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1. Introduction

Banach’s contraction principle is one of very important theorems has been generalized in

various directions. The concept of weak contraction has introduced by guerre delabre in hilbert

space [1], Rhoeds extend this concept to metric space[2]. Weakly contractive mapping used in a

several work [3−7] to show a fixed point theorem (for a self mapping and a common fixed point
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result for two self-mapping defined on a complete metric space). In [9] Binayak Choudhury

proposed the definition of generalized altering distance function. he proved a common fixed

point for two self-mapping satisfying a contractive inequality which involves two generalized

altering distance. Many mathematics researchers obtained some results of fixed point in quasi-

metric space. In[8− 10]the authors obtained the existence and uniqueness of a fixed point in

quasi-metric space for some type of weakly contractive-mapping.

The purpose of this work is to show some fixed point results in quasi-metric space, firstly for

generalized weakly contractive mapping, secondly for generalized altering distance mapping.

2. Preliminaries

In 2010, Binayak and all [10] have established the following result.

Theorem 2.1. Let (X ,d) be a complete metric space, T a self-mapping of X. such that for all

x,y ∈ X,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max{d(x,y),d(y,Ty)})

where

m(x,y) = max{d(x,y),d(x,T x),d(y,Ty),
1
2
[d(x,Ty)+d(y,T x)]},

ψ,φ : [0,+∞)→ [0,+∞) are a continuous function with ψ is monotone increasing and

(ψ(t) = φ(t) = 0 if and only if t = 0).Then T has a unique fixed point.

Binayak choudhury,[9] has introduced a notion of generalization altering distances to a three-

variable function, and has established the following result.

Theorem 2.2. Let (X ,d) be a complete metric space, T and S be a self mappings of X such

that, for all x,y ∈ X,

φ1(d(Sx,Ty))≤ ψ1(d(x,y),d(x,Sx),d(y,Ty))−ψ2(d(x,y),d(x,Sx),d(y,Ty))

where ψ1,ψ2 : [0,+∞)3→ [0,+∞) are a continuous functions with ψ1 is monotone increasing

in all the three variables and (ψ1(x,y,z) = ψ2(x,y,z) = 0 if and only if x = y = z = 0). and

φ1 : x 7→ ψ1(x,x,x).

Then, T and S has a unique common fixed point.
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Our propose here is to prove the previous theorems without symmetry(quasi-metric space),

we add a new condition for all x,y ∈ X d−1(x,y)≤ d−1(x,T 2y), without this condition we can’t

prove our results. We have change m(x,y) of theorem 2.1 by max{d(x,y),d(x,T x),d(y,Ty)}.

and we show theorem 2.2 under our new condition for one application.

Definition 2.2. Let X be a nonempty set and let d : X ×X −→ R+ be a function satisfying

following conditions :

(i) d(x,y) = 0⇔ x = y

(ii) d(x,y)≤ d(x,z)+d(z,y)

Then d is called a quasi-metric on X .

Definition 2.3. Let (X ,d) be a quasi-metric space, (xn)n be a sequence in X ,

and x ∈ X . The sequence (xn)n converges to x if and only if lim
n→+∞

d(xn,x) = lim
n→+∞

d(x,xn) = 0.

Definition 2.4. Let (X ,d) be a quasi-metric space and (xn)n be a sequence in X. We say that

(xn)n is left-Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε) such

that d(xn,xm)< ε , for all n > m≥ N.

Definition 2.5. Let (X ,d) be a quasi-metric space and (xn)n be a sequence in X. We say that

(xn)n is right-Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε) such

that d(xn,xm)< ε , for all m > n≥ N.

Definition 2.6. Let (X ,d) be a quasi-metric space and (xn)n be a sequence in X. We say that

(X ,d) is Cauchy if and only if for every ε > 0 there exists a positive integer N = N(ε) such that

d(xn,xm)< ε , for all m,n≥ N.

Definition 2.7. Let (X ,d) be a quasi-metric space. We say that

(1) (X ,d) is left-complete if and only if each left-Cauchy sequence in X is convergent.

(2) (X ,d) is right-complete if and only if each right-Cauchy sequence in X is convergent.

(3) (X ,d) is complete if and only if each Cauchy sequence in X is convergent.

Remark 2.8.

• A sequence (xn)n in a quasi-metric space is Cauchy if and only if it is left-Cauchy and

right-Cauchy.
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• Any metric space is quasi-metric, but the converse is not true in general.

