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1. Introduction 

 Many authors tried to give generalization of metric spaces in several ways and 

obtained many results [1-12]. Gähler [6] and Dhage [1] introduced the concepts of 2-metric spaces 

and D-metric spaces respectively. Mustafa and Sims [8] introduced a new structure of generalized 

metric spaces which are called G-metric spaces. Sedghi et al. [4] introduced the concept of D*-

metric spaces which was modification of the definition of D-metric spaces. Recently, Sedghi et al. 

[5] have introduced the notion of  S -metric spaces and have proved some fixed point theorems in 

S -metric spaces. In this paper, we consider   as a  -map and prove some fixed point theorems 

for self-map :T X X  under different contractive conditions related to  . 
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2. Preliminaries 

The following definitions and results will be used in the sequel: 

Definition 2.1 [4]. Let X be a non-empty set. An S -metric on X is a function 

   : [0, )S X X X  that satisfies the following conditions, for each , , ,x y z a X , 

(S1)  ( , , ) 0S x y z , 

(S2)  ( , , ) 0S x y z  iff  x y z , 

(S3)  ( , , ) ( , , ) ( , , ) ( , , ).S x y z S x x a S y y a S z z a    

The pair ( , )X S  is called an S-metric space. 

Definition 2.2 [4]. Let ( , )X S  be an S -metric space. 

(i)   A sequence { }nx  in X converges to x X  if ( , , ) 0n nS x x x  as .n That is, for each 

0  , there exists 0n N  such that for all  0n n , we have ( , , )n nS x x x . We write 

it as 


lim n
n

x x . 

(ii)   A sequence { }nx  in X is a Cauchy sequence if ( , , ) 0n n mS x x x  as ,n m . That is, 

for each 0  , there exists 0n N  such that for all  0,n m n , we have 

( , , )n n mS x x x . 

(iii)The S -metric space ( , )X S  is complete if every Cauchy sequence in X converges to a point of 

X. 

We use the following results to prove our main result: 

Lemma 2.3 [4]. In an S-metric space, we have 

               ( , , ) ( , , )S x x y S y y x , for all ,x y X . 

Lemma 2.4 [4]. Let ( , )X S  be an S -metric space. If nx x  and ny y , then           

                ( , , ) ( , , )n n nS x x y S x x y . 

     Following to Matkowski [2], let   be the set of all functions 

   : [0, ) [0, ) , where   is a non-decreasing function with 




lim ( ) 0n

n
t , for all  (0, )t . If   , then   is called a  -map. 

If   is a  -map, then 

(i)   ( )t t  , for all (0, ),t   
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(ii)  (0) 0.   

     In our further discussion   will be considered as a  -map. 

 

3. Main Results 

Theorem 3.1. Let X be a complete S -metric space. Suppose that the mapping :T X X  

satisfies the condition: 

(3.1)   ( , , ) ( ( , , ))S Tx Ty Tz S x y z ,  

for all  , ,x y z X . Then T has a unique fixed point. 

Proof. For arbitrary point 0x X , construct a sequence  1,n nx Tx  n N . Assume 

 1n nx x , for each n N . We claim { }nx  is a Cauchy sequence in X. 

For n N , we have 

(3.2)          1 1 1( , , ) ( , , )n n n n n nS x x x S Tx Tx Tx  

                                             1 1( ( , , ))n n nS x x x  

                                                

                                       0 0 1( ( , , ))n S x x x . 

Given   0 , since  


0 0 1lim ( ( , , )) 0n

n
S x x x  and   ( ) , there is an integer 0n  such that 

(3.3)        
  

  0 0 1

( )
( ( , , ))

2 2
n S x x x  , for all 

0n n .                                         

This implies 

(3.4)                    1( , , )n n nS x x x
( )

2 2

  
  , for all 

0n n .                                                              

For ,m n N with m n , we claim that 

(3.5)                 ( , , )n n mS x x x   for all   0m n n .                                                     

We prove inequality (3.5) by induction on m . 

Inequality (3.5) holds for 1m n   by using inequality (3.4) and the fact that     ( ) . 

Assume inequality (3.5) holds for m k . 

For 1m k  , we have 

(3.6)               1 1 1 1 1 1( , , ) ( , , ) ( , , ) ( , , )n n k n n n n n n k k nS x x x S x x x S x x x S x x x  
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                        12 ( , , ) ( , , )n n n k k nS x x x S Tx Tx Tx . 

Using condition (3.1), equation (3.4) and Lemma 2.3, we get 

   1( , , )n n kS x x x      ( ) ( ( , , ))k k nS x x x  

                               ( ) ( ( , , ))n n kS x x x  

                          
    



  



( ) ( )

.
 

