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1. Introduction

It is well known that Brouwer’s fixed point theorem can not be constructively proved?.

*Corresponding author
This research was partially supported by the Ministry of Education, Science, Sports and Culture of
Japan, Grant-in-Aid for Scientific Research (C), 20530165.

Received March 22, 2012
[6] provided a constructive proof of Brouwer’s fixed point theorem. But it is not constructive from

the view point of constructive mathematics a la Bishop. It is sufficient to say that one dimensional case

of Brouwer’s fixed point theorem, that is, the intermediate value theorem is non-constructive (See [4] or

[8])-
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Thus, Kakutani’s fixed point theorem for multi-functions (multi-valued functions or
correspondences) also can not be constructively proved. On the other hand, Sperner’s
lemma which is used to prove Brouwer’s theorem, however, can be constructively proved.
Some authors have presented a constructive (or an approximate) version of Brouwer’s
theorem using Sperner’s lemma (See [8] and [9]). Also Dalen in [8] states a conjecture
that a uniformly continuous function f from a simplex to itself, with property that each
open set contains a point x such that x is not equal to f(z) (x # f(z)) and on the
boundaries of the simplex = # f(x), has an exact fixed point. Recently Berger and

Ishihara[2] showed that the following theorem is equivalent to Brouwer’s fan theorem.

Each uniformly continuous function from a compact metric space into itself

with at most one fixed point has a fixed point.

By reference to the notion of sequentially at most one maximum in Berger, Bridges and
Schuster[1] we require a stronger condition that a function has sequentially at most one

fized point, and in [7] we have shown the following result.

Each uniformly continuous function from a compact metric space into itself

with sequentially at most one fixed point has a fixed point,

without the fan theorem. It is a partial answer to Dalen’s conjecture. The property of
sequentially at most one fixed point is stronger than the condition that a function has at
most one fized point in [2].

In this paper we extend the property of sequentially at most one fixed point to multi-
functions, and will prove Kakutani’s fixed point theorem for compact and convex valued
multi-functions with sequentially at most one fixed point and uniformly closed graph in
an n-dimensional simplex. The uniformly closed graph property of multi-functions is a
stronger version of the closed graph property. And we apply this result to prove the
minimax theorem for two-person zero-sum games with finite strategies.

In the next section we prove Kakutani’s fixed point theorem for compact and convex

valued multi-functions with sequentially at most one fixed point and uniformly closed
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graph. In Section 4 we prove the minimax theorem for zero-sum games with finite s-

trategies. We follow the Bishop style constructive mathematics according to (3], [4] and

5).

2. Kakutani’s fixed point theorem for multi-functions with se-

quentially at most one fixed point and uniformly closed graph

In constructive mathematics a nonempty set is called an inhabited set. A set S is

inhabited if there exists an element of S.

Note that in order to show that S is inhabited, we cannot just prove that
it is impossible for S to be empty: we must actually construct an element

of S (see page 12 of [5]).

Also in constructive mathematics compactness of a set means total boundedness with
completeness. First define finite enumerability of a set and an e-approximation to a set.
A set S is finitely enumerable if there exist a natural number N and a mapping of the set
{1,2,...,N} onto S. An e-approximation to S is a subset of S such that for each x € S
there exists y in that e-approximation with |z — y| < e(|]z — y| is the distance between
x and y). S is totally bounded if for each ¢ > 0 there exists a finitely enumerable &-
approximation to S. Completeness of a set, of course, means that every Cauchy sequence
in the set converges.

Let x be a point in a compact metric space X, and f be a uniformly continuous function

f from X into itself. According to [8] and [9] f has an approximate fixed point. It means
For each £ > 0 there exists € X such that |z — f(z)| < e.

