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Abstract. The aim of this paper is to give some fixed point theorems using the KKM-Type mappings, some

well-known results are extended to the case of metric type spaces. We also introduced a new concepts namely,

multivalued co-set contraction, and quasi-subadmissibility in order to generalize concidence Fan’s Theorem in

metric type spaces.
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1. Introduction

In [3] I.A. Bakhtin was introduce the metric type space in order to generalize the Banach con-

traction principle in such spaces. M.A. Khamsi in [15] introduce this space which is generated

by a cone metric space over a normal cone P and proved some coupled fixed point theorems.
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KKM-type mapping in metric space was introduced by A. Amini, M. Fakhar and J. Zafarni

[1] and they established some fixed point theorems, Khamsi and Hussain in [14] extend this

work on KKM-type compact mappings on sub-admissible subset of a metric type space. Chi-

Ming Chen [6] generalize the A. Amini results [1] in the setting of nearly-sub-admissible subset

in complete metric space for a k-set contraction and he establish some fixed point theorems

where the compactness is not needed.

In this work, we generalize KKM-type result in the context of metric type space, and de-

rive some related fixed point theorems, our work include the results of Chi-Ming [6] and

M.A. Khamsi and Hussain [14]. As an application we deduce a Ky Fan-type coincidence

point theorem, for this we introduce the notion of metric-type quasi-subadmissible and quasi-

upadmissible sets, and we derive a Minimax-type result in such spaces.

2. Preliminaries

For the convenience of the reader we repeat the relevant material from [14] without proofs,

thus making our exposition self-contained.

Definition 2.1. Let X be a set. Let D : X×X −→ [0,∞) be a function which satisfies

(i) D(x,y) = 0 if and only if x = y;

(ii) D(x,y) = D(y,x), for any x,y ∈ X;

(iii) D(x,z)6 K [D(x,y)+D(y,z)], for any points x,y,z ∈ X , for some constant K > 0.

The pair (X ,D) is called a metric type space. This metric generalization is worthy of consid-

eration only when K > 1, and throughout this paper we consider that K > 1.

We note that closed and open balls of (X ,D) are defined respectively as follows :

B(x,r) = {y ∈ X : D(x,y)6 r} and B0 (x,r) = {y ∈ X : D(x,y)< r} .

We define a natural topology in metric type space (X ,D), this topology has most same prop-

erties of the metric space. A subset A⊂ X is said to be open if and only if for any a ∈ A, there

exists ε > 0 such that the open ball B0 (a,ε)⊂ A.

Now we recall some properties of metric type space; most of this results can be found in [14],



310 SAMIH LAZAIZ, KARIM CHAIRA, MOHAMED AAMRI AND ELMILOUDI MARHRANI

Definition 2.2. Let (X ,D) be a metric type space.

(i) The sequence {xn} converges to x ∈ X if and only if lim
n→∞

D(xn,x) = 0.

(ii) The sequence {xn} is Cauchy if and only if lim
n,m→∞

D(xn,xm) = 0.

(iii) (X ,D) is complete if and only if any Cauchy sequence in X is convergent.

The next result characterized the closure of metric type space.

Proposition 2.3. Let (X ,D) be a metric type space , then for any nonempty subset A⊂ X we

have

(i) A is closed if and only if for any sequence {xn} in A which converges to x, we have x ∈ A;

(ii) if we define A to be the intersection of all closed subsets of X which contains A, then for

any x ∈ A and for any ε > 0, we have B0 (x,ε)∩A 6= /0.

Definition 2.4. The subset A is called sequentially compact if and only if for any sequence

{xn} in A, there exists a subsequence {xnk} of {xn} which converges in A. Also A is called totally

bounded if for any ε > 0, there exist x1,x2, . . . ,xn ∈ A such that A⊂ B0 (x1,ε)∪·· ·∪B0 (xn,ε).

Proposition 2.5 Let (X ,D) be a metric type space and A a nonempty subset of X. The

following properties are equivalent :

(i) A is compact,

(ii) A is sequentially compact.

Proposition 2.6. Let (X ,D) be a metric type space. X is compact if and only if X is complete

and totally bounded.

Proof. Since sequential compactness and compactness are equivalent, we must show that

every sequence in totally bounded set has a Cauchy subsequence. Let {xn}n be a sequence in

X . For each n ∈ N let Dn be a finite subset of X such that the open balls of radius Kn centred at

the points of Dn cover X (where K is the constant associated to the triangle inequality satisfied

by D).

Since D0 is finite, so there is a point y0 ∈ D0 such that infinitely many points of {xn}n are in

B(y0,1). Let

A0 = {n ∈ N : xn ∈ B(y0,1)}

so that A0 is infinite, we will denote by
{

xϕ(0,n)
}

n the subsequence of {xn}n satisfying ∀n∈ A0 :

xϕ(0,n) ∈ B(y0,1).
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Now D1 is finite, so there is a y1 ∈ D1 such that

A1 =

{
n ∈ N : xn ∈ B(y0,1)

⋂
B
(

y1,
1
K

)}

A1 is infinite, denote by
{

xϕ(1,n)
}

n the subsequence of
{

xϕ(0,n)
}

n satisfying ∀n ∈ A1, xϕ(1,n) ∈

B(y0,1)
⋂

B
(
y1,

1
K

)
.

