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Abstract. In this paper we prove the existence as well as approximations of the positive solutions for a non-

linear quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that

the sequence of successive approximations converges monotonically to the positive solution of related quadratic

functional integral equation under some suitable mixed hybrid conditions. We rely our results on Dhage itera-

tion method embodied in a recent hybrid fixed point theorem of Dhage (2014) in partially ordered normed linear

spaces. An example is also provided to illustrate the abstract theory developed in the paper.

Keywords: quadratic functional integral equation; approximate positive solution; fixed point theorem.

2010 AMS Subject Classification: 45G10, 47H09, 47H10.

1. Introduction

∗Corresponding author

E-mail address: dnyaneshmule56@gmil.com

Received March 15, 2016

295



296 DNYANESHWAR V. MULE, BHIMRAO R. AHIRRAO

The quadratic integral equations have been a topic of interest since long time because of their

occurrence in the problems of some natural and physical processes of the universe. See Argyros

[1], Deimling [3], Chandrasekher [2] and the references therein. The study gained momentum

after the formulation of fixed point principles in Banach algebras due to Dhage [4, 5, 6, 7]. The

existence results for such equations are generally proved under the mixed Lipschitz and com-

pactness type conditions together with a certain growth condition on the nonlinearities of the

quadratic integral equations. See Dhage [5, 6, 7] and the references therein. The Lipschitz and

compactness hypotheses are considered to be very strong conditions in the theory of nonlinear

differential and integral equations which do not yield any algorithm to determine the numerical

solutions. Therefore, it is of interest to relax or weaken these conditions in the existence and

approximation theory of quadratic integral equations. This is the main motivation of the present

paper. In this paper we prove the existence as well as approximations of the positive solutions

of a certain quadratic integral equation via an algorithm based on successive approximations

under partially Lipschitz and compactness conditions.

Given a closed and bounded interval J = [0;T ]; of the real line R, T > 0, we consider the

quadratic functional integral equation (in short QFIE)

(1) x(t) = [ f (t,x(t))]
(

q(t)+
∫ t

0
g(s,x(s))ds

)
where f ,g : J×R→ R and q : J→ R are continuous functions.

By a solution of the QFIE (1) we mean a function x ∈C(J;R) that satisfies the equation (1)

on J, where C(J;R) is the space of continuous real-valued functions defined on J.

The QFIE (1) is well-known in the literature and studied earlier in the work of Dhage [4]. If

g(t;x) = 0 for all t ∈ J and x ∈ R the QFIE (1) reduces to nonlinear functional equation.

(2) x(t) = f (t,x(t)), t→ J

and if f (t;x) = 1 for all t ∈ J and x ∈ R, it is reduced to nonlinear usual Volterra integral

equation.
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(3) x(t) = q(t)+
∫ t

0
g(s,x(s))ds, t ∈ J

Therefore, the QFIE (1) is general and the results of this paper include the existence and

approximations results for above nonlinear functional and Volterra integral equations as special

cases.

The paper is organized as follows. In the following section we give the preliminaries and

auxiliary results needed in the subsequent part of the paper. The main result is included in Sec-

tion 3. In Section 4 some concluding remarks are presented

2. Preliminaries

Unless otherwise mentioned, throughout this paper that follows, let X denote a partially or-

dered real normed linear space with an order relation � and the norm ‖.‖.It is known that X is

regular if xn ∈ N is a nondecreasing (resp. nonincreasing) sequence in X such that xn→ x∗,as

n → ∞ then xn � x∗ resp. xn � x∗ for all n ∈ N. Clearly, the partially ordered Banach s-

pace C(J;R) is regular and the conditions guaranteeing the regularity of any partially ordered

normed linear space X may be found in Heikkilla and Lakshmikantham [11] and the references

therein.

We need the following notion and results.

Definition 1.1. A mapping A : X → X is called isotone or monotone nondecreasing if it

preserves the order relation �, that is, if x� y implies A x�A y for all x,y ∈ X .

