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Abstract. Some generalizations of the fixed point theorems of Mohanta [1], Mustafa and Sims [2] and of Vats et

al [7] are proved, under a new class Φα of auxiliary functions. Also, G-contractive fixed points are obtained for

some contraction type conditions.
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1. Introduction

Several fixed point theorems in metric space setting have been proved through contraction type

conditions involving different types of auxiliary functions. One such auxiliary function is a

mapping ψ : [0,∞)→ [0,∞), known as a contractive modulus, with the choice

ψ(0) = 0 and ψ(t)< t for t > 0.(1.1)
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The notion of contractive modulus was introduced by Solomon Leader [6]. For instance,

ψ1(t) =
t

t +1
and ψ2(t) =

t2

t +1
(1.2)

are contractive moduli. We denote by Ψ, the class of all contractive moduli.

Given a positive integer α , we introduce a generalized class Φα as follows:

(1.3) Φα = {φ : [0,∞)→ [0,∞)|φ(0) = 0,φ(αt)< t for t > 0}.

Remark 1.1. It is obvious that, for α = 1, Φα reduces to the class Ψ. That is Φ1 =Ψ. However,

in general a contractive modulus need not belong to Φα for α > 1, as shown in the following

example:

Example 1.1. Consider

ψ(t) =


2t
3 , t < 1

t
2 , t ≥ 1

Obviously, ψ(0) = 0 and ψ(t)< t for all t > 0 so that ψ ∈Ψ. But

ψ(2t) =


4t
3 , t < 1/2

t, t ≥ 1/2

so that ψ(2t)≥ t for all t > 0. Thus ψ /∈Φα .

Definition 1.1. A mapping φ ∈Φα is said to be upper semicontinuous at t0≥ 0 if limsup
n→∞

φ(tn)≤

φ(t0) whenever 〈tn〉∞n=1 is such that limn→∞ tn = t0, and φ is u.s.c if it is u.s.c. at every t ≥ 0.

Example 1.2. Mappings

t
t +1

,
t2

t +1
,φ(t) =


qt (0≤ t ≤ 1)

t−q (t > 1) ,
(1.4)

and qt with 0≤ q < 1, are continuous contractive modulii, while the contractive modulus

ψ(t) =


0 (0≤ t ≤ a)

t−a (t > a)
(1.5)



82 PHANEENDRA AND SARAVANAN

with a > 0, is usc but not continuous.

In this paper, we obtain the fixed points of self-maps satisfying some contraction type con-

ditions in terms of φ ∈ Φα for different choices of α in G-metric space. Also, we obtain

G-contractive fixed points for some contraction type conditions (See Section 4).

2. G-metric space

Let X be a nonempty set and G : X×X×X → [0,∞) such that

(G1) G(x,y,z) = 0 whenever x,y,z ∈ X are such that x = y = z,

(G2) G(x,x,y)> 0 for all x,y ∈ X with x 6= y,

(G3) G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with z 6= y,

(G4) G(x,y,z) = G(π(x,y,z)) for all x,y,z ∈ X , where π(x,y,z) is a permutation on the set

{x,y,z}

(G5) G(x,y,z)≤ G(x,w,w)+G(w,y,z) for all x,y,z,w ∈ X

Then G is called a G-metric on X and the pair (X ,G), a G-metric space. Axiom (G5) is usu-

ally referred to as the rectangle inequality (of the G-metric G). This notion was introduced by

Mustafa and Sims [2] in 2006.

In any G-metric space (X ,G), we have

(2.1) G(x,y,y)≤ 2G(x,x,y) for all x,y ∈ X .

A G-metric space (X ,G) is said to be symmetric if

(2.2) G(x,y,y) = G(x,x,y) for all x,y ∈ X .

We use the following notions from of [2] in this paper:

Definition 2.1. Let (X ,G) be a G-metric space. A G-ball in X is defined by

BG(x,r) =
{

y ∈ X : G(x,y,y)< r
}
.