Continuing in this vein, if Am is an infinite subset of N, there must be a ym+1 ∈ Dm+1 such

that

Am+1 =

{
n ∈ N : xn ∈

m+1⋂
i=0

B
(

yi,
1
Ki

)}

In what follows,
{

xϕ(m+1,n)
}

n denotes the subsequence of
{

xϕ(m,n)
}

n. Put for each n ∈ N,

zn = xϕ(n,n) , for n large enough, we will get

D(zn,zn+1)6 K [D(zn,yn)+D(yn,zn+1)]6
K
Kn +

K
Kn =

2
Kn−1

sine K > 1, then {zn}n is a Cauchy sequence. This complete the proof.

Let X and Y be two topological spaces and T : X −→ 2Y be a set valued map with nonempty

values. T is said to be :

(1) closed if its graph GT = {(x,y) ∈ X×Y , y ∈ T (x)} is closed;

(2) compact if the closure T (X) is a compact subset of Y .

(3) lower semicontinuous if for each open set B⊂Y , the set T−1 (B)= {x ∈ X : T (x)∩B 6= /0}

is open in X .

For a set A, we denote the set of all nonempty finite subsets of A by 〈A〉 . Let A be a bounded

subset of a metric type space (X ,D). Then

(1) co(A) =
⋂
{B⊂ X , B is a closed ball in X such thatA⊂ B}

(2) Λ (X) = {A⊂ X , A = co(A)}, i.e. A ∈ Λ (X) if and only if A is an intersection of all

closed balls containing A. In this case,we say that A is an admissible set in X . (the

empty set /0 is assumed to be admissible).

(3) A is called subadmissible, if for each B ∈ 〈A〉 , co(B)⊂ A. Obviously, if A is an admis-

sible subset of X , then A must be subadmissible.
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(4) A is said to be nearly-subadmissible if for each compact subset A1 of A and for each

ε > 0, there exists a continuous mapping fA1,ε : A1 −→ A such that x ∈ B0
(

fA1,ε (x) ,ε
)

for each x ∈ A1, and co
(

fA1,ε (A1)
)
⊂ A.

Remark 2.7. If A is subadmissible set then A is a nearly-subadmissible

Proof. Obviously each finite subset of A is compact , said B = {x1, . . . ,xn} ⊂ A, since the

identity mapping id : B −→ A is continuous we have co(id (B)) = co(B) ⊂ A, and for every

i ∈ {1,2, . . . ,n} and for each ε > 0, xi ∈ B0 (id (xi) ,ε). That implies A is nearly-subadmissible

set.

Let X be a metric type space and A a nonempty subadmissible subset of X .

Definition 2.8. A set valued mapping T : A −→ 2X is called a KKM mapping, if for each

B ∈ 〈A〉, we have co(B) ⊂ T (B) =
⋃

x∈B T (x). More generally, if Y is a topological space and

T,S : A−→ 2Y are two set valued mappings such that for any B∈ 〈A〉 , we have S (co(B))⊂ T (B)

, then T is called a generalized KKM mapping with respect to S.

If the set valued mapping S : A−→ 2Y satisfies the requirement that for any generalized KKM

mapping T : A −→ 2Y with respect to S the family
{

T (x),x ∈ A
}

has the finite intersection

property, then S is said to have the KKM property. We define

KKM(A,Y ) =
{

S : A−→ 2Y ,Shas the KKM property
}
.

Let A be a nonempty subset of a metric type space X . Then S : A−→ 2X is said to have the ap-

proximate fixed point property if for any ε > 0, there exists an xε ∈A such that S (xε)
⋂

B0 (xε ,ε) 6= /0.

We conclude this section by giving an extension of Kuratowski measure of non-compactness

and some related results in a complete metric type space.

Definition 2.9. Let A be a bounded subset of a complete metric type space (X ,D), the Kura-

towski type-measure of noncompactness α (A) of A is defined by

α (A) = inf{ε > 0 : Acan be covered by finitely many sets with diameter 6ε} .

The diameter δ (A) of A is defined by δ (A) = sup{D(x,y) : x,y ∈ A} with δ ( /0) = 0.

The next properties are satisfied in any complete metric type space.

Proposition 2.10. For each nonempty bounded subsets A1 and A2 of (X ,D) we have

(i): α (A1) = 0 if and only if A1 is totally bounded,
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(ii): A1 ⊂ A2 =⇒ α (A1)6 α (A2)

(iii): If A2 is finite subset of X, then α (A1∪A2) = α (A1),

(iv): α (A1)6 α
(
A1
)
6 K2α (A1).

Proof. (i) and (ii) are obvious by definition of the Kuratowski type-measure of noncompact-

ness.

(iii) Put

D1 = {ε > 0; A1 can be covered by finitely many sets with diameter 6ε}

,

D2 = {ε > 0; A1∪A2 can be covered by finitely many sets with diameter 6ε}

Let ε ∈D1, then there exist a family of sets M1,M2, . . . ,Mn of X such that, for each i ∈ {1,2 . . . ,n} ,

δ (Mi)6 ε and A1 ⊂
⋃n

i=1 Mi.

