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Abstract. In this paper, we obtain a common coupled fixed point theorem for a pair of hybrid maps in complex

valued metric spaces. Also we give an example to illustrate our main theorem.
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1. Introduction and Preliminaries

Azam et al.[1] introduced the notion of a complex valued metric space which is a generalization of the classical
metric space and obtained sufficient conditions for the existence of common fixed points of a pair of mappings
satisfying a rational contractive conditions. Later on several authors proved fixed and common fixed point theo-
rems in complex valued metric spaces, for example, we refer the readers to [3,4,5,12,14,16,17,18,20,21,22,25,27].
Recently, Azam et al. [2] and Ahmad et al. [6] obtained some new fixed point results for multi-valued mappings
in the setting of complex valued metric spaces.

The purpose of this paper is to study the common coupled fixed points for a pair of hybrid mappings satisfying

a rational inequality in the frame work of a complex valued metric space. We also give an example to illustrate our
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main theorem. The proved result generalizes and extends the Theorem 2.1 of [23].
To begin with, we recall some basic definitions, notations and results.
Throughout this paper Z, .4 and C denote the set of all non-negative real numbers, positive integers and
complex numbers respectively. First we refer the following preliminaries.
Let 71,22 € C. Define a partial order X on C as follows:
71 Sz if and only if Re(z1) < Re(z2), Im(z1) < Im(22).

Thus z; 3 z; if one of the following holds:

(1). Re(z1) = Re(z2) and Im(z;) = Im(z2),
(2). Re(z1) < Re(zz) and Im(z;) = Im(z2),
(3). Re(z1) = Re(z2) and Im(z1) < Im(z2),
(4). Re(z1) < Re(z>) and Im(z1) < Im(z2).

Clearly z; S22 = |z21] < |22

We will write z; ,j 7o if 71 # 7o and one of (2), (3) and (4) is satisfied. Also we will write z; < z; if only (4) is
satisfied.

Remark 1.1.0ne can easily check the following statements :

(1) if 0 2 21 Z 22 then |z1] < |22

(ii) if z; Xz and zp < z3, then z; < z3.

Definition 1.2.([1]) Let X be a non empty set. A function d : X x X — C is called a complex valued metric on X
if for all x,y,z € X the following conditions are satisfied:

(1) 0 3 d(x,y) and d(x,y) = 0 if and only if x =y;

(i) d(x,y) = d(y,x);

(iii) d(x,y) S d(x,z) +d(z,y).

The pair (X,d)is called a complex valued metric space.

Remark 1.3.Let (X,d) be a complex valued metric space. Then

@) |d(x,y)|or|d(u,v)| < |1+d(x,y)+d(u,v)|,Vx,y,u,v € X.

(i) |d(x,y)| > 0 if x # y.

Definition 1.4.([1]) Let (X,d) be a complex valued metric space.

(i) A point x € X is called an interior point of a set A C X whenever there exists 0 < r € C such that B(x,r) = {y €
X :d(x,y)<r} CA.

(i) A point x € X is called a limit point of a set A C X whenever there exists 0 < r € C such that B(x,r) N (X —A) #
$.

(iii) A subset B C X is called open whenever each point of B is an interior point of B.
(

iv) A subset B C X is called closed whenever each limit point of B is in B.



COMMON COUPLED FIXED POINT THEOREM ...... 279

(v) The family F = {B(x,r) : x € X and 0 < r} is a sub basis for a topology on X. We denote this complex topology
by 7.. Indeed, the topology 7. is Hausdorff.