It is easy to see that the family of all G-balls forms a base topology, called the G-metric topology

τ(G) on X .
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Also

ρG(x,y) = G(x,y,y)+G(x,x,y) for all x,y ∈ X .(2.3)

induces a metric on X , and the G-metric topology coincides with the metric topology induced

by the metric ρG. This allows us to readily transform many concepts from metric space into the

setting of G-metric space.

Definition 2.2. A sequence 〈xn〉 ∞
n=1 in a G-metric space (X ,G) is said to be G-convergent with

limit p ∈ X if it converges to p in the G-metric topology τ(G).

Definition 2.3. A sequence 〈xn〉 ∞
n=1 in a G-metric space (X ,G) is said to be G-Cauchy if

lim
n,m→∞

G(xn,xm,xm) = 0.

Definition 2.4. A G-metric space (X ,G) is said to be G-complete if every G-Cauchy sequence

in X converges in it.

3. Fixed point theorems involving the class Φα

Our first result is

Theorem 3.1. Suppose that (X ,G) is a complete G-metric space and f , a self-map on X

satisfying the condition

G( f x, f y, f z)≤φ
(

max
{

G(x,y,z),G(x, f x, f x),G(y, f y, f y),G(z, f z, f z),

G(x, f y, f y),G(y, f z, f z),G(z, f x, f x)
})

for all x,y,z ∈ X ,(3.1)

where φ ∈ Φ2 is nondecreasing and upper semicontinuous. Then f will have a unique fixed

point p.

Proof. Let x0 ∈ X be arbitrary. Define 〈xn〉∞n=1 ⊂ X by

xn = f xn−1 for n≥ 1.(3.2)

Writing with x = xn−1 and y = z = xn in (3.1) and then using (2.1), we get
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G( f xn−1, f xn, f xn) = G(xn,xn+1,xn+1)

≤ φ
(

max
{

G(xn−1,xn,xn),G(xn−1, f xn−1, f xn−1),G(xn, f xn, f xn),

G(xn, f xn, f xn),G(xn−1, f xn, f xn),G(xn, f xn, f xn),

G(xn, f xn−1, f xn−1)
})

≤ φ
(

max
{

G(xn−1,xn,xn),G(xn−1,xn,xn),G(xn,xn+1,xn+1),

G(xn,xn+1,xn+1),G(xn−1,xn+1,xn+1),

G(xn,xn+1,xn+1),G(xn,xn,xn)
})

≤ φ
(

max
{

G(xn−1,xn,xn),G(xn,xn+1,xn+1),G(xn−1,xn+1,xn+1)
})

≤ φ
(

max
{

G(xn−1,xn,xn),G(xn,xn+1,xn+1),

G(xn−1,xn,xn)+G(xn,xn+1,xn+1)
})

≤ φ
(
G(xn−1,xn,xn)+G(xn,xn+1,xn+1)

)

Define

tn = G(xn−1,xn,xn) for n≥ 1.(3.3)

Then the above inequality can be written as

tn+1 ≤ φ
(
tn + tn+1

)
(3.4)

We now prove that

tn ≥ tn+1 for n≥ 1.(3.5)

If possible, suppose that tm < tm+1 for some m ≥ 1. Then tm+1 > 0. Since φ is nondecreasing,

from (3.4) it follows that

tm+1 ≤ φ
(
tm+1 + tm

)
< tm+1,
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which is a contradiction. This proves (3.5). In other words, 〈tn〉∞n=1 is a decreasing sequence of

nonnegative real numbers and hence converges to some t ≥ 0.

Now using (3.5) in (3.4), we get

tn+1 ≤ φ
(
tn+1 + tn

)
≤ φ(2tn) for n≥ 1.

Taking the limit superior as n→ ∞ in this and then using the upper semicontinuity of φ , we

obtain that

t ≤ φ(2t).(3.6)

If t > 0 in (3.6), then the choice of φ implies that t ≤ φ(2t)< t, which is a contradiction. Thus

t = lim
n→∞

tn = lim
n→∞

G(xn−1,xn,xn) = 0.(3.7)

We now prove that 〈xn〉∞n=1 is a G-Cauchy sequence in X .

