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1. Introduction and preliminaries 

  In the last thirty years, the theory of multivalued functions has advanced in a variety of 

ways. In 1969, the systematic study of Banach-type fixed theorems of multivalued mappings 

started with the work of Nadler [1], who proved that a multivalued contractive mapping of a 

complete metric space X into the family of closed bounded subsets of X has a fixed point. His 

findings were followed by Agarwal et al. [2], Azam          et al. [3] and many others (see, e.g., 

[4-9]). 

  In 1994, Matthews [10], introduced the concept of a partial metric space and obtained a 

Banach-type fixed point theorem on complete partial metric spaces. Later on, several authors 

(see, e.g.. [11-17]) proved fixed point theorems of single-valued mappings in partial metric 

spaces. Recently Aydi et al. [18] proved a fixed point result for multivalued mappings in partial 

metric spaces. Haghi et al. [19] established that some metric fixed point generalizations to partial 

metric spaces can be obtained from the corresponding results in metric spaces. In this paper we 

Available online at http://scik.org

Adv. Fixed Point Theory, 6 (2016), No. 4, 528-537

ISSN: 1927-6303



529                                                                       SWEETEE MISHRA 

 

obtain common fixed points of contractive-type multivalued mappings on partial metric spaces 

which cannot be deduced from the corresponding results in metric spaces. An example is also 

established to show that our result is a real generalization of analogous results for metric spaces 

[1, 9, 10, 18, 20]. 

  We start with recalling some basic definitions and lemmas on a partial metric space. 

Definition 1 A partial metric on a nonempty set X is a function p : X  X  [0, ) such that for 

all x, y, z  X: 

(P1)  p(x,x) = p(y,y) = p(x.y) if and only if x = y.  

(P2)  p(x,x)   p(x,y), 

(P3)  p(x,y) = p(y,x). 

(P4)  p(x,z)   p(x,y) + p(y,z) - p(y,y). 

  The pair (X,p) is then called a partial metric space. Also, each partial metric p on X 

generates a T0 topology p on X with a base of the family of open p-balls {Bp(x, r): x  X, r > 0), 

where Bp(x, r) = {y  X : p(x,y) < p(x, x) + r}. If (X,p) is a partial metric space, then the function 

ps : X  X R+ given by ps(x,y) = 2p(x,y) - p(x, x) - p(y,y), x,y  X, is a metric on X. A basic 

example of a partial metric space is the pair (R+,p), where p(x,y) = max{x,y} for all x,y  R+. 

Lemma 2 [10] Let (X,p) be a partial metric space, then we have the following. 

1.  A sequence {xn} in a partial metric space (X, p) converges to a point x  X if and only 

if nlim (x,xn) = p(x,x). 

2.  A sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if the 

mn,lim  (xn,xm) exists and is finite. 

3.  A partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X 

converges to a point x  X, that is, p(x, x) = mn,lim p(xn,xm). 

4.  A partial metric space (X,p) is complete if and only if the metric space (X,ps) is 

complete. Furthermore, nlim ps(xn,z) = 0 if and only if 

    p(z,z) = nlim p(xn-z) = mn,lim p(xn,xm).  
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  A subset A of X is called closed in (X,p) if it is closed with respect to p. A is called 

bounded in (X,p) if there is x0  X and M  > 0 such that a  Bp(x0,M) for all a  A, i.e., p(x0,a) < 

p(x0,x0) + M for all a A. 

  Let CBP(X) be the collection of all nonempty, closed and bounded subsets of X with 

respect to the partial metric p. For A  CBP(X), we define 

  p(x,A) = 
Ay

inf  p(x,y). 

For A,B  CBp(X), 

  p(A,B) = 
Aa

sup (a,B), 

 p(B,A) = 
Bb

sup (b,A), 

  Hp(A,B) = max{p(A,B),p(B,A)}. 

Note that [18] p(x,A) = 0  ps(x, A) = 0, where ps(x, A) = Ayinf ps(x,y). 

Proposition 3 [18] Let (X,p) be a partial metric space. For any A,B,CCBp(X), we have 

(i):  p(A,A) = sup{p(a,a): aA}; 

(ii):  p(A,A).  p(A, B); 

(iii): p(A, B) = 0 implies that A  B; 

(iv):  p(A, B)  p(A,C) + p(C,B) - infcC p(c, c). 

