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Abstract. In this note we establish some results on common fixed point for a pair of mappings satisfying more

general contraction conditions represented by rational expressions having point dependent control functions as

coefficients in complex valued b-metric spaces. The proved results generalize and extend the results of, Azam et

al. [1], Bhatt et al. [3] and Mukheimer [8].
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1. Introduction

In 1922, Banach [2] proved contraction principle which provides a technique for solving exis-

tence problems in many branches of mathematics such as mathematical analysis, computer sci-

ences and engineering. Subsequently Banach contraction principle was generalized, extended

and improved by many authors in different directions. In 1998, Czerwik [4] introduced the

concept of b- metric space. In 2011, Azam et al.[1] introduced the notion of complex valued
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metric spaces and established some fixed point results for a pair of mappings for contraction

condition satisfying a rational expression. After the establishment of complex valued metric

spaces, many researchers have contributed with their work in this space. Rouzkard and Imdad

[11] generalized Azam et al.[1]. Subsequently Sintunavarat et al. ([15],[16]) obtained com-

mon fixed point results by replacing the constant of contractive condition to control functions.

On the other hand Sitthikul et al.[17] established some fixed point results by generalizing the

contractive conditions in the context of complex valued metric spaces. Many researchers have

contributed with different concepts in this space. One can see in [1]-[3],[9],[12],[14],[15]. In

2013, Rao et al. [10] developed the notion of complex valued b- metric spaces and proved fixed

point results. After that Mukheimer [8] and Singh et al.[13] proved fixed point theorems for

contractive type conditions satisfying rational inequalities in this spaces.

The aim of this paper is to study of a class of mappings satisfying a rational expression in the

setting of complex value b-metric spaces.

2. Preliminaries

In what follows, we recall some definitions and notations that will be used in our note.

Let C be the set of complex numbers and z1,z2 ∈C. Define a partial order - on C as follows:

z1 - z2 if and only if Re(z1)≤ Re(z2) and Im(z1)≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:

(C1) Re(z1) = Re(z2) and Im(z1) = Im(z2);

(C2) Re(z1)< Re(z2) and Im(z1) = Im(z2);

(C3) Re(z1) = Re(z2) and Im(z1)< Im(z2);

(C4) Re(z1)< Re(z2) and Im(z1)< Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (C2), (C3) and (C4) is satisfied and we

write z1 ≺ z2 if only (C4) is satisfied. Note that

0 - z1 � z2⇒ |z1|< |z2|,

z1 - z2,z2 ≺ z3⇒ z1 ≺ z3.

The following definition is developed by Azam et al. [1].
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Definition 2.1. [1] Let X be a nonempty set. A mapping d : X ×X →C satisfies the following

conditions:

(CM1) 0 - d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(CM2) d(x,y) = d(y,x), for all x,y ∈ X ;

(CM3) d(x,y)- d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a complex valued metric on X and (X ,d) is called a complex valued metric

space.

Example 2.1. Let X =C be a set of complex number. Define d : C×C→C . By

d(z1,z2) = |x1− x2|+ i|y1− y2|,

where z1 = x1 + iy1 and z2 = x2 + iy2. Then (C,d) is a complex valued metric space.

Definition 2.2. [10] Let X be a nonempty set and s ≥ 1 a given real number. A function

d : X×X →C satisfies the following conditions:

(CVBM1) 0 - d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

(CVBM2) d(x,y) = d(y,x), for all x,y ∈ X ;

(CVBM3) d(x,y)- s[d(x,z)+d(z,y)] for all x,y,z ∈ X .

Then d is called a complex valued b-metric on X and (X ,d) is called a complex valued b-

metric space.

Example 2.2. Let X = [0,1]. Define the mapping d : X×X →C by

d(x,y) = |x− y|2 + i|x− y|2, f or all x,y ∈ X .

Then (X ,d) is a complex valued b- metric space with s = 2.

Definition 2.3. [10] Let (X ,d) be a complex valued b-metric space.

(i) A point x ∈ X is called interior point of a set A⊆ X whenever there exists 0≺ r ∈C such

that B(x,r) = {y ∈ X : d(x,y)≺ r} ⊆ A.

(ii) A point x ∈ X is called a limit point of a set A ⊆ X whenever for every 0 ≺ r ∈ C such

that B(x,r)∩ (X−A) 6= φ .

(iii) A subset B⊆ X is called open whenever each limit point of B is an interior point of B.