If possible we suppose that 〈xn〉∞n=1 is not G-Cauchy. Then for some ε > 0, we choose

sequences 〈xmk〉
∞

k=1 and 〈xmk〉
∞

k=1 of positive integers such that mk > nk > k and

G(xmk ,xnk ,xnk)≥ ε for k = 1,2,3, ....(3.8)

Suppose that mk is the smallest integer exceeding nk which satisfies (3.8). That is

G(xmk−1,xnk ,xnk)< ε.(3.9)

Now by rectangle inequality of G, we see that

ε ≤ G(xmk ,xnk ,xnk)≤ G(xmk ,xmk−1,xmk−1)+G(xmk−1,xnk ,xnk)

< G(xmk ,xmk−1,xmk−1)+ ε(3.10)

and from (3.7), we see that

lim
k→∞

G(xmk−1,xmk ,xmk) = 0(3.11)
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and

lim
k→∞

G(xnk−1,xnk ,xnk) = 0(3.12)

Using (3.11) in (3.10), we get

lim
k→∞

G(xmk ,xnk ,xnk) = ε.(3.13)

Also by rectangle inequality of G and (2.1), we get

G(xnk−1,xmk ,xmk)≤ G(xnk−1,xnk ,xnk)+G(xnk ,xmk ,xmk)

≤ G(xnk−1,xnk ,xnk)+2G(xnk ,xnk ,xmk).

As k→ ∞ this in view of (3.12) and (3.13), gives

lim
k→∞

G(xnk−1,xmk ,xmk) = 2ε.(3.14)

On the other hand, writing x = xmk−1, y = z = xnk−1 in (3.1), we have

G( f xmk−1, f xnk−1, f xnk−1) = G(xmk ,xnk ,xnk)

≤ φ
(

max
{

G(xmk−1,xnk−1,xnk−1),G(xmk−1, f xmk−1, f xmk−1),

G(xnk−1, f xnk−1, f xnk−1),G(xnk−1, f xnk−1, f xnk−1),

G(xmk−1, f xnk−1, f xnk−1),G(xnk−1, f xnk−1, f xnk−1),

G(xnk−1, f xmk−1, f xmk−1)
})

,

or

ε ≤ G(xmk ,xnk ,xnk)

≤ φ
(

max
{

G(xmk−1,xnk−1,xnk−1),G(xmk−1,xmk ,xmk),G(xnk−1,xnk ,xnk),

G(xnk−1,xnk ,xnk),G(xmk−1,xnk ,xnk),G(xnk−1,xnk ,xnk),

G(xnk−1,xmk ,xmk)
})

= φ
(

max
{

G(xmk−1,xnk−1,xnk−1),G(xmk−1,xmk ,xmk),G(xnk−1,xnk ,xnk),

G(xmk−1,xnk ,xnk),G(xnk−1,xmk ,xmk)
})

.(3.15)
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Proceeding the limit as n→∞ in (3.15) and then using upper semicontinuity of φ , (3.9), (3.11),

(3.12),(3.13) and (3.14) we get

ε ≤ φ
(

max
{

ε,0,0,ε,2ε
})

= φ(2ε).

Since φ is nondecreasing, this finally gives

ε ≤ φ(2ε)< ε,(3.16)

which is a contradiction. Hence 〈xn〉∞n=1 must be a G-Cauchy sequence in X .

Since (X ,G) is G-Complete, there exists a point p ∈ X such that 〈xn〉∞n=1 is G-convergent to

p. That is

lim
n→∞

xn−1 = lim
n→∞

xn = p.(3.17)

We now establish that p is a fixed point of f . In fact, writing x = xn−1 and y = z = p in (3.1)

G( f xn−1, f p, f p) = G(xn, f p, f p)

≤ φ
(

max
{

G(xn−1, p, p),G(xn−1, f xn−1, f xn−1),G(p, f p, f p),

G(p, f p, f p),G(xn−1, f p, f p),G(p, f p, f p),

G(p, f xn−1, f xn−1)
})

≤ φ
(

max
{

G(xn−1, p, p),G(xn−1,xn,xn),G(p, f p, f p),

G(xn−1, f p, f p),G(p,xn,xn)
})