• The function d−1 defined by d−1(x,y) = d(y,x), for all x,y ∈ X , is also a quasi-metric

on X .

• The base of the topology τd is open balls {Bd(x,ε) ; x ∈ X , ε > 0}, where for all x ∈ X

and ε > 0, Bd(x,ε) = {y ∈ X ; d(x,y)< ε}.

3. Main results

We consider two functions φ , ψ : [0,+∞[→ [0,+∞[ satisfied :

(1) φ continuous,

(2) ψ is monotone nondecreasing and continuous,

(3) ψ(t) = 0 (resp. φ(t) = 0) if and only if t = 0.

Theorem 3.1. Let (X ,d) be a complete quasi-metric space and T a self mapping of X such

that for all x,y ∈ X,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max(d(x,y),d(y,Ty))) (3.1)

where

m(x,y) = max{d(x,y),d(x,T x),d(y,Ty)}

and

d−1(x,y)≤ d−1(x,T 2y)

Then, T has a unique fixed point.

Proof. First step. Let x0 ∈ X , we define a sequence (xn)n in X such that xn+1 = T xn, for all

integer n ∈ N.

If there exists a positive integer N such that xN = xN+1, then xN is a fixed point of T .

Hence we shall assume that xn 6= xn+1, for all n ∈ N.

Substituting x = xn and y = xn+1 in (3.1), we obtain :

ψ(d(T xn,T xn+1))≤ ψ(m(xn,xn+1))−φ(max{d(xn,xn+1),d(xn+1,T xn+1)}) (3.2)

ψ(d(xn+1,xn+2))≤ ψ(m(xn,xn+1))−φ(max{d(xn,xn+1),d(xn+1,xn+2))}),
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we have

m(xn,xn+1) = max{d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2)}

So,

ψ(d(xn+1,xn+2))≤ ψ(max{d(xn,xn+1),d(xn+1,xn+2)})−φ(max{d(xn,xn+1),d(xn+1,xn+2)})

Suppose that d(xn,xn+1)≤ d(xn+1,xn+2) for some positive integer n, we have :

ψ(d(xn+1,xn+2))≤ ψ(d(xn+1,xn+2))−φ(d(xn+1,xn+2))

That is φ(d(xn+1,xn+2)) ≤ 0 which implies d(xn+1,xn+2) = 0 i.e. xn+1 = xn+2, contradicting

our assumption that xn+1 6= xn+2 for each n ∈ N.

Then, (d(xn,xn+1))n is monotone decreasing sequence of non negative real numbers.

d(xn+1,xn+2)< d(xn,xn+1), for all n ∈ N

Substituting x = xn+1 and y = xn in (3.1)

ψ(d(xn+2,xn+1))≤ ψ(m(xn+1,xn))−φ(max{d(xn+1,xn),d(xn,xn+1)}),

we have :

m(xn+1,xn) = max{d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1)}

ψ(d(xn+2,xn+1))≤ψ(max{d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1)})−φ(max{d(xn+1,xn),d(xn,xn+1)})

Since (d(xn,xn+1))n is monotone decreasing sequence of non negative real numbers,

d(xn+1,xn+2)< d(xn,xn+1), for all n ∈ N,

so

ψ(d(xn+2,xn+1))≤ ψ(max{d(xn+1,xn),d(xn,xn+1)})−φ(max{d(xn+1,xn),d(xn,xn+1)})

Suppose that d(xn+1,xn)≤ d(xn+2,xn+1) for some positive integer n
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Case 1 : d(xn+1,xn)≥ d(xn,xn+1)

ψ(d(xn+1,xn))≤ ψ(d(xn+2,xn+1))≤ ψ(d(xn+1,xn))−φ(d(xn+1,xn))

Then

φ(d(xn+1,xn))≤ 0

Imply d(xn+1,xn) = 0 i.e. xn = xn+1, contradicting our assumption that xn 6= xn+1, for each

n ∈ N.

Case 2 : d(xn,xn+1)> d(xn+1,xn)

ψ(d(xn+2,xn+1))≤ ψ(d(xn,xn+1))−φ(d(xn,xn+1))

Or, for each x,y ∈ X , d(y,x)≤ d(T 2y,x), so d(xn,xn+1)≤ d(xn+2,xn+1)

ψ(d(xn,xn+1))≤ ψ(d(xn+2,xn+1))≤ ψ(d(xn,xn+1))−φ(d(xn,xn+1))

Then

φ(d(xn,xn+1))≤ 0

Imply d(xn,xn+1) = 0 i.e. xn = xn+1, contradicting our assumption that xn 6= xn+1, for each

n ∈ N.