Definition 1.2. An operator A on a normed linear space X into itself is called compact if A (X)

is a relatively compact subset of X . A is called totally bounded if for any bounded subset S of

X , A (S) is a relatively compact subset of X . If A is continuous and totally bounded, then it is

called completely continuous on X .

Definition 1.3. [Dhage 4] A mapping A : X→ X is called partially continuous at a point a ∈ X

if for ε > 0 there exists a δ > 0 such that ‖A x−A a‖< ε whenever x is comparable to a and

‖x−a‖< δ . A called partially continuous on X if it is partially continuous at every point of it.
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It is clear that if A is partially continuous on X , then it is continuous on every chain C contained

in X .

Definition 1.4. [Dhage 4] An operator A on a partially normed linear space X into itself is

called partially bounded if A(C) is bounded for every chain C in X . A is called uniformly

partially bounded if all chains A (C) in X are bounded by a unique constant. A is called

partially compact if A (C) is a relatively compact subset of X for all totally ordered sets or

chains C in X . A is called partially totally bounded if for any totally ordered and bounded

subset C of X , T (C) is a relatively compact subset of X . If A is partially continuous and

partially totally bounded, then it is called partially completely continuous on X .

Definition 1.5.[Dhage 4] The order relation � and the metric d on a non-empty set X are

said to be compatible if {xn} is a monotone, that is, monotone nondecreasing or monotone

nondecreasing sequence in X and if a subsequence {xnk} of {xn} converges to x∗ implies that

the whole sequence {xn} converges to x∗. Similarly, given a partially ordered normed linear

space (X ,�,‖ ·‖), the order relation � and the norm ‖ ·‖ are said to be compatible if � and the

metric d defined through the norm ‖ · ‖ are compatible.

Clearly, the set R of real numbers with usual order relation � and the norm defined by the

absolute value function |.| has this property. Similarly, the finite dimensional Euclidean space

Rn with usual componentwise order relation and the standard norm possesses the compatibility

property

Definition 1.6. Let (X ,�,‖·‖) be a partially ordered normed linear space. A mapping A : X→

X is called partially nonlinear D-Lipschitz if there exists a D-function ψ : R+→ R+ such that

(4) ‖A x−A y‖ ≤ ψ(‖x− y‖)

for all comparable elements x,y ∈ X , where ψ(0) = 0. If ψ(r) = kr, k > 0, then A is called

a partially Lipschitz with a Lipschitz constant k. If k < 1, A is called a partially contraction

with contraction constant k. Finally, A is called nonlinear D-contraction if it is a nonlinear D-

Lipschitz with ψ(r)< r for r > 0. Let (X ,�,‖.‖) be a partially ordered normed linear algebra.

Denote
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X+ = {x ∈ X | x� θ whereθ is zero element of X }

and

(5) K = {X+ ⊂ X | uv ∈ X+ f or all u,v ∈ X+}

The elements of the set K are called the positive vectors in X.

Lemma (Dhage [7]) If u1,u2,v1,v2 ∈ K are such that u1 � v1 and u2 � v2, then u1u2 � v1v2

Definition 1.7 An operator T : X → X is said to be positive if the range R(T ) of T is such that

R(T )⊆ K.

The Dhage iteration method is embodied in the following hybrid fixed point theorem proved

in Dhage [9] which is a useful tool in what follows. A few other hybrid fixed point theorems

involving the Dhage iteration method may be found in Dhage [10].

Theorem 2.1. Let
(
X ,�,‖ · ‖

)
be a regular partially ordered complete normed linear space

such that the order relation � and the norm ‖ · ‖ are compatible in X . Let A,B : X → X be two

nondecreasing operators such that

(a) A is partially bounded and partially nonlinear D-Lipschitz with D-function ψA,

(b) B is partially continuous and uniformly partially compact, and

(c) M ψa<r,r>0,where M = sup{‖B(C)‖ C is chain in x }

(d) there exists an element x0 ∈ X such that x0 � Ax0Bx0 or x0 � Ax0Bx0.

Then the operator equation

(6) AxBx = x

has a solution x∗ in X and the sequence {xn} of successive iterations defined by xn+1 = AxnBxn,

n = 0,1, . . ., converges monotonically to x∗.