.(3.18)

Proceeding the limit as n→ ∞ in (3.18) and then using (3.17), we get

G(p, f p, f p)≤ φ
(

max
{

0,0,G(p, f p, f p),G(p, f p, f p),0
})

= φ(G(p, f p, f p)).(3.19)

If p 6= f p, then G(p, f p, f p)> 0. Since φ is nondecreasing, (3.19) gives

0 < G(p, f p, f p)≤ φ(G(p, f p, f p))< G(p, f p, f p),

which is a contradiction. Hence p = f p.
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To establish the uniqueness of the fixed point, we suppose that p and q are fixed points of f

with p 6= q. Then Writing x = p and y = z = q in (3.1), we get

G( f p, f q, f q)≤φ
(

max
{

G(p,q,q),G(p, f p, f p),G(q, f q, f q),G(q, f q, f q),

G(p, f q, f q),G(q, f q, f q),G(q, f p, f p)
})

which on using (2.1) implies that

G(p,q,q)≤ φ
(

max
{

G(p,q,q),0,0,0,G(p,q,q),0,G(q, p, p)
})

≤ φ
(

max
{

G(p,q,q),2G(p,q,q)
})

= φ(2G(p,q,q)).

Since φ is nondecreasing, this gives

G(p,q,q)≤ φ(2G(p,q,q))< G(p,q,q),

which is again a contradiction. Therefore, p = q. �

Remark 3.1. Set φ(t) = kt for all t ≥ 0, where 0 < k < 1/2 in Theorem 3.1. Then φ(0) = 0

and φ(2t) = 2kt < t for all t > 0. Therefore, we get

Corollary 3.1 (Theorem 2.1, [3]). Suppose that (X ,G) is a complete G-metric space and f , a

self-map on X satisfying the condition

G( f x, f y, f z)≤k max
{

G(x,y,z),G(x, f x, f x),G(y, f y, f y),G(z, f z, f z),

G(x, f y, f y),G(y, f z, f z),G(z, f x, f x)
}

for all x,y,z ∈ X ,(3.20)

where 0 < k < 1/2. Then f will have a unique fixed point p.

Just similar to Theorem 3.1, we can prove
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Theorem 3.2. Suppose that (X ,G) is a complete G-metric space and f , a self-map on X

satisfying the condition

G( f x, f y, f z)≤φ
(

max
{

G(x, f x, f x),G(x, f y, f y),

G(x, f z, f z),G(y, f y, f y),G(y, f x, f x),

G(y, f z, f z),G(z, f z, f z),G(z, f x, f x),

G(z, f y, f y)
})

for all x,y,z ∈ X ,(3.21)

where φ ∈ Φ2 is nondecreasing and upper semicontinuous. Then f will have a unique fixed

point p.

Remark 3.2. Set φ(t) = kt for all t ≥ 0, where 0 < k < 1/2 in Theorem 3.2. Then φ(0) = 0

and φ(2t) = 2kt < t for all t > 0. Therefore, we get

Corollary 3.2 (Theorem 1, [7]). Suppose that (X ,G) is a complete G-metric space and f , a

self-map on X satisfying the condition

G( f x, f y, f z)≤ k max
{

G(x, f x, f x),G(x, f y, f y),

G(x, f z, f z),G(y, f y, f y),G(y, f x, f x),

G(y, f z, f z),G(z, f z, f z),G(z, f x, f x),

G(z, f y, f y)
}

for all x,y,z ∈ X ,(3.22)

where 0 < k < 1/2. Then f will have a unique fixed point p.

With an argument, similar to that of Theorem 3.1, we can prove the following:

Theorem 3.3. Suppose that (X ,G) is a complete G-metric space and f , a self-map on X

satisfying the condition

G( f x, f y, f z)≤φ
(

max
{

G(x, f y, f y)+G(y, f x, f x)+G(z, f z, f z),

G(y, f z, f z)+G(z, f y, f y)+G(x, f x, f x),

G(z, f x, f x)+G(x, f z, f z)+G(y, f y, f y)
})

for all x,y,z ∈ X ,(3.23)
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where φ ∈ Φ3 is nondecreasing and upper semicontinuous. Then f will have a unique fixed

point p.