Hence, d(xn+2,xn+1)≤ d(xn+1,xn), for each n ∈ N.

(d(xn+1,xn))n is monotone decreasing sequence of non negative real numbers.

Consequently, there exists r > 0 such that :

d(xn,xn+1)−→ r as n−→ ∞,
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we have :

ψ(d(xn+1,xn+2))≤ ψ(d(xn,xn+1))−φ(d(xn,xn+1)) (3.3)

Letting n−→ ∞ in (3.3) we obtain :

ψ(r)≤ ψ(r)−φ(r)

So φ(r)≤ 0 i.e. r = 0.

d(xn,xn+1)−→ 0 as n−→ ∞

Also, there exists r′ > 0, such that :

d(xn+1,xn)−→ r′ as n−→ ∞,

we have :

ψ(d(xn+2,xn+1))≤ ψ(max{d(xn+1,xn),d(xn,xn+1)})−φ(max{d(xn+1,xn),d(xn,xn+1)})

(3.4)

Letting n−→ ∞ in (3.4) we obtain :

ψ(r′)≤ ψ(max{r′,0})−φ(max{r′,0})

So φ(r′)≤ 0 i.e. r′ = 0.

d(xn+1,xn)−→ 0 as n−→ ∞

Second step. Next we show that (xn)nis a Cauchy sequence.

Firstly we show (xn)n is a right-Cauchy sequence, if otherwise there exists an ε > 0 for which

we can find sequences of positive integers (m(k))k and (n(k))k such that, for all positive integers

k, n(k)> m(k)> k,

d(xm(k),xn(k))≥ ε

and

d(xm(k),xn(k)−1)< ε
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we have :

ε ≤ d(xm(k),xn(k))≤ d(xm(k),xn(k)−1)+d(xn(k)−1,xn(k))

ε ≤ d(xm(k),xn(k))≤ ε +d(xn(k)−1,xn(k))

Taking the limit as k→ ∞

d(xm(k),xn(k))−→ ε as k −→ ∞

Again

d(xm(k),xn(k))≤ d(xm(k),xm(k)+1)+d(xm(k)+1,xn(k)+1)+d(xn(k)+1,xn(k))

and

d(xm(k)+1,xn(k)+1)≤ d(xm(k)+1,xm(k))+d(xm(k),xn(k))+d(xn(k),xn(k)+1)

So,

d(xm(k)+1,xn(k)+1)−→ ε as k −→ ∞

Setting x = xm(k) and y = xn(k) in (3.1), we obtain :

ψ(d(xm(k)+1,xn(k)+1))≤

ψ(max{d(xm(k),xn(k)),d(xm(k),xm(k)+1),d(xn(k),xn(k)+1)})

−φ(max{d(xm(k),xn(k)),d(xn(k),xn(k)+1)})

Letting k −→+∞ in the above inequality and using the continuity of ψ and φ , we have :

ψ(ε)≤ ψ(ε)−φ(ε)

which is a contradiction by virtue of a property of φ .

Consequently, (xn)n is a right-Cauchy sequence in (X ,d).

Secondly we show (xn)n is a left-Cauchy sequence, if otherwise there exists an ε > 0 for which

we can find sequences of positive integers (m(k))nand (n(k))n such that for all positive integers

k, n(k)> m(k)> k,

d(xn(k),xm(k))≥ ε
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and

d(xn(k)−1,xm(k))< ε

we have :

ε ≤ d(xn(k),xm(k))≤ d(xn(k),xn(k)−1)+d(xn(k)−1,xm(k))

ε ≤ d(xn(k),xm(k))≤ d(xn(k),xn(k)−1)+ ε

Taking the limit as k→+∞, we obtain :

d(xn(k),xm(k))−→ ε as k −→ ∞

Again

d(xn(k),xm(k))≤ d(xn(k),xn(k)+1)+d(xn(k)+1,xm(k)+1)+d(xm(k)+1,xm(k))

and

d(xn(k)+1,xm(k)+1)≤ d(xn(k)+1,xn(k))+d(xn(k),xm(k))+d(xm(k),xm(k)+1)

So,

d(xn(k)+1,xm(k)+1)−→ ε as k −→ ∞

Setting x = xn(k) and y = xm(k) in (3.1) we obtain

ψ(d(xn(k)+1,xm(k)+1))≤

ψ(max{d(xn(k),xm(k)),d(xn(k),xn(k)+1),d(xm(k),xm(k)+1)})

−φ(max{d(xn(k),xm(k)),d(xm(k),xm(k)+1)})

Letting k −→ ∞ in the above inequality and using the continuity of ψand φ , we have

ψ(ε) ≤ ψ(ε)− φ(ε), which is a contradiction by virtue of a property of φ Consequently,

(xn)n is a left-Cauchy sequence in (X ,d). By Remark, we deduce that xn is a Cauchy se-

quence in complete quasi-metric space (X ,d). It implies that there exists, a p ∈ X such that

lim
n→∞

d(xn, p)= lim
n→∞

d(p,xn) = 0.