Let {x,} be a sequence in X and x € X. If for every ¢ € C with 0 < ¢ there is ny € .4 such that for all
n > ng, d(xn,x) < c, then {x,} is said to be convergent to x and x is the limit point of {x,}. We denote this by
,}E}g@xn =xorx, —xasn— oo If for every ¢ € C with 0 < ¢ there is ng € .4 such that for all n > ng, d(xn,Xn+m) < ¢,
where m € 4, then {x,} is called a Cauchy sequence in (X,d). If every Cauchy sequence is convergent in (X,d)
then (X,d) is called a complete complex valued metric space. We require the follwing lemmas.
Lemma 1.5.([1]) Let (X, d) be a complex valued metric space and let {x, } be a sequence in X.Then {x, } converges
to x if and only if |d(x,,x)| — 0 as n — oo
Lemma 1.6.([1]) Let (X,d) be a complex valued metric space and let {x,} be a sequence in X.Then {x,} is a
Cauchy sequence if and only if |d(x,,, Xy4m)| — 0 as n,m — oo,

One can easily prove the following lemma.
Lemma 1.7.Let (X,d) be a complex valued metric space and let {x,} and {y,} be sequences in X converging to x
and y respectively. Then |d (x,,y,)| — |d(x,y)| as n — eo.

Now, we follow the notations and definitions given in [6]. Let (X,d) be a complex valued metric space. We de-
note the family of nonempty, closed and bounded subsets of a complex valued metric space X by CB(X). From now

onwards, we denote for z; € C,s(z;) = {z€ C:z; Sz} and for a € X and B € CB(X),s(a,B) = | s(d(a,b)) =

beB
U {zeC:d(a,b) 2 z}.
beB
For A,B € CB(X), we denote s(A,B) = ( N s(a,B)) N < N s(b7A)> .
acA beB

Remark 1.8.([6]): Let (X,d) be a complex valued metric space and 7 : X — CB(X) be a multivalued map. For
x€X and A € CB(X), define Wy(A) = {d(x,a) :a € A}.

Thus, for x,y € X, we have Wy(Ty) = {d(x,u) : u € Ty}.
Remark 1.9.([6]): Let (X, d) be a complex valued metric space. If C = % then (X,d) is a metric space. Moreover,
for A,B € CB(X), H(A,B) = inf{s(A,B)} is the Hausdorff distance induced by d.
Definition 1.10.([6]): Let (X,d) be a complex valued metric space.A nonempty subset A of X is called bounded
from below if there exists some z € C such that z X a for all a € A.
A multivalued mapping F : X — 2 is called bounded from below if for each x € X there exists z, € C such that
zx Suforallu € Fx.
Definition 1.11.([6]) The multivalued mapping T : X — CB(X) is said to have the lower bound proerty(l.b.Property)
on (X,d) if for any x € X, the multi-valued mapping F; : X — 2C defined by Fy(y) = W,(Ty) is bounded from
below.That is, for x,y € X, there exists an element /,(Ty) € C such that I,(Ty) 3 u, for all u € W,(Ty), where

I,(Ty) is called a lower bound of T associated with (x,y).
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Definition 1.12.([6]) Let (X,d) be a complex valued metric space.The multivalued mapping 7 : X — CB(X) is said

to have the greatest lower bound proerty (g.1.b.Property) on (X,d) if the greatest lower bound of W, (TYy) exists in

C for all x,y € X. We denote d(x, Ty) by the g.L.b.Property of W,(Ty). Thatis d(x,Ty) = inf{d(x,u) : u € Ty}.
Bhaskar and Lakshmikantham [24] introduced the concept of coupled fixed points and Lakshmikantham and

Ciric [26] defined the common coupled fixed points. Later on several authors obtained coupled fixed point theorems

in various spaces, for example,[7,8,9,10,11,13] and the references therein.

Definition 1.13.(Hussain and Alotaibi,[19]) Let the mappings F : X x X — CB(X) and f : X — X be given. An

element (x,y) € X x X is called

(i) a coupled coincidence point of a pair (F, f) if fx € F(x,y) and fy € F(y,x),

(ii) a common coupled fixed point of a pair (F, f) if x = fx € F(x,y) and y = fy € F(y,x).