Proposition 4 [18] Let (X,p) be a partial metric space. For any A,B,CCBp(X), we have 

(h1): Hp(A,A)  Hp(A,B); 

(h2): Hp(A,B) = Hp(B,A); 

(h3): Hp(A,B)  Hp(A,C) +Hp(C,B) - infcC p(c, c).. 

  It is immediate [18] to check that Hp(A,B) = 0  A = B. But the converse does not hold 

always. 
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Remark 5 [18] Let (X,p) be a partial metric space and A be a nonempty set in (X,p), then a A if 

and only if 

  p(a,A) = p(a,a), 

where A denotes the closure of A with respect to the partial metric p. Note that A is closed in (X,p) 

if and only if A = A. 

Lemma 6 [21] Let A and B be nonempty, closed and bounded subsets of a partial metric space 

(X,p) and 0 < h R. Then, for every a  A, there exists bB such that p(a, b)  Hp(A,B) + h. 

Definition 7 [22] A function  : [0, +)  [0,1) is said to be an MT-function if it satisfies 

Mizoguchi and Takahashi's condition (i.e., tn
sup lim (r) < 1 for all t [0, +)). Clearly, if  : 

[0,+)  [0,1) is a nondecreasing function or a nonincreasing function, then it is an MT-function. 

So, the set of MT-functions is a rich class. 

Proposition 8 [22] Let  : [0,+)  [0,1) be a function. Then the following statements are 

equivalent. 

1.   is an MT-function. 

2.  For each t  [0,), there exist )1(

tr [0,1) and )1(

t > 0 such that (s)  )1(

tr for all s (t, t 

+ )1(

t ). 

3.  For each t  [0,), there exist )2(

tr [0,1) and )2(

t > 0 such that (s)  )2(

tr for all s (t, t 

+ )2(

t ). 

4.  For each t  [0,), there exist )3(

tr [0,1) and )3(

t > 0 such that (s)  )3(

tr for all s (t, t 

+ )3(

t ). 

5.  For each t  [0,), there exist )4(

tr [0,1) and )4(

t > 0 such that (s)  )4(

tr for all s (t, t 

+ )4(

t ). 

6.  For any nonincreasing sequence {xn}nN in [0,), we have 0  supnN (xn) < 1.  



FIXED POINT THEOREM OF A PAIR OF MULTIVALUED MAPPINGS                         532 

 

7.   is a function of contractive factor [23], that is, for any strictly decreasing sequence 

{xn}nN in [0,), we have 0  supnN (xn) < 1. 

 

2. Main results 

Mizoguchi and Takahashi proved the following theorem in [20]. 

Theorem 9 Let (X,d) be a complete metric space, S : X  CB(X) be a multivalued map and  : 

[0, +)  [0,1) be an MT-function. Assume that 

  H(Sx,Sy)   (d(x,y)) d(x,y)           (2.1) 

for all x,y  X, then S has a fixed point in X. 

  In the following we show that in partial metric spaces Mizoguchi and Takahashi's con-

tractive condition (2.1) is useful to achieve common fixed points of two distinct mappings. 

Whereas this condition is not feasible to obtain a common fixed point of two distinct mappings 

on a metric space. 

Theorem 10 Let (X,p) be a complete partial metric space, S, T: X  CBP(X) be multivalued 

mappings and  : [0, +)  [0,1) be an MT-function. Assume that 

  Hp(Sx, Ty)   (p(x,y)) p(x,y)         (2.2) 

for all x,y  X, then there exists z  X such that z  Sz and z  Tz. 

Proof  Let x0  X and x1  Sx0. If p(x0,x1) = 0, then x0 = x1 and 

  Hp(Sx0, Tx1)   (p(x0,x1)) p(x0,x1) = 0. 

Thus Sx0=Tx1, which implies that 

  x1= x0  Sx0 = Tx1 = Tx0 

and we finished. Assume that p(x0, x1) > 0. By Lemma 6, we can take x2  Tx1 such that 

  p(x1,x2)   
   

.
2

,, 1010 xxpTxSxH p 
      (2.3) 

If p(x1, x2) = 0, then x1 = x2 and 
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  Hp(Tx1, Sx2)   (p(x1,x2)) p(x1,x2) = 0.  