Third step. Putting x = xn and y = p in (3.1) we have :

ψ(d(xn+1,T p))≤ ψ(max{d(xn, p),d(xn,xn+1),d(p,T p)})−φ(max{d(xn, p),d(p,T p)})
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Since,

d(p,T p)−d(p,xn+1)≤ d(xn+1,T p)≤ d(xn+1, p)+d(p,T p)

and

lim
n→∞

d(xn, p)= lim
n→∞

d(p,xn) = 0, so taking the limit as n−→∞ in the above precedent inequal-

ity, we obtain :

ψ(d(p,T p))≤ ψ(d(p,T p))−φ(d(p,T p))

Imply d(p,T p) = 0 i.e. p = T p. Hence p is a fixed point of T .

Uniqueness. Let q ∈ X such that T q = q.

Putting x = p and y = q in (3.1) we have :

ψ(d(p,q))≤ ψ(max{d(p,q)})−φ(d(p,q))

ψ(d(p,q))≤ ψ(d(p,q))−φ(d(p,q))

So φ(d(p,q)))≤ 0 i.e. p = q.This completes the proof.

Corollary 3.2. Let (X ,d) be a complete quasi-metric space and T a self mapping of X such

that for all x,y ∈ X,

d(T x,Ty)≤ m(x,y)−φ(max(d(x,y),d(y,Ty)))

where

m(x,y) = max{d(x,y),d(x,T x),d(y,Ty)}

and

d−1(x,y)≤ d−1(x,T 2y)

Then, T has a unique fixed point.

Example 3.3. Let X = R+ and, for all (x,y) ∈ X, d(x,y) = max{y− x,0}.

(X ,d) is complete quasi-metric space.
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Define T : X → X by : T (x) = ln( x
2 +1), for all x ∈ X.

Define ψ and φ by :

ψ(t) = t, for all t ∈ [0,+∞[

φ(t) =
t
4
, for all t ∈ [0,+∞[.

Let (x,y) ∈ X2,

we have : d(T 2y,x) = max{x−T 2y,0} and T 2y = ln(1
2 ln( y

2 +1)+1), so

max{x− y,0} ≤max{x− ln(
1
2

ln(
y
2
+1)+1),0} i.e. d(y,x)≤ d(T 2y,x)

we have also :

d(T x,Ty) = max{ln(y
2
+1)− ln(

x
2
+1),0}

m(x,y) = max{max{y− x,0},max{ln( x
2 +1)− x,0},max{ln( y

2 +1)− y,0},}

and

max{d(x,y),d(y,Ty)}= max{max{y− x,0},max{ln(y
2
+1)− y,0}}

Case 1 : x≥ y

we have : d(T x,Ty) = 0, m(x,y) = 0 and max{d(x,y),d(y,Ty)}= 0

So,

ψ(d(T x,Ty)) = ψ(m(x,y))−φ(max(d(x,y),d(y,Ty)))

Case 2 : y > x

we have : d(T x,Ty) = ln( y
2 +1)− ln( x

2 +1), m(x,y) = max{y− x,0,0}= y− x

and

max{d(x,y),d(y,Ty)}= y− x

So, ψ(d(T x,Ty)) = ln( y
2 +1)− ln( x

2 +1), ψ(m(x,y)) = y− x and

φ(max{d(x,y),d(y,Ty)}) = y−x
4 .

Imply

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max(d(x,y),d(y,Ty)))

Then, 0 is a unique fixed point.
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If we remove our condition ∀x,y ∈ X ,d−1(x,y) ≤ d−1(x,T 2y), it may be that T does not

admit a fixed point.

Counter-example 3.4. Let X = {(1
3)

k×n ; (k,n) ∈ N2}, for all (x,y) ∈ X

d(x,y) = max{y− x,0}

(X ,d) is complete quasi-metric space.