(iv) A subset B⊆ X is called closed whenever each limit point of B is belong to B.
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(v) The family F = {B(x,r) : x∈ X and 0≺ r} is a sub basis for a topology on X . We denote

this complex topology by τc. Indeed, the topology τc is Hausdorff.

Definition 2.4. [10] Let (X ,d) be a complex valued b-metric space and let {xn} be a sequence

in X and x ∈ X .

(1) If for every c ∈C with 0≺ c, there exists n0 ∈N such that d(xn,x)≺ c for all n > n0, then

{xn} is said to be converges to x and x is a limit point of {xn}. We denote this by xn → x as

n→ ∞ or lim
n→∞

xn = x.

(2) If for every c ∈C with 0≺ c, there exists n0 ∈ N such that for all n > n0, d(xn,xn+m)≺ c

where m ∈ N, then {xn} is said to be Cauchy sequence.

(3) If every Cauchy sequence is convergent in (X ,d), then (X ,d) is called a complete complex

valued b- metric space.

Lemma 2.1. [10] Let (X ,d) be a complex valued b- metric space and let {xn} be a sequence in

X. Then {xn} converges to x if and only if |d(xn,x)| → 0 as n→ ∞.

Lemma 2.1. [10] Let (X ,d) be a complex valued b- metric space and let {xn} be a sequence in

X. Then {xn} is a Cauchy sequence if and only if |d(xn,xn+m)| → 0 as n→ ∞, where m ∈ N.

3. Main Results

We start to this section with the following observation.

Proposition 3.1. Let (X ,d) be a complex valued b-metric space with s≥ 1 and S,T : X → X .

Let x0 ∈ X and define the sequence {xn} by

x2n+1 = Sx2n,

x2n+2 = T x2n+1, ∀ n = 0,1,2, ....
(1)

Assume that ∃ a mapping λ : X×X×X → [0,1) such that

λ (T Sx,y,a) ≤ λ (x,y,a) and λ (x,STy,a) ≤ λ (x,y,a);∀x,y ∈ X ,n = 0,1,2 where a is fixed ele-

ment of X .

Then λ (x2n,y,a)≤ λ (x0,y,a) and λ (x,x2n+1,a)≤ λ (x,x1,a).
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Proof. Let x,y ∈ X and n = 0,1,2, .... we see that

λ (x2n,y,a) =λ (T Sx2n−2,y,a)≤ λ (x2n−2,y,a)

=λ (T Sx2n−4,y,a)≤ ...≤ λ (x0,y,a).

Similarly, we have

λ (x,x2n+1,a) =λ (x,ST x2n−1,a)≤ λ (x,x2n−1,a)

=λ (x,ST x2n−3,a)≤ ...≤ λ (x,x1,a).

Theorem 3.1. Let (X ,d) be a complete complex valued b- metric space with s ≥ 1 and S,T :

X → X . If ∃ mappings λ ,µ,δ : X×X×X → [0,1) such that ∀x,y ∈ X ,

(a) λ (T Sx,y,a)≤ λ (x,y,a) and λ (x,STy,a)≤ λ (x,y,a),

µ(T Sx,y,a)≤ µ(x,y,a) and µ(x,STy,a)≤ µ(x,y,a),

δ (T Sx,y,a)≤ δ (x,y,a) and δ (x,STy,a)≤ δ (x,y,a);

(b)

d(Sx,Ty)- λ (x,y,a)d(x,y)+µ(x,y,a)
d(x,Sx)d(y,Ty)

1+d(x,y)
+

δ (x,y,a)
{d(x,Sx)d(x,Ty)+d(y,Ty)d(y,Sx)

d(x,Ty)+d(y,Sx)
};

(2)

(c)

s
{

λ (x,y,a)+µ(x,y,a)+δ (x,y,a)}< 1.

Then S and T have a unique common fixed point.

Proof. Let x,y ∈ X , from (2), we have

d(Sx,T Sx)- λ (x,Sx,a)d(x,Sx)+µ(x,Sx,a)
d(x,Sx)d(Sx,T Sx)

1+d(x,Sx)
+

δ (x,Sx,a)
{d(x,Sx)d(x,T Sx)+d(Sx,T Sx)d(Sx,Sx)

1+d(x,T Sx)+d(Sx,Sx)
}

= λ (x,Sx,a)d(x,Sx)+µ(x,Sx,a)
d(x,Sx)d(Sx,T Sx)

1+d(x,Sx)
+

δ (x,Sx,a)
d(x,Sx)d(x,T Sx)

d(x,T Sx)
.
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Or |d(Sx1,T Sx)| ≤ λ (x,Sx,a)|d(x,Sx)|+µ(x,Sx,a)|d(x,Sx)d(Sx,T Sx)
1+d(x,Sx)

|+

δ (x,Sx,a)|d(x,Sx)|
(3)

≤ λ (x,Sx,a)|d(x,Sx)|+µ(x,Sx,a)| d(x,Sx)
1+d(x,Sx)

| |d(Sx,T Sx)|+

δ (x,Sx,a)|d(x,Sx)|.