By induction on m , we conclude that inequality (3.5) holds for all   0m n n . So { }nx  is a 

Cauchy sequence in complete S -metric space and hence { }nx  converges to some w X . 

For nN, we have 

    1 1 1( , , ) ( , , ) ( , , ) ( , , )n n nS w w Tw S w w x S w w x S Tw Tw x  

                      1 1( , , ) ( , , ) ( ( , , ))n n nS w w x S w w x S w w x . 

Since   is a  -map, we have 

                                1 1( , , ) ( , , ) ( , , ) ( , , )n n nS w w Tw S w w x S w w x S w w x . 

Letting n  and using the fact that S  is continuous in its variables, we get that 

( , , ) 0S w w Tw . Hence ( ) .T w w  So w  is a fixed point of T. Now, let v  be another fixed 

point of T with v w . Since   is a  -map, we have 

  







( , , ) ( , , )

( ( , , ))

( , , ),

S w w v S Tw Tw Tv

S w w v

S w w v

 

which is not possible. So v w  and hence T has a unique fixed point. 

Corollary 3.2. Let X  be a complete S -metric space. Suppose that the mapping :T X X  

satisfies the condition: 

         ( , , ) ( ( , , ))m m mS T x T y T z S x y z ,  

for all , ,x y z X  and m N . Then T has a unique fixed point. 

Proof. From Theorem 3.1, we obtain that mT  has a unique fixed point say w . 

Since   1( ) ( ) ,m m mT Tw T w T T w Tw we get that Tw is also a fixed point of mT . But w  

is a unique fixed point of mT , so we have 
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  Tw w . 

Hence w  is a unique fixed point of T. 

Corollary 3.3. Let X be a complete S -metric space. Suppose that the mapping :T X X  

satisfies the condition: 

        ( , , ) ( ( , , ))S Tx Tx Tz S x x z , 

for all ,x z X . Then T has a unique fixed point. 

Proof. We obtain the result by taking y x  in Theorem 3.1. 

Corollary 3.4. Let X be a complete S -metric space. Suppose there is [0,1)k  such that the 

mapping :T X X  satisfies the condition: 

 (3.7)    ( , , ) ( , , )S Tx Ty Tz kS x y z , 

for all , ,x y z X . Then T has a unique fixed point. 

Proof. Define    : [0, ) [0, )  by ( )t kt . Then clearly   is a non-decreasing function with 

 


lim ( ) 0n

n
t , for all 0t  .  

Using condition (3.7) and by virtue of  ,we have 

       ( , , ) ( ( , , ))S Tx Ty Tz S x y z , for all , , .x y z X  

Now the result follows from Theorem 3.1. 

Corollary 3.5. Let X be a complete S -metric space and suppose the mapping :T X X  satisfies 

the condition: 

(3.8)  


( , , )
( , , ) ,

1 ( , , )

S x y z
S Tx Ty Tz

S x y z
 

for all , ,x y z X . Then T has a unique fixed point. 

Proof.  Define    : [0, ) [0, )  by  


( )
1

w
w

w
. 

Then clearly   is non-decreasing function with 


lim ( ) 0n

n
t , for all 0t  . 

Using condition (3.8) and by virtue of  , we have  

 ( , , ) ( ( , , ))S Tx Ty Tz S x y z , for all , ,x y z X . 

Now the result follows from Theorem 3.1. 
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Theorem 3.6. Let X be a complete S-metric space. Suppose that the mapping :T X X  

satisfies the condition: 

  

( , , ) (max{ ( , , ), ( , , ),

( , , ), ( , , )}),

S Tx Ty Tz S x y z S Tx Tx x

S Ty Ty y S Tz Tz x

 

for all , ,x y z X . Then T has a unique fixed point. 

Proof. For arbitrary point 0x X , construct a sequence  1,n nx Tx for all n N . 

Assume  1n nx x , for each n N . Thus for n N , we have 

  1 1 1( , , ) ( , , )n n n n n nS x x x S Tx Tx Tx  

                                1 1 1 1 1(max{ ( , , ), ( , , ), ( , , ),n n n n n n n n nS x x x S x x x S x x x  

                                       ( , , )})n n nS x x x  

                                       1 1 1(max{ ( , , ), ( , , )})n n n n n nS x x x S x x x . 

If      1 1 1 1 1max{ ( , , ), ( , , )} ( , , )n n n n n n n n nS x x x S x x x S x x x , 

then 

     1 1 1 1( , , ) ( ( , , ))n n n n n nS x x x S x x x  

                  1 1( , , )n n nS x x x  , 

which is impossible. 

So    1 1 1 1max{ ( , , ), ( , , )} ( , , )n n n n n n n n nS x x x S x x x S x x x . 