Since € > 0 is arbitrary,

inf |[x — f(x)] =0.

zeX

The notion that f has at most one fixed point in [2] is defined as follows:

Definition 2.1. (at most one fixed point) For all z,y € X, if x # y, then f(z) # x
or f(y) #y-
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Next by reference to the notion of sequentially at most one mazimum in [1], we define
the notion that f has sequentially at most one fixed point as follows;

Definition 2.2. (sequentially at most one fixed point) All sequences (z,)n>1,
(Yn)n>1 i X such that |f(z,) — x| —> 0 and | f(yn) — yn| —> 0 are eventually close in
the sense that |x, — y,| — 0.

We extend this definition to a case of multi-functions. Consider an n-dimensional
simplex A as a compact metric space. Let F' be a compact and convex valued multi-
function from A to the set of its inhabited subsets. Denote the distance between F'(x)
and x € A by |F(z) — z|, that is,

F(z) —z|= inf — xzl.
F()~ ol = inf Jy—al

It can be defined since F'(x) is a compact subset of a compact metric space, and so it is
located (see [5]). An inhabited subset S of a metric space X is called located if for each

z € X the distance
|z — S| = inf |z — |
tesS

exists.

The definition of the property that a multi-function has sequentially at most one fixed
point is as follows;
Definition 2.3. (sequentially at most one fixed point for multi-function) All
sequences (Tn)n>1, (Yn)n>1 i A such that |F(x,) — x,| — 0 and |F(y,) — yn| —> 0 are
eventually close in the sense that |x, — y,| — 0.

A graph of a multi-function F' from A to the set of its inhabited subsets is
G(F) = Ugea{z} x F(x).

If G(F) is a closed set, we say that I has a closed graph. It implies the following fact.

If sequences (,)n>1 and (y,)n>1 are such that for each n y, € F(x,), and

if x,, — x, then y, — y for some y € F(z).

According to [5] this means
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For each € > 0 if there exists ng such that |z, — z| < ¢ when n > ng, then
there exists nf, such that |y, — F(z)| < ¢, that is, |y, — y| < € for some

y € F(z) when n > ny,.

no and n{ depend on x and €. Further we require a uniform version of this property
for multi-functions, and call such a multi-function a multi-function with uniformly closed
graph, or say that a multi-function has a uniformly closed graph. It means that ng and n;
depend on only € not on . Now we show the following lemma, which is based on Lemma
2 of [1].

Lemma 2.1. Let F be a compact and convex valued multi-function with sequentially at
most one fized point and uniformly closed graph from A to the set of its inhabited subsets.

Assume inf,en |F(x) — x| = 0. If the following property holds,

For each § > 0 there exists ¢ > 0 such that if z,y € A, |F(z) — x| < ¢ and
|F(y) —y| <e, then |z —y| <9,

then, there ezists a point z € A such that z € F(z), that is , F' has a fized point.

Proof.

Choose a sequence (z,),>1 in A such that |F(z,) — z,| — 0. Compute N such that
|F(x,) — x,| < e for all n > N. Then, for m,n > N we have |z,, — z,| < . Since § > 0
is arbitrary, (z,),>1 is a Cauchy sequence in A, and converges to a limit z € A. The
uniformly closed graph property of F' yields z € F(z).

This completes the proof.

A fixed point of a multi-function is defined as follows;

Definition 2.1. x is a fized point of a multi-function F if v € F(x).

We define an approximate fixed point of a multi-function F' as follows;

Definition 2.1. For each € > 0 = is an approximate fized point of a multi-function F if
|z — F(x)| <e.

We constructively show that if the value of a multi-function F' from A to the set of
inhabited subsets of A with sequentially at most one fixed point and uniformly closed

graph is compact and convex, it has a fixed point. If a set X is homeomorphic to A (so
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FI1GURE 1. Subdivision of 2-dimensional simplex

X is also compact), we can show the same result for a multi-function from X to the set
of inhabited subsets of X.

Our Kakutani’s fixed point theorem is as follows;
Theorem 2.1. If F is a compact and convexr valued multi-function with sequentially at
most one fized point and uniformly closed graph from an n-dimensional simplex A to the

set of its inhabited subsets, then it has a fived point.

Proof.