⇒| d(Sx,T Sx) | ≤ λ (x,Sx,a) | d(x,Sx) |+µ(x,Sx,a) | d(Sx,T Sx) |+

δ (x,Sx,a) | d(x,Sx) | .
(4)

Similarly, from (2), we have

d(STy,Ty)- λ (Ty,y,a)d(Ty,y)+µ(Ty,y,a)
d(Ty,STy)d(y,Ty)

1+d(y,Ty)
+

δ (Ty,y,a)
{d(Ty,STy)d(Ty,Ty)+d(y,Ty)d(y,STy)

1+d(Ty,Ty)+d(y,STy)
}.

With the same treatment as above following yields,

| d(STy,Ty) | ≤ λ (Ty,y,a) |d(Ty,y)|+µ(Ty,y,a) | d(Ty,STy) |+

δ (Ty,y,a) | d(y,Ty) | .
(5)

Let x0 ∈ X and the sequence {xn} be defined by (1). We show that {xn} is a Cauchy sequence.

From Proposition 3.1 and inequalities (4), (5) and for all k = 0,1,2, ..., we have

| d(x2k+1,x2k) |=| d(ST x2k−1,T x2k−1) |

≤ λ (T x2k−1,x2k−1,a) | d(T x2k−1,x2k−1) |+µ(T x2k−1,x2k−1,a)

| d(T x2k−1,ST x2k−1) |+δ (T x2k−1,x2k−1,a) | d(T x2k−1,x2k−1) |

= λ (x2k,x2k−1,a)|d(x2k−1,x2k)|+µ(x2k,x2k−1,a) | d(x2k,x2k+1) |+

δ (x2k,x2k−1,a) | d(x2k−1,x2k) |

≤ λ (x0,x2k−1,a) | d(x2k−1,x2k) |+µ(x0,x2k−1,a) | d(x2k+1,x2k) |+

δ (x0,x2k−1,a) | d(x2k−1,x2k) |

≤ λ (x0,x1,a) | d(x2k−1,x2k) |+µ(x0,x1,a) | d(x2k+1,x2k) |+

δ (x0,x1,a) | d(x2k−1,x2k) | .
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Which implies that

| d(x2k+1,x2k) |≤
{λ (x0,x1,a)+δ (x0,x1,a)}

1−µ(x0,x1,a)
|d(x2k−1,x2k)|.

Similarly, one can obtain

| d(x2k+2,x2k+1) |≤
{λ (x0,x1,a)+δ (x0,x1,a)}

1−µ(x0,x1,a)
|d(x2k,x2k+1)|.

Let p = λ (x0,x1,a)+δ (x0,x1,a)
1−µ(x0,x1,a)

.

Thus we have,

| d(x2k+2,x2k+1) |≤ p | d(x2k,x2k+1) |

or in general

| d(xn+1,xn) | ≤ p | d(xn−1,xn) |,∀n ∈ N

≤ p2 | d(xn−2,xn−1) |

≤ ...

≤ pn | d(x0,x1) | .

Thus for any m > n,∀ m,n ∈ N, we have

| d(xn,xm) | ≤ s | d(xn,xn+1) |+s | d(xn+1,xm) |

≤ s | d(xn,xn+1) |+s2 | d(xn+1,xn+2) |+s2 | d(xn+2,xm) |

≤ s | d(xn,xn+1) |+s2 | d(xn+1,xn+2) |+s3 | d(xn+2,xn+3) |+...+ sm−n | d(xm−1,xm) |

≤ spn | d(x0,x1) |+s2 pn+1 | d(x0,x1) |+s3 pn+2 | d(x0,x1) |+...+ sm−n pm−1 | d(x0,x1) |

=
m−n

∑
i=1

si pi+n−1 | d(x0,x1) |

≤
m−n

∑
i=1

si+n−1 pi+n−1 | d(x0,x1) |

=
m−1

∑
t=n

(sp)t | d(x0,x1) |, t = i+n−1

≤
∞

∑
t=n

(sp)t | d(x0,x1) |

=
(sp)n

1− sp
| d(x0,x1) |→ 0,as m,n→ ∞(since sp < 1)
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Hence {xn} is a Cauchy sequence in (X ,d).