Remark 3.3. Set φ(t) = kt for all t ≥ 0, where 0 < k < 1/3 in Theorem 3.3. Then φ(0) = 0

and φ(3t) = 3kt < t for t > 0. Therefore, we have

Corollary 3.3 (Theorem 3.9, [1]). Suppose that (X ,G) is a complete G-metric space and f , a

self-map on X satisfying the condition

G( f x, f y, f z)≤k max
{

G(x, f y, f y)+G(y, f x, f x)+G(z, f z, f z),

G(y, f z, f z)+G(z, f y, f y)+G(x, f x, f x),

G(z, f x, f x)+G(x, f z, f z)+G(y, f y, f y)
}

for all x,y,z ∈ X ,(3.24)

where 0 < k < 1/3. Then f will have a unique fixed point p.

The fourth main result is given below without proof:

Theorem 3.4. Suppose that (X ,G) is a complete G-metric space and f , a self-map on X

satisfying the condition

G( f x, f y, f z)≤φ
(

max
{

G(x, f x, f x)+G(y, f y, f y)+G(z, f z, f z),

G(x, f y, f y)+G(y, f x, f x)+G(z, f y, f y),

G(x, f z, f z)+G(y, f z, f z)+G(z, f x, f x)
})

for all x,y,z ∈ X ,(3.25)

where φ ∈Φ4 is nondecreasing upper semicontinuous. Then f will have a unique fixed point p.

Remark 3.4. Set φ(t) = kt for all t ≥ 0, where 0 < k < 1/4 in Theorem 3.4. Then φ(0) = 0

and φ(4t) = 4kt < t for t > 0. Therefore, we have
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Corollary 3.4 (Vats et al, [7]). Suppose that (X ,G) is a complete G-metric space and f , a

self-map on X satisfying the condition

G( f x, f y, f z)≤ k max
{

G(x, f x, f x)+G(y, f y, f y)+G(z, f z, f z),

G(x, f y, f y)+G(y, f x, f x)+G(z, f y, f y),

G(x, f z, f z)+G(y, f z, f z)+G(z, f x, f x)
}

for all x,y,z ∈ X ,(3.26)

where 0 < k < 1/4. Then f will have a unique fixed point p.

The final main result of this paper is

Theorem 3.5. Let (X ,G) be a complete G-metric space and f be a self-map on X such that

G( f x, f y, f z)≤ φ
(

max
{

G(x, f x, f x)+G(x, f y, f y)+G(x, f z, f z),

G(y, f y, f y)+G(y, f x, f x)+G(y, f z, f z),

G(z, f z, f z)+G(z, f x, f x)+G(z, f y, f y)
})

for all x,y,z ∈ X ,(3.27)

where φ ∈Φ5 is nondecreasing upper semicontinuous. Then f will have a unique fixed point p.

Remark 3.5. Set φ(t) = kt for all t ≥ 0, where 0 < k < 1/5 in Theorem 3.5. Then φ(0) = 0

and φ(5t) = 5kt < t for t > 0. Therefore, we have

Corollary 3.5. Let (X ,G) be a complete G-metric space and f be a self-map on X such that

G( f x, f y, f z)≤ k max
{

G(x, f x, f x)+G(x, f y, f y)+G(x, f z, f z),

G(y, f y, f y)+G(y, f x, f x)+G(y, f z, f z),

G(z, f z, f z)+G(z, f x, f x)+G(z, f y, f y)
}

for all x,y,z ∈ X ,(3.28)

where 0≤ k < 1/5. Then f will have a unique fixed point p.



92 PHANEENDRA AND SARAVANAN

4. G-contractive fixed points

We begin this section with

Definition 4.1 (Phaneendra and Kumara Swamy, [4]). A fixed point p of f on a G-metric space

(X ,G) is a G-contractive fixed point, if for each x0 ∈ X , the orbit O f (x0) = 〈x0, f x0, ..., f nx0, ...〉

is G-convergent, with limit p.