Remark . The compatibility of the order relation� and the norm ‖.‖ in every compact chain of

X holds if every partially compact subset of X possesses the compatibility property with respect

to � and ‖.‖

3. Main results
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The QFIE (1) is considered in the function space C(J;R) of continuous real-valued functions

defined on J. We define a norm ‖ · ‖ and the order relation � in C(J;R) by

(7) ‖x‖= sup
t∈J
|x(t)|

and

(8) x≤ y⇔ x(t)≤ y(t)

for all t ∈ J respectively. Clearly, C(J;R) is a Banach algebra with respect to above supremum

norm and is also partially ordered w.r.t. the above partially order relation ≤. It is known that

the partially ordered Banach algebra C(J;R) has some nice properties w.r.t. the above order

relation in it. The following lemma follows by an application of Arzella-Ascolli theorem.

Lemma 3.1. Let C((J,R),≤,‖.‖) be a partially ordered Banach space with the norm ‖ · ‖ and

the order relation ≤ defined by (7) and (8) respectively. Then ‖ · ‖ and ≤ are compatible in

every partially compact subset of C(I;R).

Proof. Let S be a partially compact subset of C(J,R) and let {xn}n∈N be a monotone nonde-

creasing sequence of points in S. Then we have

x1(t)≤ x2(t)≤ x3(t) · · · ·

for each t ∈ R+ Suppose that a subsequence {xnk}n∈N of {xn}n∈N is convergent and converges

to a point xin S. Then the subsequence {xnk}n∈N of the monotone real sequence {xn}n∈N is

convergent. By monotone characterization, the whole sequence {xn}n∈N is convergent and

converges to a point x(t) in R for each t ∈R+. This shows that the sequence {xn}n∈N converges

point-wise in S. To show the convergence is uniform, it is enough to show that the sequence

{xn}n∈N is equicontinuous. Since S is partially compact, every chain or totally ordered set

and consequently {xn}n∈N is an equicontinuous sequence by Arzella-Ascoli theorem. Hence

{xn}n∈N is convergent and converges uniformly to x. As a result ≤ and ‖.‖ are compatible in S.

This completes the proof. We need the following definition in what follows.
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Definition 3.2. A function u ∈ C(J,R) is said to be a lower solution of the QFIE (1) if it

satisfies

(9) u(t) = [ f (t,u(t))]
(

q(t)+
∫ t

0
g(s,u(s))ds

)
for all t ∈ J Similarly, a function v ∈C(J;R) is said to be a lower solution of the QFIE (1) if it

satisfies the above inequalities with reverse sign.

We consider the following set of assumptions in what follows

(C0) q defines a continuous function q : J→ R+

(C1) f defines a function f : J×R→ R+.

(C2) There exists a real number M f > 0 such that f (t;x)≤M f for all t ∈ J and x ∈ R.

(C3) There exists a D-function φ such that

0≤ f (t;x)− f (t;y)≤ φ(x− y) for all t ∈ J and x;y ∈ R, x≥ y.

(C4) g defines a function g : J×R→ R+

(C5) There exists a real number Mg > 0 such that g(t;x)≤Mg for all t ∈ J and x ∈ R.

(C6) g(t; x) is nondecreasing in x for all t ∈ J.

(C7) The QFIE (1) has a lower solution u ∈C(J;R)

These are the main results of the paper.

Theorem 3.1. Assume that hypotheses(C1)-(C7) hold.Furthermore, assume that

(10) (‖q‖+MgT )φ(r)< r,r > 0

then the QFIE (1) has a positive solution x∗ defined on J and the sequence xnn∈N of successive

approximations defined by

(11) xn+1(t) = [ f (t,xn(t))]
(

q(t)+
∫ t

t0
g(s,xn(s))ds

)
, t ∈ J

where x0 = u, converges monotonically to x∗.