Since A2 is finite subset set A2 = {a1,a2, . . . ,am} such that for each j ∈ {1,2 . . . ,m} :

A1∪A2 ⊂

(
n⋃

i=1

Mi

)
∪

(
m⋃

j=1

B0

(
a j,

ε

2K

))

this implies that ε ∈ D2, in consequence, α (A1∪A2) 6 α (A1), and since A1 ⊂ A1 ∪A2 this

clearly forces α (A1∪A2) = α (A1).

(iv) A1 ⊂ A1 then α (A1)6 α
(
A1
)
. Let ε ∈D1, there exist a family of sets M1,M2, . . . ,Mn of

X such that, for each i ∈ {1,2 . . . ,n}

δ (Mi)6 ε and A1 ⊂
n⋃

i=1

Mi

then A1 ⊂
⋃n

i=1 Mi =
⋃n

i=1 Mi and δ
(
Mi
)
6 K2ε . Indeed, let (x,y) ∈

(
Mi
)
×
(
Mi
)
, there exists

two sequences {xn}n and {yn}n such that limD(xn,x) = 0 and limD(yn,y) = 0, for each n ∈ N

we get :

D(x,y) 6 K (D(x,xn)+K (D(xn,yn)+D(yn,y)))

6 K2
ε +K (D(xn,x)+KD(yn,y))

take the limit with respect to n, we get δ
(
Mi
)
6 K2ε . This gives K2ε ∈D1 with

D1 =
{

ε > 0; A1 can be covered by finitely many sets with diameter 6ε
}
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which implies that α (A1)6 α
(
A1
)
6 K2α (A1).

In the course of this paper, we will need the following generalized Cantor intersection,

Lemma 2.11. Let (X ,D) be a complete metric type space and {An} be a decreasing sequence

of nonempty, closed and bounded subsets of X and lim
n→∞

α (An) = 0. Then the intersection A∞ of

all An is nonempty and compact.

Proof. the proof is similar to the metric space, since every complete and totally bounded

subset is compact by proposition2.6

The following lemma will be useful in the sequel, the proof of (i) will be find in [[14], Lemma

4.1.], and the proof of (ii) its similar to (ii) [[6], Lemma 2]

Lemma 2.12. Let (X ,D) be a metric type space and A a nonempty subset of X, and suppose

that Y is topological space,

(i) If T ∈ KKM(A,Y ) and f ∈C (Y,X) then f ◦T ∈ KKM(A,X)

(ii) If B is nonempty subset of A and T ∈ KKM(A,Y ) then T |B ∈ KKM(B,Y )

Proposition 2.13. Let (X ,D) be a metric type space, then for each x ∈ X and ε > 0 we have

B0 (x,ε)⊂ B0 (x,Kε)cc
⊂ B0 (x,Kε) , for some K > 1.

Proof. See the proof M.A. Khamsi and N. Hussain [[14], Theorem 4.1].

3. Main results

We introduce a slight different definition of the well known set valued k−set contraction,

which is convenient with the structure of the space.

Definition 3.1. Let A be a nonempty subset of a metric type space (X ,D). A set valued

mapping T : A−→ 2X is said to be a co-set contraction if, for all B⊂ A with B bounded, T (B)

is bounded and α (co(T (B)))6 kα (B), 0 < k < 1.

In this section we make the assumption that the set-valued map T : A→ 2X satisfies the

condition : there exists w ∈ A such that Tw 6= /0, T (Tw) 6= /0. Now we are able to give our main

result.

Theorem 3.2. Let (X ,D) be a complete metric type space and A is a nonempty bounded

nearly-subadmissible subset of X. If T ∈ KKM(A,A) is a co-set contraction, and closed with

T (A)⊂ A , then T has a fixed point in A.
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Proof. Let ε > 0 be given. Since T is co-set contraction we have α (co(T (B))) 6 kα (B)

for each nonempty bounded subset of A. Since T (A) 6= /0, let w ∈ A as above, and define a

nonempty sequence {An} of decreasing subsets by :

A0 = T (A)

A1 = co(T (A0∪{w}))∩T (A)

An+1 = co(T (An∪{w}))∩T (A)

for each n ∈ N.

Then An+1 ⊂ An for each n ∈ N, indeed, by induction : obviously we have A1 ⊂ A0 suppose

that Ai+1 ⊂ Ai for every i ∈ {0,1, · · · ,n−1} and let show that An+1 ⊂ An, by hypothesis we

have An ⊂ An−1 implies that

co(T (An∪{w}))⊂ co(T (An−1∪{w})) =⇒ An+1 ⊂ An

Then by induction we have for each n ∈ N

(1) An+1 ⊂ An

Now lets prove that for every n in N we have :

(2) T (An)⊂ An+1

suppose x ∈ T (An) then x ∈ co(T (An∪{w})) and we know that T (An)⊂ T (A0)⊂ T (A) so

x ∈ co(T (An∪{w}))∩T (A) = An+1.

