗‖2 +(1−βn)‖yn− x∗‖2 +2αnM2,

(2.5)

where M = max{supn≥1 ‖ fn‖,supn≥1 ‖xn− x∗‖}. On the other hand, we have

‖yn− x∗‖2 ≤ ‖(I−λB1)zn− (I−λnB1)x∗‖2

≤ ‖zn− x∗‖2 +λ (λ −2δ1)‖B1zn−B1x∗‖2.
(2.6)

Substituting (2.6) into (2.5), we has

‖xn+1− x∗‖2 ≤ ‖xn− x∗‖2 +(1−βn)λ (λ −2δ1)‖B1zn−B1x∗‖2 +2αnM2.

This implies

lim
n→∞
‖B1zn−B1x∗‖= 0. (2.7)

Further, one has

‖xn+1− x∗‖2 ≤ βn‖xn− x∗‖2 +(1−βn)‖zn− x∗‖2 +2αnM2. (2.8)
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In a similar way, we can obtain

lim
n→∞
‖B2xn−B2x∗‖= 0. (2.9)

On the other hand, we see that

‖zn− x∗‖2 ≤ 1
2
{‖xn− x∗‖2 +‖zn− x∗‖2−‖xn− zn‖2

+2η〈xn− zn,B2xn−B2x∗〉−η
2‖B2xn−B2x∗‖2},

which implies that

‖zn− x∗‖2 ≤ ‖xn− x∗‖2−‖xn− zn‖2 +2η‖xn− zn‖‖B2xn−B2x∗‖. (2.10)

Substituting (2.10) into (2.8), we arrive at

(1−βn)‖xn− zn‖2

≤ (‖xn− x∗‖+‖xn+1− x∗‖)‖xn− xn+1‖+2αnM2 +2η‖xn− zn‖B2xn−B2x∗‖.

It follows from 0 < a≤ βn ≤ b < 1 that limn→∞ ‖xn− zn‖= 0. In a similar way, we can obtain

that limn→∞ ‖yn− zn‖ = 0. On the other hand, we have (1−βn)‖Wnyn− xn‖ ≤ ‖xn− xn+1‖+

αn‖γ f (xn)−BWnyn‖. From the assumptions imposed on the control sequences, we obtain that

limn→∞ ‖Wnyn− xn‖ = 0. Notice that ‖Wnyn− yn‖ ≤ ‖yn− zn‖+ ‖zn− xn‖+ ‖xn−Wnyn‖. It

follows that

lim
n→∞
‖Wnyn− yn‖= 0. (2.11)

Next, we prove that limsupn→∞〈(γ f −A)z,xn− z〉 ≤ 0, where z = PΩ[I− (A− γ f )]z. To see

this, we choose a subsequence {xni} of {xn} such that

limsup
n→∞

〈(γ f −A)z,xn− z〉= lim
i→∞
〈(γ f −A)z,xni− z〉.

Since {xni} is bounded, there exists a subsequence {xni j
} of {xni} which converges weakly

to w. Without loss of generality, we can assume that xni ⇀ w. On the other hand, we have

‖xn− yn‖ ≤ (‖xn− zn‖+‖yn− zn‖)→ 0 as n→ ∞. Therefore, we see that yni ⇀ w.

First, we prove that w∈V I(H,B1,M1). From [13], we see that M1+B1 is maximal monotone.

Let (e1,e2) ∈Graph(M1 +B1). On the other hand, we have yni = (I+λM1)
−1(zni−λB1zni). It
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follows that 1
λ
(zni−yni−λB1zni)∈M1(yni). By virtue of the maximal monotonicity of M1+B1,

we see that 〈e1− yni,e2−B1e1− 1
λ
(zni− yni−λB1zni)〉 ≥ 0, which yields that

〈e1− yni,e2〉 ≥ 〈e1− yni,B1yni−B1zni〉+
1
λ
〈e1− yni,zni− yni〉.

Using yn− zn→ 0 and yni ⇀ w, one has 〈e1−w,e2〉 ≥ 0. Since M1 +B1 is maximal monotone,

we see that θ ∈ (M1 +B1)(w), i.e., w ∈V I(H,B1,M1). From xn− zn→ 0, we see that zni ⇀ w.

In the same way, we can obtain w ∈V I(H,B2,M2).

Next, we show that w ∈ ∩∞
i=1F(Si) = F(W ). Suppose the contrary, w /∈ F(W ), i.e., Ww 6= w.