Proof. Set X = C(J;R). Then, from Lemma 3.1 it follows that every compact chain in X

possesses the compatibility property with respect to the norm ‖.‖ and the order relation ≤ in X.
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and define two operators A and B on X by

(12) Ax(t) = f (t,x(t)), t ∈ J

and

(13) Bx(t) = q(t)+
∫ t

t0
g(s,x(s))ds, t ∈ J

From the continuity of the integral and the hypotheses (C0)-(C1) and (C1), it follows that A and

B define the maps A,B : X → K. Now by definitions of the operators A and B, the QFIE (1) is

equivalent to the operator equation

(14) Ax(t)Bx(t) = x(t), t ∈ J

We shall show that the operators A and A satisfy all the conditions of Theorem (2.1). This is

achieved in the series of following steps.

Step I: A and B are nondecreasing on X .

Let x,y ∈ X be such that x≥ y. Then by hypothesis (C2), we obtain

Ax(t) = f (t,x(t))≥ f (t,y(t)) = Ay(t)

for all t ∈ J. This shows that A is nondecreasing operator on X into X . Similarly using hypoth-

esis (C7), it is shown that the operator B is also nondecreasing on X into itself. Thus, A and B

are nondecreasing positive operators on X into itself

Step II: A is partially bounded and partially D-Lipschitz on X .

Let x ∈ X be arbitrary. Then by (C2), |Ax(t)| ≤ | f (t,x(t))| ≤M f for all t ∈ J. Taking supre-

mum over t, we obtain ‖Ax‖ ≤M f and so, A is bounded. This further implies that A is partially

bounded on X.

Next, let x,y ∈ X be such that x≥ y. Then

|Ax(t)−Ay(t)|= | f (t,x(t))− f (t,y(t))|

≤ φ(|x(t)− y(t)|)≤ φ‖x− y‖
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for all t ∈ J. Taking supremum over t, we obtain ‖Ax−Ay‖ ≤ φ(‖x−y‖), for all x,y ∈ X , x≥ y.

Hence, A is a partial nonlinear D-Lipschitz on X which further implies that A is a partially

continuous on X.

Step III: B is a partially continuous on X .

Let {xn}n∈N be a sequence in a chain C of X such that xn → x for all n ∈ N. Then, by

dominated convergence theorem, we have

lim
n→∞

Bxn(t) = lim
n→∞

q(t)+
∫ t

0
g(s,xn(s))ds

= q(t)+
∫ t

0
[ lim
x→∞

g(s,xn(s))]ds

= q(t)+
∫ t

0
g(s,xn(s))ds

= Bx(t).

for all t ∈ J. This shows that Bxn converges monotonically to Bx pointwise on J. Next, we will

show that {Bxn}n∈N is an equicontinuous sequence of functions in X. Let t1, t2 ∈ I with t1 < t2.

Then

∣∣Bxn(t2)−Byn(t1)
∣∣≤ |q(t1)−q(t2)|+

∣∣∣∫ t2

0
g(s,x(s))ds−

∫ t1

0
g(s,x(s))ds

∣∣∣
≤ |q(t1)−q(t2)|+

∣∣∣∫ t2

t1
|g(s,x(s))|ds

∣∣∣
≤ |q(t1)−q(t2)|+ Mg|t2− t1

∣∣
→ 0 as t2− t1→ 0

uniformly for all n ∈ N. This shows that the convergence Bxn→ Bx is uniform and hence B is

partially continuous on X .

Step IV: B is uniformly partially compact operator on X .

Let C be an arbitrary chain in X . We show that B(C) is a uniformly bounded and equicontinuous

set in X . First, we show that B(C) is uniformly bounded. Let y ∈ B(C) be any element. Then
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there is an element x ∈C, such that y = Bx. Now, by hypothesis (C2),

∣∣y(t)∣∣≤ |q(t)|+∫ t

0
|g(s,x(s))|ds

≤ ‖q‖+MgT

≤ r

for all t ∈ J. Taking supremum over t, we obtain ‖y‖= ‖Bx‖ ≤ r for all y ∈ B(C). Hence, B(C)

is a uniformly bounded subset of X . Moreover, ‖B(C)‖ ≤ r for all chains C in X . Hence, B is a

uniformly partially bounded operator on X .