Then, Tx1 = Sx2. That is, 

  x2 = x1 Tx1 = Sx2 = Sx2 

and we finished. Assume that p(x1,x2) > 0. Now we choose x3  Sx2 such that 

 p(x2,x3)   
   

.
2

,, 2121 xxpTxSxH p 
       (2.4) 

By repeating this process, we can construct a sequence xn of points in X and a sequence An of 

elements in CBP(X) such that 

         
,0,12     ,

     ,0,2     ,
1








 kkjTx

kkjSx
Ax

j

j

jj       (2.5) 

and 

   p(xj,xj+1)   
   

2

,, 11 jjjjp xxpAAH  
 with j  0,     (2.6) 

along with the assumption that p(xj,xj+1) > 0 for each j  0. Now, for j = 2k + 1, we have 

            p(xj,xj+1)   
   

2

,, 11 jjjjp xxpAAH  
 

       
   

2

,, 122122   kkkkp xxpTxSxH
 

        
      

2

,,, 122122122   kkkkkk xxpxxpxxp
 

       
  

 jj

jj
xxp

xxp
,

2

1,
1

1












 
   

       p(xj-1, xj). 

Similarly, for j = 2k + 2, we obtain  

            p(xj,xj+1)   
   

2

,, 12212 jjkkp xxpSxAH  
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      
  

 jj

jj
xxp

xxp
,

2

1,
1

1












 
   

     p(xj-1, xj). 

It follows that the sequence {p(xn, xn+1)} is decreasing and converges to a nonnegative real 

number t  0. Define a function  : [0, )  [0, 1) as follows:  

  () = 
 

2

1
, 

Then 

    1sup lim
t







. 

Using Proposition 8, for t  0, we can find (t) > 0, t < 1, such that t  r  (t) + t implies (r) < 

t and there exists a natural number N such that t  p(xn, xn+1)  (t) + t, whenever n > N. Hence  

     (p(xn, xn+1)) < t,   whenever n > N.   

Then, for n = 1, 2, 3, ……,  

p(xn,xn+1)   
  

 nn
nn xxp

xxp
,

2

1,
1

1










 
   (p(xn-1, xn)) p(xn-1, xn) 

          nntnn

N

n
xxpxxp ,,,maxmax 11

1


 







  

         12

2

1
1

,,,maxmax 
 

















nntnn

N

n
xxpxxp   

         101
1

,,,maxmax xxpxxp

n

tnn

N

n 



















 . 

Put    tnn

N

n xxp  ,,maxmax 11   = , then  < 1,  

  p(xn,xn+1)  n p(x0,x1) 

and    p(xn,xn+m)   




m

i

inin xxp
1

1,  -  




m

i

inin xxp
1

,  
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         p(xn,xn+1) + p(xn+1,xn+2) + …….. + p(xn+m-1, xn+m) 

         (n+ n+1 + ….... + n+m-1) p(x0,x1)   

        












1

n

p(x0,x1)  0 as n   (since 0 <  < 1). 

By the definition of ps, we get, for any m N, 

  ps(xn,xn+m)  2p(xn,xn+m)  0       as n  +. 

Which implies that (xn) is a Cauchy sequence in (X, ps). Since (X, p) is complete, so the 

corresponding metric space (X, ps) is also complete. Therefore, the sequence (xn) converges to 

some z X with respect to the metric ps, that is, limn p
s(Xn, z) = 0. Since, 

  p(xn,xn)  p(xn,xn+1)  n p(x0,x1)  0      as n  +. 

Therefore 

  p(Sz, z)  p(Sz, x2n+2) + p(x2n+2, z) -  p(x2n+2, x2n+2) 

     p(x2n+2, Sz) + p(x2n+2, z)   

   
12

sup
 nTxu

p(u, Sz) + p(x2n+2, z)   

   p (Tx2n+1, Sz) + p(x2n+2, z)   

   Hp (Tx2n+1, Sz) + p(x2n+2, z)   

    (p(x2n+1, z)) p(x2n+1, z) + p(x2n+2, z)   

    p(x2n+1, z) + p(x2n+2, z)                     (2.8) 

Taking limit as n  , we get  

  p(Sz, z) = 0.         (2.9) 

Thus from (2.8) and (2.9), we get 

  p(z, z) = p(Sz, z). 

Thus by Remark 5, we get that z  Sz. It follows similarly that z  Tz. This completes the proof 

of the theorem.  
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