Thus for n N , we have 

    1 1 1( , , ) ( ( , , ))n n n n n nS x x x S x x x  

                      2
1 1 2( ( , , ))n n nS x x x  

                                      

                                      1 1 0( ( , , )).n S x x x  

This implies  

             1 1 1 1 0( , , ) ( ( , , ))n
n n nS x x x S x x x . 

Using Lemma 2.3, we get 

            1 0 0 1( , , ) ( ( , , ))n
n n nS x x x S x x x . 
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By similar arguments as in Theorem 3.1, we get { }nx  is a Cauchy sequence in complete S -metric 

space. So { }nx  converges to some w X . 

For n N , we have 

    1 1 1( , , ) ( , , ) ( , , ) ( , , )n n nS w w Tw S w w x S w w x S Tw Tw x  

                      1 1( , , ) ( , , ) ( , , )n n nS w w x S w w x S Tw Tw Tx  

                         1 1( , , ) ( , , ) (max{ ( , , ),n n nS w w x S w w x S w w x   

                              ( , , ),S Tw Tw w  1 1( , , ), ( , , )})n nS Tw Tw w S x x w  

                    1 1( , , ) ( , , ) (max{ ( , , ),n n nS w w x S w w x S w w x  

                                          1 1( , , ), ( , , )}).n nS Tw Tw w S x x w  

Case I. 

 If max  1 1{ ( , , ), ( , , ), ( , , )}n n nS w w x S Tw Tw w S x x w  

                         ( , , )nS w w x , 

then 

        1 1( , , ) ( , , ) ( , , ) ( ( , , ))n n nS w w Tw S w w x S w w x S w w x                                

                           1 1( , , ) ( , , ) ( , , ).n n nS w w x S w w x S w w x  

Letting n , we have  .Tw w  

Case II.  

If max  1 1{ ( , , ), ( , , ), ( , , )}n n nS w w x S Tw Tw w S x x w  

                               ( , , )S Tw Tw w , 

then 

          1 1( , , ) ( , , ) ( , , ) ( ( , , ))n nS w w Tw S w w x S w w x S Tw Tw w  

                             1 1( , , ) ( , , ) ( , , ).n nS w w x S w w x S Tw Tw w  

Using Lemma 2.3, we get 

           1 1( , , ) ( , , ) ( , , ) ( , , ).n nS w w Tw S w w x S w w x S w w Tw  

Letting n , we get ( ) .T w w  

Case III. 

 If  1 1max{ ( , , ), ( , , ), ( , , )}n n nS w w x S Tw Tw w S x x w  
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                             1 1( , , )n nS x x w , 

then 

       1 1 1 1( , , ) ( , , ) ( , , ) ( , , )n n n nS w w Tw S w w x S w w x S x x w      . 

Letting n , we get .Tw w  

Hence, we can say that w  is a fixed point of T. 

 If v  is another fixed point of T, then 

( , , ) ( , , )S w w v S Tw Tw Tv  

                 (max{ ( , , ), ( , , ), ( , , ), ( , , )})S w w v S Tw Tw w S Tw Tw w S Tv Tv w  

                 (max{ ( , , ), ( , , ), ( , , ), ( , , )})S w w v S w w w S w w w S v v w  

                      (max{ ( , , ), ( , , )})S w w v S v v w  

        ( ( , , ))S w w v    (  by Lemma 2.3, ( , , ) ( , , ))S v v w S w w v  

                       ( , , )S w w v , (    is  -map) 

which is not possible and hence w is a unique fixed point of T . 

Corollary 3.7. Let X be a complete S -metric space. Suppose there is [0,1)k  such that the 

mapping :T X X  satisfies the condition:  

(3.9)  ( , , ) max{ ( , , ), ( , , ), ( , , ),S Tx Ty Tz k S x y z S Tx Tx x S Ty Ty y  

                                                            ( , , )}S Tz Tz x , 

for all , ,x y z X . Then T has a unique fixed point. 

Proof. Define   : [0, ) [0, )  by  ( ) .w kw  

Then clearly   is non-decreasing function with  

  


lim ( ) 0n

n
t , for all 0t  . 

Using condition (3.9) and by virtue of  , we get 

  ( , , ) (max{ ( , , ), ( , , ),S Tx Ty Tz S x y z S Tx Tx x  

                                                  ( , , ), ( , , )})S Ty Ty y S Tz Tz x , 

for all , ,x y z X . 

Now the result follows from Theorem 3.6. 
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Corollary 3.8. Let X be a complete S -metric space and suppose the mapping :T X X  

satisfies the condition: 

         ( , , ) (max{ ( , , ), ( , , ), ( , , )})S Tx Tx Tz S x x z S Tx Tx x S Tz Tz x , 

for all ,x z X . Then T has a unique fixed point. 

Proof. We obtain the result by taking y x  in Theorem 3.6.  
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