It was shown in [4] that the unique fixed point of the self-map f with the following choices

is a G-contractive fixed point.

(a) G( f x, f y, f z)≤ qG(x,y,z) for all x,y,z ∈ X , where 0≤ q < 1,

(b) G( f x, f y, f z)≤ aG(x, f x, f x)+bG(y, f y, f y)+ cG(z, f z, f z)+ eG(x,y,z) for all x,y,z ∈

X , where a,b,c and e are nonnegative real numbers with a+b+ c+ e < 1.

In [5], the authors have proved that the unique fixed points of the self-maps are G-contractive

fixed points, under (3.24) and (3.28).

Now, we obtain G-contractive fixed points for the maps of Corollaries, obtained in the previ-

ous sections.

Theorem 4.1. Let p be a unique fixed point of a self-map f on a complete G-metric space

satisfying (3.22). Then p will be a G-contractive fixed point.

Proof. Let x0 ∈ X be arbitrary. Writing x = f n−1x0 and y = z = p in (3.22), we get

G( f nx0, p, p) = G( f nx0, f p, f p)

≤ k max
{

G( f n−1x0, f nx0, f nx0),G( f n−1x0, f p, f p),G( f n−1x0, f p, f p),

G(p, f p, f p),d(p, f n−1x0, f n−1x0),G(p, f p, f p),

G(p, f p, f p),G(p, f n−1x0, f n−1x0),G(p, f p, f p)
}

= kM,(4.1)

where

max{G( f n−1x0, f nx0, f nx0),G( f n−1x0, p, p),G(p, f nx0, f nx0)}·(4.2)
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Now, three cases arise:

Case (a). Suppose that M = G(p, f nx0, f nx0). Then, it can be shown that p is a G-contractive

fixed point, as in case (a) of the previous proof.

Case (b). The case of M = G( f n−1x0, p, p) is obvious, since k < 1.

Case (c). Let M = G( f n−1x0, f nx0, f nx0). Then, (4.1) can be written as

G( f nx0, p, p)≤ kG( f n−1x0, f nx0, f nx0) for n≥ 1.(4.3)

But, (3.22) with x = f n−2x0 and y = z = f n−1x0, gives

G( f n−1x0, f nx0, f nx0) = G( f f n−2x0, f f n−1x0, f f n−1x0)

≤ k max
{

G( f n−2x0, f n−1x0, f n−1x0),G( f n−2x0, f nx0, f nx0),

G( f n−2x0, f nx0, f nx0),G( f n−1x0, f nx0, f nx0),0,

G( f n−1x0, f nx0, f nx0),G( f n−1x0, f nx0, f nx0),0

G( f n−1x0, f nx0, f nx0)
}

≤ k
[
G( f n−2x0, f n−1x0, f n−1x0)+G( f n−1x0, f nx0, f nx0)

]
≤
( k

1−k

)
G( f n−2x0, f n−1x0, f n−1x0),

from which, by induction, it follows that

G( f n−1x0, f nx0, f nx0)≤
( k

1−k

)n−1
G(x0, f x0, f x0),n≥ 1.

Substituting this in (4.3), we get

G( f nx0, p, p)≤ k
( k

1−k

)n−1
G(x0, f x0, f x0) for n≥ 1.(4.4)

Applying the limit as n→ ∞ in (4.4), we see that G( f nx0, p, p)→ 0 or f nx0 → p as n→ ∞.

Since x0 is arbitrary, we conclude that p is a G-contractive fixed point. �

Similarly, we have
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Theorem 4.2. Let p be a unique fixed point of a self-map f on a complete G-metric space

satisfying (3.20). Then p will be a G-contractive fixed point.

Theorem 4.3. Let p be a unique fixed point of a self-map f on a complete G-metric space

satisfying (3.26). Then p will be a G-contractive fixed point.