Definition 1.14.(Abbas et al.,[15]) Let F : X x X — 2% be a multivalued map and f be a self map on X. The hybrid

pair (F, f) is called w-compatible if f(F(x,y)) C F(fx, fy) whenever (x,y) is a coupled coincidence point of F

and f.

Now we prove our main result.
2. Main result

Theorem 2.1. Let (X,d) be a complex valued metric space and F : X x X — CB(X) be a multi-valued mapping
with g.L.b property and f : X — X be a mapping satisfying the following
(2.1.1) F(X x X) C f(X),
(2.1.2) f(X) is a complete subspace of X and
d d d(fx.F (xy)) d(fu,F(u,v))
ad(fx, fu)+Bd(fy,fv)+y T+d(fx, fu)+d(fy,/v)

d(fx,F(u,v fu,F(x
+6 Ti5g jx;Zt)de(fy(jv))) € s(F(x,y),F(u,v))

forall x,y,u,v € X , where &, 3,7, are non-negative real numbers such that .+ +7y+06 < 1.

(2.13)

Then F and f have a coupled coincidence pointin X x X .

(2.1.4) Further if we assume that (F, f) is w-compatible and there exist p,q € X such that nggof"x = p and
nlgrolo f™y =q, whenever (x,y) is a coupled coincidence point of F and f and f is continuous at p and g, then F
and f have a common coupled fixed point.

Proof.Let (xg,y0) € X x X. From (2.1.1), we can choose fx; € F(xp,y0) and fy; € F(yo,xo) for some x1,y; € X.
From (2.1.3), we have

ad(fxo, fx1) + Bd(fyo, fyr) +y Aeposnll dm )

d(fxo,F(x1,y1)) d(fx1,F(xg,
8 R e € s(F (30.30). F (x1.31)
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ie.,

ad(fxo, fx1) + Bd(fyo, fyr) +y Aeposnll di )

d(fx x1.1)) d(fx1,F (xo,y
+8 R e € N st Fa)).
X€F (x0,Y0)

Since fx; € F(xo,y0), we have

ad(fxo, fx1)+Bd(fyo, fyr) +y Aheqboo) dUnLln)

d(fxo,F(x1,y1)) d(fx1,F(xg, o
+8 AR Y € sUm Fa) = U stdfn)

From (2.1.1), there exists x, € X with fx; € F(x;,y;) such that

od(fxo, fx1) + Bd(Fyo. fyn) + v SRR SR R

d(fxo,F(x1, d(fx1,F(xg,
+6 AfeTlan ) ()] ¢ s(d(fx, fx2)-

Hence

d(fx1, fx2) 3 od(fxo, f1) +Bd(fyo, fn) +y Leqbionn) dUal)

+§ d(fxo,F (x1,1)) d(fx1,F (x0,0))
1+d(fxo,fx1)+d(fyo.fy1)

By using the g.1.b property of F, we get

d(fx1, fx2) 3 ad(fxo, fx1) + Bd(fyo, fyn) +y pghelal dnlo)

+8 d(fxo,f(x2) d(fx1,fx1)
1+d(fxo,fx1)+d(fyo.fy1)

which implies that

|d(fxlaf-x2)|
< a|d(fxo, fx1)|+ Bld(Fro, fyn)] +7 gL da bl
< ald(fxo, fx1)] +Bld(Fo, fy1)|+7 ld(fx1, fx2)] from Remark 1.3(i).

Thus

(1) ld(fx1, fr2)| < G2 max{|d(fxo, fx1)], |d(Fro. fri)]}

Similarly, we can show that

(@) 1d(fyr, fr2) < G2 max{|d(fxo, fx0)],|d(Fyo. fri)]}
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From (1) and (2), we have

d(fxi, ; d(fxo, ;
el |y Sl | s

ld(fy1, fy2)| ld(fyo, fy1)] v

Continuing in this way, we get the sequences {x,} and {y,} in X such that

(3) max |d(f-xn7f.xn+1)|7 < ) max |d(fxn717fxn)‘7

|d(fYns fyns1)l d(fyn—1,fyn)l
S?L"max{ 4z, 30l }
d(fyo, fy1)]

|d(fxn7fxm)| < |d(fxnafxn+1)‘ + |d(fxn+17fxn+2)| +..... + |d(fxm—17fxm)|
|d(fx0afxl)‘a
|d(fyo0,fy1)]

For m > n and using (3) we get

< (AT A 4+ A ) max

n |d(fx07f-x1)|7
max
ld(fyo0, fy1)]

< 2

— 0asn,m— oo.