From the proprieties of measure of noncompactness and by definition of co-set contraction

we get

α (An+1) = α (co(T (An∪{w}))∩T (A))6 α (co(T (An∪{w})))

6 kα (An∪{w})(3)

6 kα (An)

from (3) we get for each n ∈ N

α (An)6 kn
α (A0)
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Thus α (An) −→
n→∞

0, and hence A∞ =
⋂

n>0
An is a nonempty totally bounded set. Remark that

A∞ ⊂ An ⊂ T (A) for each n ∈ N, then

A∞ ⊂ T (A)⊂ A

Since T (A) ⊂ A we have T (An+1) ⊂ T (An) ⊂ A for each n in N. That is
{

T (An)
}

n
is

nonincreasing sequence of nonempty closed subsets and α

(
T (An)

)
−→
n→∞

0, indeed, for each n∈

N, T (An) ⊂ An+1 then α (T (An)) 6 α (An+1) which implies lim
n→∞

α (T (An)) = 0, by closeness

property of Kuratowski type-measure,

α (T (An))6 α

(
T (An)

)
6 K2

α (T (An))

hence limα

(
T (An)

)
= 0, then by Lemma 2.11, we get

⋂
n>0

T (An) is nonempty compact subset.

Since T (A∞) is closed and T (A∞)⊂
⋂

n>0
T (An), then T (A∞) is compact. A is nearly-subadmissible

for any ε > 0 there exists a continous mapping fT (A∞),ε
: T (A∞) 7−→A such that x∈B0

 fT (A∞),ε
(x) ,

ε

K2


for each x ∈ T (A∞) and Z = co

(
fT (A∞),ε

(
T (A∞)

))
⊂ A. From T ∈ KKM(A,A) and A∞ is

nonempty subset of A by Lemma 2.12 (ii)

T |A∞
∈ KKM(A∞,A)

Put L(x) := fT (A∞),ε
(T |A∞

(x)) for each x∈A∞ and by Lemma 2.12(i) we have L∈KKM(A∞,Z).

L(A∞) = fT (A∞),ε
(T (A∞)) then L(A∞) ⊂ fT (A∞),ε

(
T (A∞)

)
= fT (A∞),ε

(
T (A∞)

)
⊂ Z and

L(A∞) is compact in Z.

We have to claim that for each λ > 0, there exists an xλ ,ε ∈ A∞ such that B

xλ ,ε ,
λ + ε

K

∩
L
(
xλ ,ε

)
6= /0. For that suppose the contrary, then there exists λ > 0 such that for each x ∈ A∞

B0

x,
λ + ε

K

∩L
(
xλ ,ε

)
= /0.

Define a set valued map S : A∞→ 2Z by S (x) = L(A∞)∩B0

x,
λ + ε

K


c

, then
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(1) S (x) is closed for each x ∈ A∞

(2) S is a generalized KKM map with respect to L,

Indeed, its obvious too see that S (x) is compact since B0

x,
λ + ε

K


c

is closed for each

x ∈ A∞. For (2) we prove it by contradiction, assume that there exists {x1, . . . ,xn} ⊂ A∞ such

that

L(co(x1, . . . ,xn)∩A∞)*
n⋃

i=1

S (xi) ,

then there exists u ∈ co(x1, . . . ,xn)∩A∞ and v ∈ L(u) ⊂ L(A∞) such that v /∈
⋃n

i=1 S (xi) by

proposition 2.13, we get v∈B0

xi,
λ + ε

K


cc

⊂B0

xi,
λ + ε

K

 for each i= 1,2, . . . ,n, implies

that xi ∈ B0

v,
λ + ε

K

 for each i = 1,2, . . . ,n, therefore {x1, . . . ,xn} ⊂ B0

v,
λ + ε

K

 and

since

u ∈ co(x1, . . . ,xn) and v ∈ L(u)

we have u ∈ co(x1, . . . ,xn) ⊂ B0

v,
λ + ε

K

 then v ∈ B0

u,
λ + ε

K

 which implies that v ∈

B0

u,
λ + ε

K

∩L(u) this contradict the fact that B

x,
λ + ε

K

∩L(x) = /0 for all x ∈ A∞, then

S is a generalized KKM map with respect to L.

And since L ∈ KKM(A∞,Z) the family {Sx ,x ∈ A∞} has the finite intersection property, and

so we have ⋂
x∈A∞

S (x) 6= /0.

Let choose u ∈
⋂

x∈A∞

S (x), then u ∈ L(A∞)∩B0

x,
λ + ε

K


c

for each x ∈ A∞.

First we have
⋂

x∈A∞

S (x)⊂ L(A∞)= fT (A∞),ε

(
T (A∞)

)
. Since fT (A∞),ε

: T (A∞) 7−→A is contin-

uous we have fT (A∞),ε

(
T (A∞)

)
is compact in nearly-subadmissible subset A, and by definition
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of nearly subadmissible subset x ∈ T (A∞) implies that :

x ∈ B0

(
fT (A∞),ε

(x) ,
ε

K2

)
⊂ B0

(
fT (A∞),ε

(x) ,K× ε

K2

)cc

which gives fT (A∞),ε
(x) ∈ B0

x,
ε

K


cc

for each x ∈ T (A∞), i.e.

fT (A∞),ε

(
T (A∞)

)
⊂

⋃
x∈T (A∞)

B0

x,
ε

K


cc

.

Therefore, T (An)⊂ An⇒ T (A∞)⊂ A∞ implies that

⋃
x∈T (A∞)

B0

x,
ε

K


cc

⊂
⋃

x∈A∞

B0

x,
ε

K


cc

.