Proof. Let x0 ∈ X be arbitrary. Writing x = f n−1x0 and y = z = p in (3.26) and using (G5), we

get

G( f nx0, p, p) = G( f nx0, f p, f p)

≤ k max
{

G( f n−1x0, f nx0, f nx0)+G( f n−1x0, f p, f p)+G( f n−1x0, f p, f p),

G(p, f p, f p)+G(p, f nx0, f nx0)+G(p, f p, f p),

G(p, f p, f p)+G(p, f nx0, f nx0)+G(p, f p, f p)
}

= k max{G( f n−1x0, f nx0, f nx0)+2G( f n−1x0, p, p),

0+G(p, f nx0, f nx0)+0,0+G(p, f nx0, f nx0)+0}

= kM,(4.5)

where

M = max{G( f n−1x0, f nx0, f nx0)+2G( f n−1x0, p, p),G(p, f nx0, f nx0)}·(4.6)

We have two cases:

Case (a). Suppose that M = G(p, f nx0, f nx0). Then, (4.5), in view of (2.1), can be written as

G( f nx0, p, p)≤ kG(p, f nx0, f nx0)≤ 2kG(p, p, f nx0) for all n≥ 1.(4.7)

If f nx0 6= p for some m, then (4.7) would imply a contradiction that

0 < G(p, p, f mx0)< G(p, p, f mx0),

since 2k < 1. Therefore, f nx0 = p for all n, so that f nx0→ p as n→ ∞. Since x0 is arbitrary,

we conclude that p is a G-contractive fixed point.



THE CLASS Φα AND FIXED POINT 95

Case (b). Let M = G( f n−1x0, f nx0, f nx0)+2G( f n−1x0, p, p). Then, (4.5) can be written as

G( f nx0, p, p)≤ k[G( f n−1x0, f nx0, f nx0)+2G( f n−1x0, p, p)],n≥ 1.(4.8)

Now, (3.26) with x = f n−2x0 and y = z = f n−1x0, gives

G( f n−1x0, f nx0, f nx0) = G( f f n−2x0, f f n−1x0, f f n−1x0)

≤ k max
{

G( f n−2x0, f n−1x0, f n−1x0)+2G( f n−1x0, f nx0, f nx0),

G( f n−2x0, f nx0, f nx0)+0+G( f n−1x0, f nx0, f nx0),

G( f n−2x0, f nx0, f nx0)+G( f n−1x0, f nx0, f nx0)+0
}

≤ k max
{

G( f n−2x0, f n−1x0, f n−1x0)+2G( f n−1x0, f nx0, f nx0),

G( f n−2x0, f n−1x0, f n−1x0)+2G( f n−1x0, f nx0, f nx0)
}

= k
[
G( f n−2x0, f n−1x0, f n−1x0)+2G( f n−1x0, f nx0, f nx0)

]
≤
( k

1−2k

)
G( f n−2x0, f n−1x0, f n−1x0),

from which, by induction, it follows that

G( f n−1x0, f nx0, f nx0)≤
( k

1−2k

)n−1
G(x0, f x0, f x0),n≥ 1.

Substituting this in (4.8), we get

G( f nx0, p, p)≤ k
[( k

1−2k

)n−1
G(x0, f x0, f x0)+2G( f n−1x0, p, p)

]
,n≥ 1,

which, again by induction, gives

G( f nx0, p, p)≤k
[
1+(2k)2 + · · ·+(2k)n−1]( k

1−2k

)n−1
G(x0, f x0, f x0)

+(2k)nG(x0, p, p)

=k
[

1−(2k)n

1−2k

]( k
1−2k

)n−1
G(x0, f x0, f x0)

+(2k)nG(x0, p, p) for all n≥ 1.(4.9)

Note that 2k < 1. Therefore, applying the limit as n→∞ in (4.9), we see that G( f nx0, p, p)→ 0

or f nx0 → p as n → ∞. Since x0 is arbitrary, we conclude that p is a G-contractive fixed

point. �
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Conclusion: A new class Φα of auxiliary functions has been introduced and then the gener-

alizations of the fixed point theorems of Mustafa and Sims [2], Mohanta [1] and of Vats et al

[7] have been proved. Also, G-contractive fixed points are obtained for self-maps satisfying the

contractive type conditions (3.20), (3.22) and (3.26).
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