By completness of X ,∃,z ∈ X such that xn→ z as n→ ∞.

Now we show that z is a fixed point of S.

By (2) and Proposition 3.1, we have

d(z,Sz)- s[d(z,T x2n+1)+d(T x2n+1,Sz)]

= s[d(z,x2n+2)+d(Sz,T x2n+1)]

- s[d(z,x2n+2)+λ (z,x2n+1,a)d(z,x2n+1)+µ(z,x2n+1,a)
d(z,Sz)d(x2n+1,T x2n+1)

1+d(z,x2n+1)

+δ (z,x2n+1,a)
{d(z,Sz)d(z,T x2n+1)+d(x2n+1,T x2n+1)d(x2n+1,Sz)

1+d(z,T x2n+1)+d(x2n+1,Sz)
}]

- s[d(z,x2n+2)+λ (z,x1,a)d(z,x2n+1)+µ(z,x,a)
d(z,Sz)d(x2n+1,x2n+2)

1+d(z,x2n+1)

+δ (z,x,a)
{d(z,Sz)d(z,x2n+2)+d(x2n+1,x2n+2)d(x2n+1,Sz)

1+d(z,x2n+2)+d(x2n+1,Sz)
}]

employing n→ ∞, gives

d(z,Sz) = 0⇒ Sz = z.

Next we will show that z is the fixed point of T . By (2) we have

d(z,T z)- d(z,Sx2n)+d(Sx2n,T z)

- d(z,x2n+1)+λ (x2n,z,a)d(x2n,z)+µ(x2n,z,a)
d(x2n,Sx2n)d(z,T z)

1+d(x2n,z)

+δ (x2n,z,a)
{d(x2n,Sx2n)d(x2n,T z)+d(z,T z)d(z,Sx2n)

d(x2n,T z)+d(z,Sx2n)
}

- d(z,x2n+1)+λ (x0,z,a)d(x2n,z)+µ(x0,z,a)
d(x2n,x2n+1)d(z,T z)

1+d(x2n,z)

+δ (x0,z,a)
{d(x2n,x2n+1)d(x2n,T z)+d(z,T z)d(z,x2n+1)

d(x2n,T z)+d(z,x2n+1)
}

Taking limit n→ ∞, we get

d(z,T z) = 0 and hence T z = z.

⇒ z is a common fixed point of S and T .

Next the uniqueness of z is established.

Suppose there exists w ∈ X such that Sw = Tw = w and w 6= z.
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Then

d(z,w) = d(Sz,Tw)

- λ (z,w,a)d(z,w)+µ(z,w,a)
d(z,Sz)d(w,Tw)

1+d(z,w)

+δ (z,w,a)
{d(z,Sz)d(z,Tw)+d(w,Tw)d(w,Sz)

d(z,Tw)+d(w,Sz)
}

= λ (z,w,a)d(z,w).

Now we have

| d(z,w) | ≤ λ (z,w,a) | d(z,w) |

⇒| d(z,w) | ≤ λ (z,w,a) | d(z,w) | .

Leads to a contraction, as

s{λ (x,y,a)+µ(x,y,a)}+δ (x,y,a)< 1, i.e.λ (z,w,a)< 1⇒| d(z,w) |= 0⇒ z = w.

Thus S and T have a unique common fixed point.

By choosing µ = 0,δ = 0 in Theorem 3.1, following corollaries are deduced.

Corollary 3.1. Let (X,d) be a complete complex valued b-metric space with s≥ 1

S,T ;X → X , If ∃ a mapping λ : X×X×X → [0,1)

such that

λ (T Sx,y,a)≤ λ (x,y,a),λ (x,STy,a)≤ λ (x,y,a), and sλ (x,y,a)< 1

satisfying

d(Sx,Ty)- λ (x,y,a)d(x,y).

Then S and T have a unique common fixed point.

To be specific when µ = 0 in Theorem 3.1, one gets the following result as corollary.

Corollary 3.2. Let(X ,d) be a complete complex valued b-metric space with s≥ 1

S,T ;X → X , If; ∃ a mapping λ ,δ : X×X×X → [0,1)

such that

λ (T Sx,y,a)≤ λ (x,y,a) and λ (x,STy,a)≤ λ (x,y,a),
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δ (T Sx,y,a)≤ δ (x,y,a) and δ (x,STy,a)≤ δ (x,y,a)

and s{λ (x,y,a)+δ (x,y,a)}< 1,

satisfying

d(Sx,Ty)- λ (x,y,a)d(x,y)+δ (x,y,a)
{d(x,Sx)d(y,Ty)+d(y,Ty)d(y,Sx)}

d(x,Ty)+d(y,Sx)
.