Then,

u ∈
⋂

x∈A∞

S (x)⊂ fT (A∞),ε

(
T (A∞)

)
⊂

⋃
x∈T (A∞)

B0

x,
ε

K


cc

⊂
⋃

x∈A∞

B0

x,
ε

K


cc

.

so there exists x0 ∈ A∞ such that :



u ∈ B0

x0,
ε

K


cc

⊂ B0

x0,
λ + ε

K


cc

u ∈ L(A∞)∩B0

x0,
λ + ε

K


c

this is a contradiction, then for any ε > 0 there exists xλ ,ε ∈A∞ such B

xλ ,ε ,
λ + ε

K

∩L
(
xλ ,ε

)
6= /0.
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Hence there exists yλ ,ε ∈ B

xλ ,ε ,
λ + ε

K

∩L
(
xλ ,ε

)
. yλ ,ε ∈ L

(
xλ ,ε

)
= fT (A∞),ε

(
T
(
xλ ,ε

))
and choose zλ ,ε ∈ T

(
xλ ,ε

)
such that yλ ,ε = fT (A∞),ε

(
zλ ,ε

)
. Note that

zλ ,ε ∈ B0

 fT (A∞),ε

(
zλ ,ε

)
,

ε

K2

= B0

yλ ,ε ,
ε

K2

⊂ B0

yλ ,ε ,
λ + ε

K


since K > 1, therefore

zλ ,ε ∈ B0

yλ ,ε ,
λ + ε

K

∩T
(
xλ ,ε

)
6= /0 =⇒ zλ ,ε ∈ B0

(
xλ ,ε ,λ + ε

)
∩T

(
xλ ,ε

)
6= /0

since
{

zλ ,ε

}
ε
⊂ T (A∞) and

{
xλ ,ε

}
ε
⊂ A∞ compact subsets and without loss of generality we

may assume that

zλ ,ε −→
ε→0

z0,ε

xλ ,ε −→
ε→0

x0,ε

Then z0,ε ∈B
(
x0,ε ,K2ε

)
∩T (x0,ε) because A∞⊂A and T is closed in A, since ε > 0 is choose

arbitrary which just as before, implies T has a fixed point in A.

Example 3.3. Let X =R equipped with metric type distance D(x,y) = (x− y)2 it is obvious

that for each x,y,z ∈ X we get

D(x,z)6 2 [D(x,y)+D(y,z)] .

Put A = [0,1] = B
(1

2 ,
1
4

)
, it is clear that A is bounded admissible subset of X then A is nearly-

subadmissible. A is also closed, indeed, let {xn}n be some sequence of A which converge to x,

let claim that x ∈ A, by assumption for each n ∈ N there exists N ∈ N such that for each n > N,

(xn− x)2 6
1

2n⇐⇒ |xn− x|6

√√√√ 1

2n and since

∣∣∣∣x− 1
2

∣∣∣∣6 |x− xn|+
∣∣∣∣xn−

1
2

∣∣∣∣6
√√√√ 1

2n +
1

2
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so taking the limit with respect to n yields, we get∣∣∣∣x− 1
2

∣∣∣∣6 1
2
⇐⇒

(
x− 1

2

)2

6
1
4

then x ∈ B
(1

2 ,
1
4

)
. Furthermore, closed balls are also closed for this topology.

Define a set valued mapping T : [0,1]→ 2[0,1] as follows :

T x = [0,x]

for each x ∈ A. Since for any bounded subset B of A we have

T (B) =
⋃
x∈B

T x =


[0, x̂]

or

[0, x̂[

where x̂ = supB. Otherwise, we have α (co(T (B))) = α

B

 x̂

2
,
x̂2

4


 = 0 since T (B) is

totally bounded subset of A which implies for some fixed k ∈ ]0,1[

α (co(T (B)))6 kα (B) .

Also, for each convex subset B⊂ A, we have T (B) = [0, x̂] is convex, by [[12], Theorem 2.2]

we get T ∈ KKM(A,A) .

T is closed map, indeed, let {xn}n be a sequence in A such that xn → x,and define {yn}n

by for each n ∈ N, yn ∈ T xn with yn → y, observe that yn ∈ [0,xn] for each n ∈ N, then y ∈⋂
n∈N [0,xn] = [0,x] = T x.

So all assumptions of Theorem 3.2 are satisfied, then T has at least one fixed point in A. Note

that 0 ∈ T 0.

Remark 3.4. We replace the assumption the set valued map is not a k-set contraction but

a co-set contraction, since the property α (co(A)) = α (A) in complete metric space is not

verified, for that we give the following example

Example 3.5. Let X = l∞ (N,R) be the space of bounded real sequences u = (un)n∈N en-

dowed by the usual norm

‖u‖
∞
= sup

n∈N
|un|
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it is well known that (X ,d∞) is a complete metric space. Let A = {a,b} which a = (0,0, . . .) and

b = (1,1, . . .), since A is compact we get α (A) = 0.