(1) Let A be an n-dimensional simplex, and consider m-th subdivision of A. Subdivi-
sion in a case of 2-dimensional simplex is illustrated in Figure 1. In a 2-dimensional
case we divide each side of A in m equal segments, and draw the lines parallel to
the sides of A. Then, the 2-dimensional simplex is partitioned into m? triangles.
We consider subdivision of A inductively for cases of higher dimension. In a 3 di-
mensional case each face of A is a 2-dimensional simplex, and so it is partitioned
into m? triangles in the way above mentioned, and draw the planes parallel to
the faces of A. Then, the 3-dimensional simplex is partitioned into m? trigonal

pyramids. And similarly for cases of higher dimension.
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Consider sufficiently fine partition of A, and define a uniformly continuous func-
tion f™: A — A as follows. If = is a vertex of a simplex constructed by m-th
subdivision of A, f™(x) = y for some y € F(x). For other x € A we define f™ by

a convex combination of the values of I’ at vertices of a simplex z{', z7*, ..., =

Let Z?:O /\z = 1, /\Z z 0,
@) =) Nf () with o= \al"
i=0 =0

Since f™ is clearly uniformly continuous, it has an approximate fixed point ac-
cording to [8] and [9]. Let 2* be an approximate fixed point of f™, then for each

5 > 0 there exists 2" € A which satisfies
* * 8
2" — f"(x")] < 5

If the partition of A is sufficiently fine, the distance between vertices of a simplex,
|z — 27|, i # j, is sufficiently small. Since F' has a uniformly closed graph, for
each y; € F(zj") and some y; € F(27') we have |y; — y;| < 35, and for each
y; € F(2}') and some y; € F(z}") we have |y; — y;| < 5. Since z* is expressed as
w* =Y A, if [t — 27| is sufficiently small for each i and j, |2* — 2}"| is also
sufficiently small for each i. Therefore, for each y; € F(z}") and some yf € F(z*)
we have |y; —y;| < 5. y;’s for different z7"’s may be different. But, since F'(z*) is

convex, we have
y'=> Ayl € Fa").
i=0
Since, for each i [y; — y;| < 5 and f™(z*) = D0 A f ™ (@) = Do1 ) Aiyi,we have

€

)~y < 2

Since |z* — f™(z*)| < §, we obtain
|z* —y*| < e.

This means

|z* — F(2¥)| <e.
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Since ¢ is arbitrary,

inf |2* — F(z")| = 0.

zreA
(2) Choose a sequence (z,)n>1 in A such that |z, — F(2,)| — 0. In view of Lemma
2.1 it is enough to prove that the following condition holds.
For each 6 > 0 there exists ¢ > 0 such that if z,y € A, |F(z) — x| <¢
and |F(y) —y| < e, then |z —y| < 6.
Assume that the set

K ={(z,y) e AxA: |z —y|l >4}

is inhabited and compact?. Since the mapping (z,y) — max(|F(z) — x|, |F(y) —
y|) is uniformly continuous, we can construct an increasing binary sequence (A, ),>1

such that

A =0= inf max(|F(z) —z|,|F(y) —y|) <27,

(z,y)eK

A =1= inf max(|F(z) —z|,|F(y) —yl) >2"".

(z,y)eK
It suffices to find n such that A, = 1. In that case, if |F(z) — x| < 27"}

|F(y) —y| < 277! we have (v,y) ¢ K and |z —y| < §. Assume A\ = 0. If
An = 0, choose (z,,y,) € K such that max(|F(z,) — x|, | F(yn) — ya|) < 27", and
if A, =1, set ©, =y, = z,. Then, |F(x,) — x,] — 0 and |F(y,) — yn| — 0, so
|z, — yn| —> 0. Computing N such that |xy — yx| < J, we must have Ay = 1.

This completes the proof.
3. Minimax Theorem

In this section we derive the minimax theorem of zero-sum games by our Kakutani’s
fixed point theorem in the previous section. The minimax theorem can also be proved
by Brouwer’s fixed point theorem®. But the proof by Kakutani’s fixed point theorem is
more smart. consider a two person zero-sum game. There are two players A and B.