Then S and T have a unique common fixed point.

In the Theorem 3.1 choosing δ = 0, one gets the following result as corollary.

Corollary 3.3. Let (X ,d) be a complete complex valued b-metric space with s ≥ 1 and S,T :

X → X . If ∃ mapping λ ,µ : X×X×X → [0,1),

such that s{λ (x,y,a)+µ(x,y,a)< 1} and

λ (T Sx,y,a)≤ λ (x,y,a) and λ (x,STy,a)≤ λ (x,y,a),

µ(T Sx,y,a)≤ µ(x,y,a) and µ(x,STy,a)≤ µ(x,y,a);

also satisfying

d(Sx,Ty)- λ (x,y,a)d(x,y)+µ(x,y,a)
{d(x,Sx)d(y,Ty)}

1+d(x,y)
.

Then S and T have a unique common fixed point.

Remark 3.1. In the Corollary 3.3, if we replace λ ,µ : X×X×X → [0,1) with

λ (x,y,a) = λ and µ(x,y,a) = µ ,where s(µ +λ )< 1 and

d(Sx,Ty)- λd(x,y)+µ
d(x,Sx)d(y,Ty)

1+d(x,y)

Then S and T have a unique common fixed point.

Since s(λ +µ)< 1⇒ sλ +µ < 1, with this fact from above we obtain Theorem 15 of Mukheimer

[8].

Remark 3.2. Replacing S = T and λ (x,y,a) = λ ,µ(x,y,a) = µ and

δ (x,y,a) = 0 in Theorem 3.1, Corollary 16 of Mukheimer [8] is obtained.
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Note if λ = µ = 0 in Theorem 3.1, following corollary is found.

Corollary 3.4. Let (X ,d) be a complete complex valued b-metric space with s≥ 1

and S,T : X → X . If δ : X×X×X → [0,1) s.t. ∀x,y ∈ X ,

δ (T Sx,y,a)≤ δ (x,y,a) and δ (x,STy,a)≤ δ (x,y,a) and sδ (x,y,a)< 1 satisfying

d(Sx,Ty)≤ δ (x,y,a)
{d(x,Sx)d(x,Ty)+d(y,Ty)d(y,Sx)}

d(x,Ty)+d(y,Sx)

Then S and T have a unique common fixed point.

Remark 3.3. In the above Corollary 3.4, replace δ : X×X×X→ [0,1) as δ (x,y,a) = a, where

sa < 1, and

d(Sx,Ty)- a
{d(x,Sx)d(x,Ty)+d(y,Ty)d(y,Sx)}

d(x,Ty)+d(y,Sx)

Then S and T have a unique common fixed point .This result is Theorem 19 of Mukheimer [8].

Remark 3.4. If we take s = 1 in Remark 3.3, above result reduces due to Bhatt et al. [3]. On

the other hand on taking S = T and λ (x,y,a) = 0,µ(x,y,a) = 0

and δ (x,y,a) = a in our Theorem 3.1, One gets Corollary 20 of Mukheimer [8].

Remark 3.5. Choosing s = 1, in Remark 3.1, Azam et al. [1] is obtained.

Finally setting S = T in Theorem 3.1, we get

Corollary 3.5. Let (X ,d) be a complete complex valued b-metric space and

S : X → X , If ∃ a mapping λ ,µ,δ : X×X×X → [0,1) such that

(a) λ (S2x,y,a)≤ λ (x,y,a) and λ (x,S2y,a)≤ λ (x,y,a),

µ(S2x,y,a)≤ µ(x,y,a) and µ(x,S2y,a)≤ µ(x,y,a),

δ (S2x,y,a)≤ δ (x,y,a) and δ (x,S2y,a)≤ δ (x,y,a);

(b) λ (x,y,a)+µ(x,y,a)+δ (x,y,a)< 1; ;
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(c)

d(Sx,Sy)- λ (x,y,a)d(x,y)+µ(x,y,a)
d(x,Sx)d(y,Sy)

1+d(x,y)
+

δ (x,y,a)
{d(x,Sx)d(x,Sy)+d(y,Sy)d(y,Sx)

d(x,Sy)+d(y,Sx)
};

Then S has a unique fixed point.
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