For co(A) note that if A ⊂ B(x,r) for some x ∈ X and r > 0 we must have, ‖x‖
∞
6 r and

|1−‖x‖
∞
|6 r,

(i) if 1−‖x‖
∞
> 0, then 1− r 6 1−‖x‖

∞
6 r, hence r >

1

2

(ii) if 1−‖x‖
∞
6 0, then r > ‖x‖

∞
> 1, hence r >

1

2
, then any closed ball which contains A,

its radius is greater than or equal to
1

2
.

For any closed ball which contains A, and centered at x = (xn)n∈N ∈ X with radius equal to

1

2
we have,


‖a− x‖

∞
6

1

2

‖b− x‖
∞
6

1

2

then for each n ∈ N, |xn| 6 1
2 and |1− xn| = 1− xn 6 1

2 , hence xn =
1
2 , which implies for any

closed ball which contains A, with radius equal to
1

2
is centered at x =

1

2
,
1

2
, . . .

, as co(A) =

B

x,
1

2

 is not a compact in X we get α (co(A)) 6= α (A) .

As a direct consequence of Theorem3.2 , we have the next corollary.

Corollary 3.6. Let (X ,D) be a complete metric type space and A is a nonempty bounded

subadmissible subset of X. If T ∈KKM(A,A) is a co-set contraction, and closed with T (A)⊂A,

then T has a fixed point in A.

From Theorem 3.2 we have immediately the following [[6], Theorem 1]

Theorem 3.7. Let (X ,d) be a complete metric space and A is a nonempty bounded nearly-

subadmissible subset of X. If T ∈KKM(A,A) is a co-set contraction , and closed with T (A)⊂ A,

then T has a fixed point in A.

By a similar proof as that given in [[6], Theorem 2] we can obtain the following result.
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Corollary 3.8. Let (X ,D) be a metric type space and A is a nonempty nearly-subadmissible

subset of X. If T ∈ KKM(A,A) is compact and closed, then T has a fixed point in A.

As a consequence,

Corollary 3.9. Let (X ,D) be a metric type space and A is a nonempty nearly-subadmissible

subset of X. If S,T ∈ KKM(A,A) are closed. We assume T or S is compact. Then there exists

x0 ∈ A such that x0 ∈ T (x0)
⋂

S(x0).

From Corollary 3.8, we have immediately the following [[14], Theorem 4.2].

Theorem 3.10. Let (X ,D) be a metric type space and A a nonempty subadmissible subset of

X. Let T ∈ KKM(A,A) be closed and compact. Then T has a fixed point, i.e. there exists x ∈ A

such that x ∈ T (x).

By a similar proof as that given in [[6], Theorem 4] we can obtain the following theorem.

Theorem 3.11. Let A be a nonempty subadmissible subset of a metric type space (X ,D),

C a nonempty subset of A such that co(C) ⊂ A, and let T : C→ 2A be a closed-valued KKM

mapping.

Then {T (x)}x∈C has the finite intersection property.

The next result can be seen as a modification of condition T ∈KKM(A,A) in Theorem by T

is a lower semi-continuous.

Theorem 3.12. Let (X ,D) be a metric type space and A is a nonempty nearly-subadmissible

subset of X.

If T : A−→ 2A is lower semi-continuous, compact and closed, then T has a fixed point in A.

Proof. Let ε > 0 there exists a finite subset C = {x1, . . . ,xn} in A satisfying T (A)⊂
⋃n

i=1 B0 (xi,ε),

since T is compact. A is nearly sub-admissible and C = {x1, . . . ,xn}⊂A then, there exists a con-

tinuous function h : C→ A such that

xi ∈ B0 (h(xi) ,ε) ∀i ∈ {1,2, . . . ,n} and Z = co(h(C))⊂ A.

Define S : h(C)→ 2Z by S (h(xi)) =
{

z ∈ Z : T (z)∩B0 (xi,Kε)cc
= /0
}

for each i∈ {1, . . . ,n}.

T is lower semi-continuous, then S (h(xi)) is closed in Z for all i ∈ {1, . . . ,n}, and

n⋂
i=1

S (h(xi)) =

{
z ∈ Z : T (z)∩

n⋃
i=1

B0 (xi,Kε)cc
= /0

}
= /0
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By Theorem 3.11, S is not a KKM map, and there exists a finite subset h(C1)= {h(xi1) , . . . ,h(xim)}∈

〈h(C)〉 such that

co(h(C1))*
m⋃

j=1

S
(
h
(
xi j

))
thus there exists yε ∈ co(h(C1)) such that yε /∈

⋃m
j=1 S

(
h
(
xi j

))
wich implies by definition of S

that for each j ∈ {1, . . . ,m},

/0 6= T (yε)∩B0
(
xi j ,Kε

)cc
⊂ T (yε)∩B0

(
xi j ,Kε

)
Let z∈ T (yε)∩B0

(
xi j ,Kε

)
for each j ∈ {1, . . . ,m}, then z∈ T (yε) and z∈ B0

(
xi j ,Kε

)
for each

j = 1,2, . . . ,m. This implies that xi j ∈ B0 (z,Kε) for each j = 1, . . . ,m, since h
(
xi j

)
∈ B0

(
xi j ,ε

)
,

we have h
(
xi j

)
∈ B0 (z,K (1+K)ε) imlpies that

yε ∈ co(h(C1))⊂ B0 (z,K (1+K)ε)

so z ∈ B0 (yε ,K (1+K)ε). Therefore T (yε)∩B0 (yε ,K (1+K)ε) 6= /0 for each ε > 0 and since

ε is arbitrary, T has the finite intersection property, for each ε > 0 there exist xε ,yε such that

xε ∈ T (yε)∩B0 (yε ,ε) .