Thus {fx,} is a Cauchy sequence in X. Similarly, we can show that { fy, } is also a Cauchy sequence in X. Since
Sf(X) is a complete subspace of X, there exist u,v € X such that fx, — fu and fy, — fv as n — co. From (2.1.3),

we have

d(fxn,F (xn,yn)) d(fu,F(u,v))
od(foxns fu) + BA(fyn: fV) + Y T a0 F vl v o)

d(fxn, (fu,F (Xn,yn))
+6 1+d(j£x,, 3‘)14)+d(fy,, fi) € s(F (xun,yn), F (u,v)).

d(fxn,F (xn,yn)) d(fu,F(u,v))
(fxn7f”)+ﬁd(f)’n7f")+y T d (X, fu)+A(fyn. f7)

d(fxn,F (u)) d(fu,F (xn,yn))
+6 1+d(fxn, fu)+d(fyn,fv) € xEF(r)) § )s(x,F(u,v)).

Since fx,4+1 € F(xn,yn), we have

ad( fx, fu) + B (fy, fv) +y Lredal) GLel i)

#8 MHIT (Pt Fn) = U sdlf i)

From (2.1.1), there exists u,, € X with fu, € F(u,v) such that

d(fxn,F (Xn,yn)) d(fu,F(u,v))
(fxnafu) + ﬁd(fynyfv) +v T+ d(Fan. fu)+d(Fymfv)

+8 et € 9@ fin)):

Thus

d(fxner, fun) 3 0d(fxn, fu) + Bd(fyn, ) +y S insl) el )

d(fxn,F(u,v)) d(fu,F(xn.yn))
+6 1+d(fxn,fu)+d(fyn,fv) °
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From g.1.b property of F, we get

d(fxne, fun) 3 0d(f, fu) + Bd(fyn, fv) +y flpLuct) Gl )

d fxn,fun» (fuvfxn+l)
+6 1+d(fxn, fu)+d(fyn,fv)

which implies that

A Fxns, fun)| < @ld(fxa, fu) + Bld(fyn, f9)] +y il Il

+8 |d(fxn,fun)| |d(fu.fxni1)]
[1+d(fxn, fu)+d(fyn,fv)] ©

Now consider
|d(fu, fun)| < |d(fuu, fxni1) |+ |d(fXns1, fun)]

< d(fu, fxni1)| + ald(fon, fu) |+ Bld(fyn, fV)]

S )L U sf)] g 1A f)] 4 fxs )
VITRa o f)+d oo fV)] 1 d ([, f)+d(fyn, V)]

Letting n — oo, we obtain

32130|d(fu,fun)| < 0 so that fu, — fu as n — oo. Since F(u,v) is closed and fu, € F(u,v), it follows that fu €
F(u,v).

Similarly, we have fv € F(v,u). Thus (u,v) is a coupled coincidence point of F and f.

Since (u,v) is a coupled coincidence point of F' and f, from (2.1.4) there exist p,q € X such that VP_IQO ffu=
p and r}ijgof”v =gq.

Since f is continuous at p and ¢, we have fp = p and fq = q.

Since the pair (F, f) is w-compatible, fu € F(u,v) and fv € F(v,u), we have f>u € f(F(u,v) C F(fu, fv) and
f?v e f(F(v,u) C F(fv, fu). Thus (fu, fv) is a coupled coincidence point of F and f.