Define T : X → X by :

T x =
1
3
(x+1)

for all x ∈ X.

Define ψ and φ by :

ψ(t) =
√

t, for all t ∈ [0,+∞[

φ(t) =
√

t
16

, for all t ∈ [0,+∞[.

Let (x,y) ∈ X2,

we have : d(T 2y,x) = max{x−T 2y,0} and T 2y = 1
3(

1
3y+ 1

3)+
1
3 .

If x > y and y = 0

max{x− y,0}= x > max{x− (
1
3
(
1
3

y+
1
3
)+

1
3
),0} i.e. d(y,x)> d(T 2y,x)

We have :

d(T x,Ty) = max{1
3
(y− x),0}

m(x,y) = max{max{y− x,0},max{−2
3x+ 1

3 ,0},max{−2
3y+ 1

3 ,0}}

and

max{d(x,y),d(y,Ty)}= max{max{y− x,0},max{−2
3

y+
1
3
,0}}

Case 1 : x≥ y

d(T x,Ty) = 0, m(x,y) = max{0,−2
3x+ 1

3 ,−
2
3y+ 1

3}=−
2
3y+ 1

3

and max{d(x,y),d(y,Ty)}=−2
3y+ 1

3 . Since

0≤ 15
16

√
−2

3
y+

1
3
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so,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max(d(x,y),d(y,Ty)))

Case 2 : y > x

d(T x,Ty) = 1
3(y− x), m(x,y) = max{y− x,−2

3x+ 1
3 ,−

2
3y+ 1

3}

and max{d(x,y),d(y,Ty)}= max{y− x,−2
3y+ 1

3}

If m(x,y) = y− x, then max{d(x,y),d(y,Ty)}= y− x. Since√
1
3
(y− x)≤ 15

16
√

y− x

so,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max(d(x,y),d(y,Ty)))

If m(x,y) =−2
3x+ 1

3 , then max{d(x,y),d(y,Ty)}= y− x or −2
3y+ 1

3

ψ(m(x,y) =

√
−2

3
x+

1
3

and φ(max(d(x,y),d(y,Ty))) =
√

y− x
16

or

√
−2

3y+ 1
3

16

We obtain : 

√
1
3(y− x)≤

√
−2

3x+ 1
3 −

√
y−x
16

or√
1
3(y− x)≤

√
−2

3x+ 1
3 −

√
− 2

3 y+ 1
3

16

Hence,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max(d(x,y),d(y,Ty)))

Then, T has no fixed point.

Theorem 3.5. Let (X ,d) be a complete quasi-metric space,T be a self mapping of X such

that for all x,y ∈ X,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(m(x,y))

where

m(x,y) = max{d(x,y),d(x,T x),d(y,Ty)}

and

d−1(x,y)≤ d−1(x,T 2y)
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Then, T has a unique fixed point.

Proof. It’s the same proof of theorem 3.1.

Corollary 3.6. Let (X ,d) be a complete quasi-metric space, T be a self mapping of X, it exists

a positive Lebesque integrable function ϕ on R+ such that
∫

ε

0
ϕ(t)dt > 0, for each ε > 0,

∫
ψ(d(T x,Ty))

0
ϕ(t)dt ≤

∫
ψ(m(x,y))

0
ϕ(t)dt−

∫
φ(max{d(x,y),d(y,Ty)})

0
ϕ(t)dt

and

d−1(x,y)≤ d−1(x,T 2y)

for all x,y ∈ X. Then, T has a unique fixed point.

Proof. Consider the function Φ define on [0,+∞[ by :

Φ(u) =
∫ u

0
ϕ(t)dt

Then, for all (x,y) ∈ X2,

(Φ◦ψ)(d(T x,Ty))≤ (Φ◦ψ)(m(x,y))− (Φ◦φ)(max{d(x,y),d(y,Ty)})

Applying Theorem 3.1, we obtain T has at least one fixed point.

It’s easy to verify that :

. Φ◦φ continuous,

. Φ◦ψ is monotone nondecreasing and continuous,

. Φ◦φ(t) = 0 (resp. Φ◦ψ(t) = 0) if and only if t = 0.

Corollary 3.7. Let (X ,d) be a complete quasi-metric space,T be a self mapping of X, it exists

a positive Lebesque integrable function ϕ on R+ such that
∫

ε

0
ϕ(t)dt > 0for each ε > 0

∫
ψ(d(T x,Ty))

0
ϕ(t)dt ≤

∫
ψ(m(x,y))

0
ϕ(t)dt−

∫
φ(m(x,y))

0
ϕ(t)dt

and

d−1(x,y)≤ d−1(x,T 2y)

for all x,y ∈ X. Then, T has a unique fixed point.