2See Theorem 2.2.13 of [5].
3See [7].
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Player A has m alternative pure strategies, and the set of his pure strategies is denoted
by Sa = {ai,as,...,a,}. Player B has n alternative pure strategies, and the set of his
pure strategies is denoted by Sp = {b1,bs,...,b,}. m and n are finite natural numbers.
The payoff of player A when a combination of players’ strategies is (a;,b;) is denoted
by M(a;,b;). Since we consider a zero-sum game, the payoff of player B is equal to
—M (a;,b;). Let p; be a probability that A chooses his strategy a;, and g; be a probability
that B chooses his strategy b;. A mixed strategy of A is represented by a probability
distribution over Syu, and is denoted by = = (p1,p2, ..., pm) with > p; = 1. Similarly,
a mixed strategy of B is denoted by y = (q1, 2, - - - , gn) With 2;;1 ¢; = 1. A combination
of mixed strategies (z,y) is called a profile. The expected payoff of player A at a profile

(x,y) is written as follows,

M(z,y) =YY piM(a;, b)g;.
i=1 j=1

We assume that M(a;,b;) is finite. Then, since M (z,y) is linear with respect to proba-
bility distributions over the sets of pure strategies of players, it is a uniformly continuous
function. The expected payoff of A when he chooses a pure strategy a; and B chooses a
mixed strategy y is M (a;,y) = 2?21 M (a;, bj)q;, and his expected payoff when he chooses
a mixed strategy = and B chooses a pure strategy b; is M(x,b;) = > " piM(a;, b;). The
set of all mixed strategies of A is denoted by P, and that of B is denoted by ). P is an
m — 1-dimensional simplex, and () is an n — 1-dimensional simplex.

We call va(x) = inf eq M(z,y) the guaranteed payoff of A at x. And we define v as

follows,

v% = sup inf M (z.
A xegyGQ (z.y)

This is a constructive version of the maximin payoff. Similarly, we call vg(y) = sup,cp M(z,y)

the guaranteed payoff of player B at y, and define v}; as follows,

vy = inf sup M(z,y).
B yGQerE (z,y)
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This is a constructive version of the minimax payoff. For a fixed x we have inf, o M (z,y) <

M (z,y) for all y, and so

sup inf M(z,y) < sup M(z,y) for all y
zeP Y& z€EP

holds. Then, we obtain sup,.p inf,eq M (x,y) < infyeqsup,cp M(z,y). This is rewritten

as

(1) vy < v

Now, consider the following set for player A given y;
{a; € Sa|M(a;,y) > M(a},y) for all a; € S4}.

Since Sy is finite, we can find a; which realizes max,,ecs, M(a;,y). Linearity of the ex-
pected payoff function implies that if there are multiple pure strategies which satisfy this
condition, convex combinations of those pure strategies also satisfy it. Denote the set of

such mixed strategies by
Ca(y) ={x € PIM(z,y) > M(z',y) for all 2’ € P},
Similarly for player B consider the following set given x;
{b; € Sp|M(x,b;) < M(x,0) for all b; € Sp}.

If there are multiple pure strategies which satisfy this condition, convex combinations of

those pure strategies also satisfy it. Denote the set of such mixed strategies by

I'p(z) ={y € QIM(z,y) < M(z,y') for all y € Q}.

Define a multi-function from P x ) to the set of inhabited subsets of P x ) by

@(Iv y) = (FA(y)v FB<I>)

Since P X @ is the product of two simplices, it is convex. And since there are m +n — 2
independent vectors in P x ), P x @) is homeomorphic to an m + n — 2-dimensional
simplex.

We assume the following conditions about payoff functions.
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C

F1GURE 2. Homeomorphism between simplex and combination of strategies

Assumption 3.1. All sequences ((Tn, Yn))n>1, (), Y5))n>1 in PXQ such that max(M (a;, y,)—
M (2, yn),0) — 0, max(M (z,,, yn) —M (2, b;),0) — 0, max(M (a;, y,,)—M(x,,y,),0) —
0 and max(M (x,,y,)— M (x,,b;),0) — 0 for alli and j are eventually close in the sense
that |(za, yu) — (s 1)) —> 0.