Next, we will show that B(C) is an equicontinuous set in X . Let t1, t2 ∈ J with t1 < t2. Then, for

any y ∈ B(C), one has∣∣y(t2)− y(t1)
∣∣= |Bx(t2)−Bx(t1)|

≤ |q(t1)−q(t2)|+
∣∣∣∫ t2

0
g(s,x(s))ds−

∫ t1

0
g(s,x(s))ds

∣∣∣∣
≤ |q(t1)−q(t2)|+

∣∣∣∫ t2

t1
|g(s,x(s))|ds

∣∣∣
≤ |q(t1)−q(t2)|+Mg|t2− t1

∣∣
→ 0 as t2− t1→ 0

uniformly for all y ∈ B(C). Hence B(C) is an equicontinuous subset of X . Now, B(C) is a

uniformly bounded and equicontinuous set of functions in X , so it is compact. Consequently, B

is a uniformly partially compact operator on X into itself.

Step V: u satisfies the operator inequality u≤ AuBu.

By hypothesis (C7), the QFIE (1) has a lower solution u defined on J. Then, we have

(15) u(t)≤ [ f (t,u(t))]
(

q(t)+
∫ t

0
g(s,u(s))ds

)
for all t ∈ J. From definitions of the operators A and B it follows that u(t)≤ Au(t)Bu(t), for all

t ∈ J. Hence u≤ AuBu.

Step VI: D-fuction φ is satisfies the growth condition Mφ(r)< r,r > 0
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Finally, the D-function φ of the operator A satisfies the inequality given in hypothesis (d) of

Theorem 2.1. Now from the estimate given in Step IV, it follows that

MφA(r)≤ (‖q‖+MgT
)

φ(r)< r,

for all r > 0.

Thus, A and B satisfy all the conditions of Theorem 2.1 and we apply it to conclude that the

operator equation AxBx= x has a solution. Consequently the integral Equation and the QFIE (1)

has a solution x∗ defined on J. Furthermore, the sequence {xn}∞
n=1 of successive approximations

defined by (11) converges monotonically to x∗. This completes the proof.

Example . Given a closed and bounded interval J = [0; 1], consider the QFIE,

(16) x(t) = [2+ tan−1 x(t)]
(

t
t +1

+
∫ t

0

[1+ tanhx(s)]
4

ds
)

for t ∈ J.

Here, q(t) = t
t+1 which is continuous and ‖q(t)‖= 1

2 Similarly, the functions f and g are defined

by f (t,x) = tan1 x+ 2 and g(t,x) = [1+tanhx]
4 .The function f satisfies the hypothesis (C3) with

φ(r) = r
1+ξ 2 for 0 < ξ < r.To see this we have,

0≤ f (t,x)− f (t,y)≤ 1
1+ξ 2 .(x− y)

for all x,y ∈ R, x ≥ y and x > ξ > y. Moreover, the function f(t, x) is bounded on J×R with

bound M f = 3 and so the hypothesis (C2) is satisfied. Again, since g is bounded on J×R by

Mg =
1
2 , the hypothesis (C6) holds. Furthermore, g(t,x) is nondecreasing in x for all t ∈ J, and

thus hypothesis (C7) is satisfied. Also condition (10) of Theorem 3.1 is held. Finally, the QFIE

(14) has a lower solution u(t) = 0 defined on J. Thus all hypotheses of Theorem 3.1 are satisfied.

Hence we apply Theorem 3.1 and conclude that the QFIE (14) has a solution x∗ defined on J

and the sequence {xn}n∈N defined by

(17) xn+1(t) = [2+ tan−1 xn(t)]
(

t
t +1

+
∫ t

0

[1+ tanhxn(s)]
4

ds
)
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for all t ∈ J, where x0 = 0, converges monotonically to x∗

4. Conclusion

Finally, while concluding this paper we mention that the quadratic integral equation consid-

ered here is of very simple nature for which we have illustrated the Dhage iteration method to

obtain the algorithms for the positive solutions under weaker partially Lipschitz and compact-

ness conditions. However, an analogous study could also be made for other complex quadratic

integral equations using similar method with appropriate modifications. Some of the results

along this line will be reported elsewhere.
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