Proof. It’s the same proof of previous corollary.
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Now, we consider (X ,≤) an ordered quasi-metric space.

Theorem 3.8. Let (X ,≤) be a partially ordered set and suppose that there exists a quasi-

metric d such that (X ,d) is a complete quasi-metric space. Let T a self mapping of X be a

non-decreasing map satisfying, for all x,y ∈ X such that x and y comparable,

ψ(d(T x,Ty))≤ ψ(m(x,y))−φ(max(d(x,y),d(y,Ty)))

where

m(x,y) = max{d(x,y),d(x,T x),d(y,Ty)}

and for all x,y ∈ X such that y≤ x,

d−1(x,y)≤ d−1(x,T 2y)

If there exist x0 ∈ X satisfying x0 ≤ T x0 and if, for every increasing sequence (xn)n≥0 in X :

(xn)n≥0 converge to z implies that xn ≤ z for all n ∈ N

Then, there exists x ∈ X such that T x = x.

Proof. Let x0 ∈ X , we define a sequence (xn)n in X such that xn+1 = T xn, for all integer n∈N.

If there exists a positive integer N such that xN = xN+1, then xN is a fixed point of T .

Hence we shall assume that xn 6= xn+1, for all n ∈ N. Since x0 ≤ T x0 and T nondecreasing. we

obtain by induction

x0 ≤ T x0 ≤ T 2x0 ≤ T 3x0 ≤ ....≤ T nx0 ≤ T n+1x0 ≤ ....

We show similarly that of theorem 3.1), that there exists, a z ∈ X such that lim
n→∞

d(xn,z) =

lim
n→∞

d(z,xn) = 0.

And since by hypothesis xn and z are comparable, for all n ∈ N, we obtain :

ψ(d(z,T z))≤ ψ(d(z,T z))−φ(d(z,T z))

Hence, z is a fixed point of T .
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Theorem 3.9. Let (X ,d) be a complete quasi-metric space, T be a self mapping of X such that,

for all x,y ∈ X,

φ1(d(T x,Ty))≤ ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty)) (3.5)

and

d−1(x,y)≤ d−1(x,T 2y)

where ψ1,ψ2 : [0,+∞)3→ [0,+∞) are a continuous functions with ψ1 is monotone increasing

in all the three variables and (ψ1(x,y,z) = ψ2(x,y,z) = 0 if and only if x = y = z = 0). and

φ1 : x 7→ ψ1(x,x,x).

Then, T has a unique fixed point.

Proof. First step. For any x0 ∈ X , we construct the sequence (xn)n∈N in X by taking xn+1 = T xn,

for all n ∈ N.

If there exists a positive integer N such that xN = xN+1, then xN is a fixed point of T .

Hence we shall assume that xn 6= xn+1, for all n ∈ N.

Putting x = xn and y = xn+1 in (3.5), we have :

φ1(d(xn+1,xn+2))≤

ψ1(d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2))−ψ2(d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2))

Suppose that d(xn+1,xn+2)≥ d(xn,xn+1) for some positive integer n, so :

φ1(d(xn+1,xn+2))≤ φ1(d(xn+1,xn+2))−ψ2(d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2))

Which is a contradiction that :

ψ2(d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2)) 6= 0, whenever d(xn+1,xn+2) 6= 0.

Hence, (d(xn,xn+1))n is monotone decreasing sequence of non negative real numbers.
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Putting x = xn+1 and y = xn in (3.5), we obtain :

φ1(d(xn+2,xn+1))≤

ψ1(d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1))−ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1))

Since (d(xn,xn+1))n is monotone decreasing, so d(xn+1,xn+2)< d(xn,xn+1), and then

φ1(d(xn+2,xn+1))≤

ψ1(d(xn+1,xn),d(xn,xn+1),d(xn,xn+1))−ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn+1,xn+2))

Suppose that d(xn+2,xn+1)≥ d(xn+1,xn) for some positive integer n.

Case 1 : d(xn+1,xn)≥ d(xn,xn+1)

φ1(d(xn+1,xn))≤ φ1(d(xn+2,xn+1))≤

φ1(d(xn+1,xn))−ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn+1,xn+2))

Which is a contradiction that :

ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn+1,xn+2)) 6= 0, whenever d(xn+1,xn) 6= 0.