Note that yni ⇀ w. Using the Opial’s condition [14], we see that

liminf
i→∞

‖yni−w‖< liminf
i→∞

‖yni−Ww‖ ≤ liminf
i→∞

{‖yni−Wyni‖+‖yni−w‖}.

On the other hand, we have

‖Wyn− yn‖ ≤ ‖Wyn−Wnyn‖+‖Wnyn− yn‖ ≤ sup
x∈K
‖Wx−Wnx‖+‖Wnyn− yn‖.

From Lemma 1.5, we obtain that limn→∞ ‖Wyn−yn‖= 0, which further yields that liminfi→∞ ‖yni−

w‖< liminfi→∞ ‖yni−w‖. This derives a contradiction. Thus, we have w∈ F(W ) =∩∞
i=1F(Si).

It follows that

limsup
n→∞

〈(γ f −A)z,xn− z〉= 〈(γ f −A)z,w− z〉 ≤ 0.

Finally, we show that xn→ z, as n→ ∞. Note that

‖xn+1− z‖2 ≤ αnγ〈 f (xn)− f (z),xn+1− z〉+αn〈γ f (z)−Az,xn+1− z〉

+βn‖xn− z‖‖xn+1− z‖+(1−βn−αnγ̄)‖yn− z‖‖xn+1− z‖

≤ 1−αn(γ̄−αγ)

2
‖xn− z‖2 +

1
2
‖xn+1− z‖2 +αn〈γ f (z)−Az,xn+1− z〉,

which implies that ‖xn+1−z‖2≤ [1−αn(γ̄−αγ)]‖xn−z‖2+2αn〈γ f (z)−Az,xn+1−z〉. In view

of Lemma 1.1, we see that limn→∞ ‖xn− z‖= 0. This completes the proof.

Letting γ = 1 and A = I, the identity mapping, we have the following result.

Corollary 2.2. Let H be a real Hilbert space and let C be a closed and convex subset of H.

Let M1 and M2 be two maximal monotone operators on H. Let B1 : be a δ1-inverse-strongly

monotone mapping on H and let B2 a δ2-inverse-strongly monotone mapping on H. Let {Si}∞
i=1
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be an infinitely family of nonexpansive mappings from C into itself and let f : C→C be an α-

contraction. Let A be a strongly positive linear bounded self-joint operator with the coefficient

γ̄ > 0. Assume that 0 < γ < γ̄/α , Ω = ∩∞
i=1F(Si)∩V I(H,B1,M1)∩V I(H,B2,M2) 6= /0 and

Dom(B1)⊂C. Let x1 ∈C and {xn} be a sequence generated by
zn = (I +ηM2)

−1(xn−ηB2xn),

yn = (I +λM1)
−1(zn−λB1zn),

xn+1 = αn f (xn)+βnxn +(1−βn−αn)Wnyn, ∀n≥ 1,

where {Wn} is the sequence defined by (1.1), λ ∈ (0,2δ1),η ∈ (0,2δ2), {αn} and {βn} are

sequences in (0,1) such that 0 < a≤ βn ≤ b < 1, limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞. Then {xn}

converges strongly to z ∈Ω, which solves uniquely the following variational inequality

〈(A− γ f )z,z− x∗〉 ≤ 0, ∀x∗ ∈Ω.

Equivalently, we have z = PΩ f (z).

Corollary 2.3. Let H be a real Hilbert space and let C be a closed and convex subset of H.

Let B2 a δ2-inverse-strongly monotone mapping on H. Let {Si}∞
i=1 be an infinitely family of

nonexpansive mappings from C into itself and let f : C → C be an α-contraction. Let A be

a strongly positive linear bounded self-joint operator with the coefficient γ̄ > 0. Assume that

0 < γ < γ̄/α , Ω = ∩∞
i=1F(Si)∩V I(C,B1)∩V I(C,B2) 6= /0. Let x1 ∈C and {xn} be a sequence

generated by 
zn = PC(xn−ηB2xn),

yn = PC(zn−λB1zn),

xn+1 = αnγ f (xn)+βnxn +((1−βn)I−αnA)Wnyn, ∀n≥ 1,

where {Wn} is the sequence defined by (1.1), λ ∈ (0,2δ1),η ∈ (0,2δ2), {αn} and {βn} are

sequences in (0,1) such that 0 < a≤ βn ≤ b < 1, limn→∞ αn = 0 and ∑
∞
n=1 αn = ∞. Then {xn}

converges strongly to z ∈Ω, which solves uniquely the following variational inequality

〈(A− γ f )z,z− x∗〉 ≤ 0, ∀x∗ ∈Ω.

Equivalently, we have z = PΩ(I−A+ γ f )z.
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