We call this condition sequential non-constancy of payoff functions.

Let us consider a homeomorphism between an m + n — 2-dimensional simplex and the
space of players’ mixed strategies, which is denoted by P. Figure 2 depicts an example
of a case of two players with two pure strategies for each player. P is represented by
a rectangle DEFG. Vertices D, E, F' and G represent states where two players choose
pure strategies, and points on edges DFE, FF, FFG and GD represent states where one
player chooses a pure strategy. In this homeomorphism, vertices of the simplex do not
correspond to any vertex of P. Vertices of the simplex and points on faces (simplices
whose dimension is lower than m +n — 2) of the simplex correspond to the points on faces
of P. For example, in Figure 2 A, B and C correspond, respectively, to I, J and H. On
the other hand, each vertex of P, D, E, ' and G corresponds, respectively, to itself on a
face of the simplex which contains them.

Let us check that ©(x, y) satisfies the conditions for our Kakutani’s fixed point theorem.
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(1) P x @Q is clearly a compact and convex set.
(2) O(z,y) is a multi-function from P x @ to the set of inhabited subsets of P x Q.
(3) We show convexity of ©(x,y). It is sufficient to show convexity of I'4(y). Suppose
that ' € T4(y) and 2 € T'4(y). Then,

M(x',y) > M(a;,y) for all a; € Sy

and

M(2?,y) > M(a;,y) for all a; € Sy

hold. Since M (x,y) is linear with respect to probability distributions over the sets

of pure strategies of players, for 0 < A < 1 we have
AM (' y) + (1= MM (2%, y) = M(Ax' + (1 — Nz, y) > M(a;, y) for all a; € Sa.

Thus, we obtain Az'+(1—\)2? € T'4(y), and T 4(y) is convex. Convexity of I'g(x)
is similarly proved.

(4) We show that ©(x,y) has a uniformly closed graph. Let 2” be a mixed strategy of
player A, y” be a mixed strategy of player B and x € I'4(y). Uniform continuity
of M(z,y) implies that, for a positive number £, we can select § > 0 and ¢’ > 0 so
that when |(2”,y") — (z,y)| < and |(2',y") — (2/,y)| < &', we have |M(x” y") —
M(x,y)| < 5 and |[M(2',y") — M(2',y)| < 5. Since M(x,y) > M(a',y) for all

x' € P, we have

> M(a',y) — cs Mz’ y") — e for all ',

M(a",y") > M(z,y) — 5

DO ™

Thus, 2" € V(['a(y”),e). About I'g(z) we can show a similar result, that is,
y" e V(Ip(z"),e). V(La(y"),e) and V(I'a(y"),e) are € neighborhoods of I"4(y")
and I'g(2”). This completes the proof that ©(x,y) has a uniformly closed graph.

(5) Consider sequences (x,,y,) and (z,y.,). If |O(x,,yn) — (Tn,yn)|] —> 0 and
O], yh)— (), ys,)| — 0, then max(M (a;, yn)—M (x4, yn)) — 0, max (M (z,, bj)—
M (xp,yn)) — 0, max(M (a;, Yyn)—M (T, y)) — 0 and max(M (2], b;)—M(z),,y),)) —
0 for all ¢ and j. Assumption 3.1 implies |(zy,yn) — (2},,y,,)| — 0. Thus, © has

sequentially at most one fixed point.
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Therefore, the conditions of our Kakutani’s fixed point theorem are satisfied by O(x,y),

and it has a fixed point. Let denote the fixed point by (z*,y*). Then,
M2 y*) < M(z*,y*) < M(z*,y') for all (2, y')

holds. This means
) sup M(z,4°) < M(z*,y") < inf M(a", ).
Since

sup M (z,y*) > irylfsup M(z,y) = vy, iI;fM(.T*, y) < supirylfM(x, y) = vk,
(2) implies
(3) vp < M(z",y") < v}

With (1) and (3) we obtain

vy = Vg.