Continuing in this way,we can show that (f"u, f"v) is a coupled coincidence point of F and f.

It is also clear that f"u € F(f" 'u, f"~'v) and f"v € F(f" v, f* ).

From (2.1.3), we have

n n d(f"wF (" u ") d(fp,F(p.a)
(f u fp)—'_ﬁd(f qu)—’_y 1+d(f"uf[])+d(f"qu)

nu nflu n— 1 _ e
8 e g € s(E (/" /1), F (p.0)

ny, ~n—1u’ n—1,, D, §
ad(f"u, fp) +Ba(f™v, ) + 1

d(f"uwF(p.q) d(fp.F(f"~ u v
+6 A LIRSl e N s(nF(p,q)-
EF(f’“lu,f"*lv)

Since f"u € F(f" 'u, f*~'v), we have

ey, -n—lu’ 'n—lv . ,
od(f"u, fp) +Ba(f™, fa) + v AT ey

nu X n71u7 nflv n n
+5 Aelp Wp Bl ) € s(f'u. F (p,q)) = U std(m.0).
zelk(pyq

From (2.1.1), there exists fz, € F(p,q) such that

n d(f"u,F (f" ! fP.F(p,
ad(f"u, fp) + Bd(f"™v, fq) +y WLl b (pa)

df"uF( ) d(fpF (" Lu ) n
+6 4 1+I:1(qf" ,j(’pl)]+d((f”v,fq) e s(d(f"u, fz0).
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Hence

oy, -n—]u. -n—lv X )
d(f"u, fz) 3 ad(f"u, fp) +Bd(f"v, fq) +y Ltp Ll S (pa)

1§ WIwF(pg) d(fp.F (" tufmv))
1+d(f"u,fp)+d(f"v.fq) :

By g.1.b property of F, we obtain

d(f"u, f22) 3 ad(f"u, £p) + BA(f™v, ) + ¥ {rapim st

d(f"ufza)) d(fp.f")
8 gt o) rdPvrg)

= ad(f"u, fp)+ Bd(f"v, fq) +8 Ll dun

which implies that

\d(f"u, fzu))] |d(fp, f"u)]|
\L+d(f™u, fp)+d(f™v, fq)|’

|d(f"u, fzn)| < ald(f"u, fp)|+Bld(f"v, fq)| + &

Now,we consider

|d(fP7on)| < |d(fp,f”u)| + |d(f"u,fzn)|

<|d(fp.f"u)l+ald(f"u, fp)|+Bld(f"v, fq)|

A fo)| d (")
0 [ aFufp (Pl

Letting n — o0, we obtain nli_r)r010|d(fp,fzn)| < 0 so that fz, — fp = p as n — oo. Since F(p,q) is closed and
fzn € F(p,q), it follows that p € F(p,q). Similarly, we have g € F(q, p). Thus (p,q) is a common coupled fixed
point of F and f. This completes the proof.

Now we give an example to support Theorem 2.1.
Example 2.2. Let X = [0,1], d(x,y) = |x—y|e® ¥V x,y € X, where

1y
0 =tan <

Define F: X x X — X by F(x,y) = [0,%2] and f : X — X by fx = 1.
Then we have d(fx, fu) = % |x—u|e® d(fy, fv) = |y —v|e® and
S(F (x,3), F(u,v)) = s(| 212 ),

As, Yd(fx, fu)+ 2d(fy, fv)

— % |X— u‘ eie + % |2y _ 2‘}‘ eie > e,’e x7u+82y72v _ eie x+2y—8(M+2v) 7
we have
d(fx,F(xy)) d(fu,F(u,
ad(fx, fu) +Bd(f, fv)+y Yl i)

+6 W) ARFU) ¢ (R (x,y), F(u,v))

with o = 7 B= %, Y= 8 = 0. One can easily verify the remaining conditions of Theorem 2.1. Clearly (0,0) is a

common coupled fixed point of F and f. .
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