Now since T is compact we may assume that xε converge to some x0 as ε → 0. Consequently,

yε → x0 and T is closed then x0 ∈ T (x0) .

Remark 3.13. As we can see, the continuity of the function h : C→ A is not needed in the

proof, thus the assumption “A is nearly-subadmissibile” can be weakened. For example C. M.

Yen [6] makes the assumption A is an almost-subadmissible set where he removed the continuity

of h.

4. Application : KKM mappings and coincidence theorem.

We give a new concept of quasi-subadmissible and quasi-upadmissible subsets in metric type

space as follows :
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Definition 4.1. A real-valued function ϕ defined on a nonempty subadmissible set A in metric

type space (X ,D) is said to be :

(i) metric type quasi-subadmissible if the set {x ∈ A : ϕ(x)> r} is subadmissible for each

r ∈ R;

(ii) metric type quasi-upadmissible if −ϕ is quasi-subadmissible.

(iii) lower semicontinuous if the set {x ∈ A : ϕ(x)> λ} is open for each λ ∈ R.

(iv) upper semicontinuous if −ϕ is lower semicontinuous.

Remark 4.2. [[20], Definition 2.3.16], recall that a point x ∈ X is said to be a maximal of the

set valued map T : X −→ 2X provided T x = /0, we will denote by Max(T ) the set of all maximal

points of T .

The next theorem is a sharpened version of Ky Fan’s coincidence theorem [[11], Theorem

4.1] in the context of subadimissible sets in metric type space.

Theorem 4.3. Let A,B⊂ X be nonempty compact subadmissible sets in the metric type space

X. Let T,S : A−→ 2B be two set valued maps such that

(i) M ax(T ) and M ax
(
T−1), M ax(S) and M ax

(
S−1) have finite cardinality

(ii) T x and S−1y are open sets for each x ∈ A and y ∈ B;

(iii) Sx and T−1y are subadmissible sets for each x ∈ A and y ∈ B

(iv) And for each finite subset {(u1,v1) , . . . ,(un,vn)} in A×B we have

co({(u1,v1) , . . . ,(un,vn)})⊆ co(u1, . . . ,un)× co(v1, . . . ,vn) .

Then there is an x0 ∈ A such that T x0∩Sx0 6= /0.

Example 4.4. Let X = R and D(x,y) = (x− y)2 for each x,y ∈ R, then obviously (X ,D) is

metric type space. Choose A and B as follows : A = B
(1

2 ,
1
4

)
= [0,1]

B = B(0,1) = [−1,1]

and define T,S : A−→ 2B by

T x = ]−1,1− x[ for each x ∈ A. And, Sx =


/0 if x = {0,1}

]−1,1[ if x ∈ ]0,1[
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Hence,

T−1y =


[0,1] if y ∈ ]−1,0[

[0,1− y[ if y ∈ [0,1[

/0 if y =−1 = 1

and

S−1y =


/0 if y = {−1,1}

]0,1[ if y ∈ ]−1,1[

Since the empty set /0 is assumed to be admissible so it is subadmissible, and for each finite

subset {(u1,v1) , . . . ,(un,vn)} in A×B we have co({(u1,v1) , . . . ,(un,vn)}) =
⋂

Buv where Buv

is a closed ball in A×B such that {(u1,v1, . . . ,(un,vn)} ⊂ Buv with u = (u1, . . . ,un) and v =

(v1, . . . ,vn), since Buv ⊂ Bu×Bv, where Bu and Bv are closed balls in A and B respectively, and

⋂
Buv ⊂

⋂
Bu×

⋂
Bv

we get,

co({(u1,v1) , . . . ,(un,vn)})⊂ co(u1, . . . ,un)× co(v1, . . . ,vn) .

So all the assumptions of Theorem4.3 are satisfied then there is an x0 ∈ A such that T x0 ∩

Sx0 6= /0, for that we can see that x0 =
1
2 verify the desired requirement.

Proof of Theorem 4.3

Since A× B is compact, then for any ε > 0 there exists a finite subset {x1,x2, . . . ,xn} ×

{y1,y2, . . . ,yn} ⊂ A×B, such that

A×B⊂
n⋃

i=1

B0 (xi,ε)×B0 (yi,ε)

Define a set valued map L by : (x,y) 7−→ (A×B)∩
(
S−1y×T x

)c for each x ∈ A\Max(T ) and

y ∈ B \Max
(
S−1) , each L(x,y) is nonempty closed set in A×B then it is compact. Since for

each x ∈ A and y ∈ B, S−1y and T x are open sets in A and B respectively, we have S−1y×T x⊂

A×B⊂
⋃n

i=1 B0 (xi,ε)×B0 (yi,ε). then

n⋂
i=1

L(xi,yi) = (A×B)∩

{
n⋃

i=1

(
S−1yi×T xi

)}c

⊂ (A×B)∩

(
n⋃

i=1

B0 (xi,ε)×B0 (yi,ε)

)c

= /0
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then by Theorem 3.11, L is not a KKM map. Therefore there are a finite elements {z1,z2, . . . ,zm}

in A×B such that

co(z1,z2, . . . ,zm)*
m⋃

i=1

L(zi)

with zi = (ui,vi) for each i ∈ {1,2, . . . ,m}.