This v} or v} is the value of the game. Summarizing the results,

Theorem 3.1. The value of a two person zero-sum game with sequentially non-constant
payoff functions is determined by M (z*,y*). Since we can constructively find a fixed point
of a multi-function which satisfies the conditions of our Kakutani’s fixed point theorem,

we can constructively get the value of the game.

Player 2
X Y

Player | X [2,-2]-1,1
1 Y |-1

111,-1

Y Y

TABLE 1. Example of game

Consider an example. See a game in Table 1. It is a modified version of the so-called
Matching-Pennies Game. Pure strategies of Player 1 and 2 are X and Y. The left side
number in each cell represents the payoff of Player 1 and the right side number represents

the payoff of Player 2. Let px and 1 — px denote the probabilities that Player 1 chooses,
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respectively, X and Y, and gx and 1 — ¢x denote the probabilities for Player 2. Denote
the expected payoff of Player 1 by M (px,qx). Since we consider a zero-sum game, the
expected payoff of Player 2 is —M (px, ¢x). We have
M(px,qx) = 2pxax — (1 = px)ax — px(1 —qx) + (1 — px)(1 — qx)
= pX(5qX — 2) +1-— 2qX

Denote the payoff of Player 1 when he chooses X by M (X, ¢x), and that when he chooses
Y by M(Y,gx). Similarly for Player B. Then,

M(X,qx) =3qx—1, M(Y,qx) = 1-2qx, —M(px,X) = 1-3px, —M(px,Y) = 2px —1,

M(X, QX) — M(px,qx) = (1 - px)(5qx — 2), M(Y, QX) — M(px,qx) = —px(5qx — 2),

—M(px, X) + M(px,qx) = (gx — 1)(5px —2), =M (px,Y) + M(px,qx) = qx(5px — 2).

And we have

2
When gx > 5 M(X,qx) > M(Y,qx) and M(X,qx) > M(px,qx) for px <1,

2
When ¢y < 5 M(Y,qx) > M(X,qx) and M(Y,qx) > M(px, gx) for px >0,

2
When Px > 57 _M<pX7Y) > _M(vaX) and _M(pX7Y) > _M(pXJQX) for ax > 07

2
When px < ¢, ~M(px,X) > —M(px,Y) and — M(px, X) > —M(px, qx) for gx < 1.

Consider sequences (px(n))n>1 and (gx(n))y>1, and let 0 < e < 2,0 < § < e. There

are the following cases.

(1) (a) If px(n) > 246 and gx(n) > 2+46, or
(b) px(n) > 246 and gx(n) < 2 -4, or
(¢) px(n) < 2 =6 and gx(n) < 2 -0, or
(d) px(n) < 2 —46 and gx(n) > 2+46, or
(¢) px(n) > 246 and 2 —e < gx(n) < 2+¢, or
(f) px(n) <2—dand 2 —c < qx(n) < 2+¢,or
(8) 2—c<px(n)<Z+e and gx(n) > 244 or
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(h) 2 —¢e <px(n) < Z+e¢, and gx(n) < 2 — 4,
then there exists no pair of (px(n),gx(n)) such that
M(X, qx(n)) — M(px(n), qx(n)) — 0, M(Y,qx(n)) — M(px(n),qx(n)) — 0,
—[M(px(n),X) = M(px(n),qx(n))] — 0 and
—[M(px(n),Y) = M(px(n), qx(n))] — 0.

(2) If2—c<px(n)<2+eand 2 —c<gx(n)<Z+4ewith0<e<?2
M(X,qx(n)) — M(px(n),qx(n)) — 0, M(Y,qx(n)) — M(px(n),qx(n)) — 0,
—[M(px(n), X) — M(px(n),qx(n))] — 0 and

—[M(px(n),Y) = M(px(n), qx(n))] — 0, then
(px(n), ax(n)) — (3, 2) for any sequence (px(n), gx(n)).

Therefore, the payoff functions satisfy Assumption 3.1.
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