Case 2 : d(xn,xn+1)≥ d(xn+1,xn)

φ1(d(xn+2,xn+1))≤

φ1(d(xn,xn+1))−ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn+1,xn+2))

Since, d−1(x,y)≤ d−1(x,T 2y), for all x,y ∈ X , then d(xn,xn+1)≤ d(xn+2,xn+1).

φ1(d(xn,xn+1))≤ φ1(d(xn+2,xn+1))≤

φ1(d(xn,xn+1))−ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn+1,xn+2))
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Which is a contradiction that :

ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn+1,xn+2)) 6= 0, whenever d(xn+1,xn) 6= 0.

Hence (d(xn+1,xn))n is monotone decreasing.

Consequently, there exists r > 0, such that :

d(xn,xn+1)−→ r as n−→ ∞

Since,

φ1(d(xn+1,xn+2))≤

ψ1(d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2))−ψ2(d(xn,xn+1),d(xn,xn+1),d(xn+1,xn+2))

Letting n−→ ∞ in this inequality, we obtain :

φ1(r)≤ ψ1(r,r,r)−ψ2(r,r,r)

So,

ψ2(r,r,r)≤ 0 i.e. r = 0

d(xn,xn+1)−→ 0 as n−→ ∞

Also, there exists r′ > 0, such that :

d(xn+1,xn)−→ r′ as n−→ ∞

Since,

φ1(d(xn+2,xn+1))≤

ψ1(d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1))−ψ2(d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1))

Letting n−→ ∞ in this inequality, we obtain :

φ1(r′)≤ ψ1(r′,0,0)−ψ2(r′,0,0)

and then,

φ1(r′)≤ ψ1(r′,r′,r′)−ψ2(r′,0,0)
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ψ2(r′,0,0)≤ 0 i.e. r′ = 0

d(xn+1,xn)−→ 0 as n−→ ∞

Second step. Next we show that (xn)nis a Cauchy sequences.

Firstly we show (xn)n is a right-Cauchy sequence, if otherwise there exists an ε > 0 for which

we can find sequences of positive integers (m(k))k and (n(k))k such that for all positive integers

k,

n(k)> m(k)> k,

d(xm(k),xn(k))≥ ε and d(xm(k),xn(k)−1)< ε

We follow the same steps as in the proof of previous theorem 3.1) to justify the :

d(xm(k),xn(k))−→ ε as k −→ ∞

d(xm(k)+1,xn(k)+1)−→ ε as k −→ ∞

For x = xm(k) and y = xn(k), we have :

φ1(d(xm(k)+1,xn(k)+1))≤

ψ1(d(xm(k),xn(k)),d(xm(k),xm(k)+1),d(xn(k),xn(k)+1))

−ψ2(d(xm(k),xn(k)),d(xm(k),xm(k)+1),d(xn(k),xn(k)+1))

Letting k −→ ∞ in the above inequality, we obtain :

φ1(ε)≤ ψ1(ε,0,0)−ψ2(ε,0,0)≤ φ1(ε)−ψ2(ε,0,0)

So, ψ2(ε,0,0)≤ 0 i.e. ε = 0. Which is a contradiction by virtue of a property of φ .

Consequently, (xn)n is a right-Cauchy sequence in (X ,d).

Secondly we show (xn)n is a left-Cauchy sequence, if otherwise there exists an ε > 0 for which

we can find sequences of positive integers (m(k))k and (n(k))k such that for all positive integers
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k

n(k)> m(k)> k,

d(xn(k),xm(k))≥ ε and d(xn(k)−1,xm(k))< ε

We follow the same steps as in the proof of previous theorem 3.1) to justify the :

d(xn(k),xm(k))−→ ε as k −→ ∞

d(xn(k)+1,xm(k)+1)−→ ε as k −→ ∞

For x = xn(k) and y = xm(k), we have :

φ1(d(xn(k)+1,xm(k)+1))≤

ψ1(d(xn(k),xm(k)),d(xn(k),xn(k)+1),d(xm(k),xm(k)+1))

−ψ2(d(xn(k),xm(k)),d(xn(k),xn(k)+1),d(xm(k),xm(k)+1))

Letting k −→ ∞ in the above inequality, we obtain :

φ1(ε)≤ ψ1(ε,0,0)−ψ2(ε,0,0)≤ φ1(ε)−ψ2(ε,0,0)

So, ψ2(ε,0,0)≤ 0 i.e. ε = 0. Which is a contradiction by virtue of a property of φ .