So there exists ω = (µ,ν) ∈ co(z1,z2, . . . ,zm) ⊂ co(u1, . . . ,um)× co(v1, . . . ,vm) such that

ω /∈ L(zi) for any i ∈ {1,2, . . . ,m}. In other words, we have ω ∈
⋂m

i=1
(
S−1vi×Tui

)
for i ∈

{1,2, . . . ,m}. So µ ∈ S−1vi and ν ∈ Tui for each i ∈ {1,2, . . . ,m}, the first inclusion i.e. µ ∈

S−1vi shows that vi ∈ Sµ for each i = 1,2, . . . ,m. And the second inclusion shows that ui ∈

T−1ν for each i = 1, . . . ,m. Since Sµ and T−1ν are both subadmissible sets we have for each

i ∈ {1,2, . . . ,m},

co(u1, . . . ,um) ⊂ T−1
ν

co(v1, . . . ,vm) ⊂ Sµ

and since µ ∈ co(u1, . . . ,un) we have µ ∈ T−1ν ⇔ ν ∈ T µ and ν ∈ co(v1, . . . ,vn) then ν ∈ Sµ

we conclude that ν ∈ T µ ∩Sµ 6= /0, and the proof is complete.

Next theorem is an immediate application from the above coincidence result, is an analogous

result of Minimax-type principle in metric type space.

Theorem 4.5. Let A,B⊂ X be nonempty compact admissible sets in the metric type space X.

Let f : A×B−→ R satisfying :

(i) y 7→ f (x,y) is lower semicontinous and metric type quasi-subadmissible for each fixed

x ∈ A;

(ii) x 7→ f (x,y) is upper semicontinous and metric type quasi-upadmissible for each fixed

y ∈ B.

(iii) And for each finite subset {(u1,v1) , . . . ,(un,vn)} in A×B we have

co({(u1,v1) , . . . ,(un,vn)})⊆ co(u1, . . . ,un)× co(v1, . . . ,vn) .

Then

sup
x∈A

inf
y∈B

f (x,y) = inf
y∈B

sup
x∈A

f (x,y) .
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Proof. Because of upper semicontinuity, sup
x∈A

f (x,y) exists for each y and is a lower semicon-

tinuous function of y, so inf
y∈B

sup
x∈A

f (x,y) exists; similarly, sup
x∈A

inf
y∈B

f (x,y) exists.

Since f (x,y)6 sup
x∈A

f (x,y) we have inf
y∈B

f (x,y)6 inf
y∈B

sup
x∈A

f (x,y); therefore

sup
x∈A

inf
y∈B

f (x,y)6 inf
y∈B

sup
x∈A

f (x,y) .

Next we prove that

(4) inf
y∈B

sup
x∈A

f (x,y)6 sup
x∈A

inf
y∈B

f (x,y) .

Suppose the contrary, that inequality (4) hold, then by density of R there would be some

r ∈ R satisfying

sup
x∈A

inf
y∈B

f (x,y)< r < inf
y∈B

sup
x∈A

f (x,y)

Define two set valued maps T,S : A→ 2B by

Sx = {y ∈ B : f (x,y)< r} , and T x = {y ∈ B : f (x,y)> r}

. Each T x is open since y 7→ f (x,y) is lower semicontinous, Sx is subadmissible by the metric

type quasi-upadmissibility of y 7→ f (x,y), and is nonempty because

sup
x∈A

inf
y∈B

f (x,y)< r.

Since T−1y = {x ∈ A : f (x,y)> r} and S−1y = {x ∈ A : f (x,y)< r}, we find in the same

way that each T−1y is nonempty subadmissible and S−1y is open. Then by the coincidence

theorem , there would be some (x0,y0) with

y0 ∈ T (x0)∩S (x0)

which gives the contradiction r < f (x0,y0)< r. Thus, the inequality cannot hold, and the proof

is complete.

We conclude with an example:

Example 4.6. Let A = B = [0,1] in X =R equipped with the usual distance, and let f defined

on A×B by f (x,y) = y, for each x ∈R. Both of mappings x 7→ f (x,y) and y 7→ f (x,y) are con-

tinuous, then x 7→ f (x,y) is upper semi-continuous and y 7→ f (x,y) is lower semi-continuous.
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The set {y ∈ B : f (x,y)> r} is subadmissible for each r ∈ R, indeed :

{y ∈ B : f (x,y)> r}=


[0,1] if r < 0

/0 if r > 1

]r,1] if 0 6 r < 1

and {x ∈ A : f (x,y)< r} is also subadmissible for each r ∈ R since

{x ∈ A : f (x,y)< r}=


[0,1] if y < r

/0 if y > r

Then all assumptions of Theorem4.5 are satisfied, hence

sup
x∈A

inf
y∈B

f (x,y) = inf
y∈B

sup
x∈A

f (x,y) = 0.
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