Consequently, (xn)n is a left-Cauchy sequence in (X ,d).

By Remark, we deduce that (xn)n is a Cauchy sequence in complete quasi-metric space (X ,d).

It implies that there exists, a p ∈ X such that :

lim
n→∞

d(xn, p) = lim
n→∞

d(p,xn) = 0

Third Step. Putting x = xn and y = p in (3.5), we have :

φ1(d(xn+1,T p))≤

ψ1(d(xn, p),d(xn,xn+1),d(p,T p))−ψ2(d(xn, p),d(xn,xn+1),d(p,T p))

Taking the limit as n−→ ∞ in the above inequality, we obtain :

φ1(d(p,T p))≤ ψ1(0,0,d(p,T p))−ψ2(0,0,d(p,T p))≤ φ1(d(p,T p))−ψ2(0,0,d(p,T p))
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So, ψ2(0,0,d(p,T p))≤ 0 i.e. d(p,T p) = 0. Hence p is a fixed point of T .

Uniqueness of the fixed point : let u ∈ X such that u = Tu.

Putting x = u and y = p in (3.5), we obtain :

φ1(d(Tu,T p))≤ ψ1(d(u, p),d(u,Tu),d(p,T p))−ψ2(d(u, p),d(u,Tu),d(p,T p))

Hence,

φ1(d(Tu,T p))≤ ψ1(d(u, p),0,0)−ψ2(d(u, p),0,0)

φ1(d(u, p))≤ φ1(d(u, p))−ψ2(d(u, p),0,0)

Imply that d(u, p) = 0 i.e. u = p.

Thus, p is a unique fixed point of T .This completes the proof.

Example 3.10. Let X = R and, for all (x,y) ∈ X2, d(x,y) =

{0 i f x=y

|y| otherwise
(X ,d) is complete quasi-metric space.

Define T : X → X by :

T x =

{0 i f −1<x<1

5
11x otherwise

Define ψ1,ψ2 : [0,+∞[3→ [0,+∞[ by for all (t,y,z) ∈ [0,+∞[3,

ψ1(t,y,z) =
1
2

t +
1
40

y+
1
40

z

ψ2(t,y,z) =
1
4

t +
1
40

y+
1
40

z

and

φ1 : x 7→ ψ1(x,x,x) =
11
20

x, for all x ∈ [0,+∞[

we have : T 2x =

{0 i f −1<x<1

x otherwise

, so for all (x,y) ∈ X2,

d(y,x)≤ d(T 2y,x)
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Let (x,y) ∈ X2 such that x 6= y.

Case 1 : −1 < y < 1, we have : d(T x,Ty) = 0 and

ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty)) =
1
4

d(x,y) =
1
4
| y |

Then,

φ1(d(T x,Ty))≤ ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty))

Case 2 : y≤−1 or y≥ 1, we have : Ty = 5
11y and φ1(d(T x,Ty)) =| 1

4y |.

Since | 1
4y |≤|

1
4y |, then

φ1(d(T x,Ty))≤ ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty))

”0” is unique fixed point of T .

If we remove our condition ∀x,y ∈ X ,d−1(x,y) ≤ d−1(x,T 2y), it may be that T does not

admit a fixed point.

Counter-example 3.11. We take (X ,d) a complete quasi-metric space and T : X → X of our

counter-example 3.4

Define ψ1,ψ2 : [0,+∞[3→ [0,+∞[ by for all (t,y,z) ∈ [0,+∞[3,

ψ1(t,y,z) =
1
2

t +
1
3

y+
1
6

z

ψ2(t,y,z) =
1
6

t +
1
3

y+
1
6

z

and

φ1 : x 7→ ψ1(x,x,x) = x, for all x ∈ [0,+∞[

We already know that for each (x,y) ∈ X2, if x > y and y = 0 we have d−1(x,y)> d−1(x,T 2y)

Let (x,y) ∈ X2 such that

Case 1 : y > x, we have : d(T x,Ty) = 1
3(y− x) and

ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty)) =
1
3

d(x,y) =
1
3
(y− x)
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Then,

φ1(d(T x,Ty)) = ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty))

Case 2 : y≤ x, we have : d(T x,Ty) = 0 and

ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty)) =
1
3

d(x,y) = 0

Then,

φ1(d(T x,Ty)) = ψ1(d(x,y),d(x,T x),d(y,Ty))−ψ2(d(x,y),d(x,T x),d(y,Ty))

Then, T has no fixed point.
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