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Abstract. In this paper, we define some new notions of gap functions of random generalized mixed variational

inequality problems in a fuzzy environment. Further, we compute error bounds for random generalized mixed

variational inequality problems in terms of the residual gap function, the regularized gap function and the D-gap

function. The results obtained are new and generalize a number of known results for generalized mixed variational

inequality problems with fuzzy mappings.
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1. Introduction

The theory of gap function was introduced for the study of a convex optimization problem

and subsequently applied to variational inequality problems. One of the classical approaches in

the analysis of a variational inequality problem is to transform it into an equivalent optimization

problem via the notion of a gap function. Recently, some efforts has been made to develop gap
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functions for various classes of variational inequality problems; see for example [1, 2, 3, 7, 8,

9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23]. Besides these, gap functions also turned out to

be very useful in designing new globally convergent algorithms and in analyzing the rate of

convergence of some iterative methods and also in deriving the error bounds.

In 1965, Zadeh [24] introduced the fuzzy set theory. The applications of the fuzzy set theory

can be found in control engineering and optimization problems of mathematical sciences. In

the recent past, variational inequalities in the setting of fuzzy mappings have been introduced

and studied which are closely related with fuzzy optimization problems. As a result, variational

inequality problems have been generalized and extended in various directions using novel tech-

niques of fuzzy theory.

In 1989, Chang and Zhu [5] introduced the concepts of variational inequality for fuzzy map-

pings. The concept of a random fuzzy mapping was first introduced by Huang [11] while

studying a new class of random multi-valued nonlinear generalized variational inclusions. For

some related work, we refer to [6, 10, 11]. Recently, Dai [6] introduced a new class of general-

ized mixed variational-like inequalities for random fuzzy mappings and established an existence

theorem and an iterative algorithm for finding the solution of problems.

Throughout the paper, let H be a real Hilbert space, whose inner product and norm are de-

noted by 〈·, ·〉 and ‖ ·‖, respectively. Let F be a collection of all fuzzy sets over H. A mapping

T : H → F (H) is called a fuzzy mapping on H. If T is a fuzzy mapping on H, then T (x)

(denoted by Tx) is a fuzzy set on H and Tx(y) is the membership function of y in Tx. Let

A ∈F (H),q ∈ [0,1]. Then the set (A)q = {x ∈ H : A(x)≥ q} is called a q-cut set of A.

In this paper, we denote by (Ω,Σ) a measurable space, where Ω is a set and Σ is a σ -algebra

of subsets of Ω and also we denote by B(H),2H ,CB(H) and H(·, ·) the class of Borel σ -fields

in H, the family of all nonempty subsets of H, the family of all nonempty closed bounded

subsets of H, and the Hausdörff metric on CB(H), respectively.

Let T̂ : Ω×H→F (H) be a random fuzzy mapping satisfying the following:

Condition(I): There exists a mapping c : H→ [0,1] such that

(T̂t,x)c(x) ∈CB(H), ∀ (t,x) ∈Ω×H.
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By using the random fuzzy mapping T̂ , we can define a random multi-valued mapping T as

follows:

T : Ω×H→CB(H), (t,x)→ (T̂t,x)c(x), ∀ (t,x) ∈Ω×H.

T is called the random multi-valued mapping induced by the random fuzzy mapping T̂ .

Given mapping c : H → [0,1], the random fuzzy mapping T̂ : Ω×H →F (H) satisfies the

condition (I) and random operator g : Ω×H → H with Im g∩ dom ∂φ 6= ∅, we consider the

following random generalized mixed variational inequality problem (for short, RGMVIP):

Find measurable mappings x,w : Ω→ H, such that for all t ∈Ω, y(t) ∈ H,

T̂t,x(t)(w(t))≥ c(x(t)),

〈
w(t),y(t)−g(t,x(t))

〉
+φ
(
g(t,x(t)),y(t)

)
−φ
(
g(t,x(t)),g(t,x(t))

)
≥ 0, (1.1)

where ∂φ denotes the sub-differential of a proper, convex, and lower semi-continuous function

φ(·, ·) : H×H→ R∪{+∞} with its effective domain being closed.

The set of measurable mappings (x,w) is called a random solution of the RGMVIP (1.1).

Special cases:

(i) If c is zero operator and T : H → H is a single valued mapping and g ≡ I, the identity

operator then the RGMVIP (1.1) reduces to the generalized mixed variational inequality

problem, denoted by GMVIP, which consists in finding x ∈ H such that

〈T x,y− x〉+φ(x,y)−φ(x,x)≥ 0,∀ y ∈ H. (1.2)

(ii) If φ(x,y) = φ(y),∀ x then problem (1.2) reduces to mixed variational inequality prob-

lem, denoted by MVIP, which consists in finding x ∈ H such that

〈T x,y− x〉+φ(y)−φ(x)≥ 0,∀ y ∈ H, (1.3)

which was studied by Tang and Huang [20]. In this paper, he introduced two regularized

gap functions for the MVIP (1.3) and studied their differentiable properties.

(iii) If the function φ(·) is an indicator function of a closed set K in H, then MVIP (1.3)

reduces to a classical variational inequality problem, denoted by VIP, which consists in
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finding x ∈ K such that

〈T x,y− x〉 ≥ 0,∀ y ∈ K, (1.4)

which was studied by [1, 3, 7, 9, 15, 20]. They derived local and global error bounds for

the VIP (1.4) in terms of the regularized gap functions and the D-gap functions.

Rest of the paper is organized as follows: In Section 2, we give some basic definitions and

results which will be used in the paper. Furthermore, by using the residual vector we obtain the

error bound for the solution of RGMVIP (1.1). In Section 3, we introduce a regularized gap

function for RGMVIP (1.1) and derive the error bounds with and without Lipschitz continuity

assumption. In Section 4, we introduce the D-gap function and derive global error bounds in

terms of the D-gap function for the solution of RGMVIP (1.1).

2. Preliminaries

Definition 2.1. [11] A mapping x : Ω→ H is said to be measurable if for any B ∈B(H),{t ∈

Ω : x(t) ∈ B} ∈ Σ.

Definition 2.2. [11] A mapping f : Ω×H → H is called a random operator if for any x ∈

H, f (t,x) = x(t) is measurable. A random operator f is said to be continuous if for any t ∈Ω,

the mapping f (t, .) : H→ H is continuous.

Definition 2.3. [11] A multi-valued mapping T : Ω→ 2H is said to be measurable if for any

B ∈B(H), T−1(B) = {t ∈Ω : T (t)∩B 6=∅} ∈ Σ.

Definition 2.4. [11] A mapping w : Ω→ H is called a measurable selection of a multi-valued

measurable mapping T : Ω→ 2H if w is measurable and for any t ∈Ω, w(t) ∈ T (t).

Definition 2.5. [11] A mapping T : Ω×H → 2H is called a random multi-valued mapping if

for any x ∈ H, T (.,x) is measurable. A random multi-valued mapping T : Ω×H →CB(H) is

said to be H-continuous if for any t ∈Ω, T (t, .) is continuous in the Hausdörff metric.

Definition 2.6. [11] A fuzzy mapping T : Ω→ F (H) is called measurable, if for any ν ∈

(0,1], (T (.))ν : Ω→ 2H is a measurable multi-valued mapping.

Definition 2.7. [11] A fuzzy mapping T : Ω×H →F (H) is called a random fuzzy mapping,

if for any x ∈ H,T (.,x) : Ω→F (H) is a measurable fuzzy mapping.
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Definition 2.8. A bi-function φ : H×H→ R is said to be skew symmetric if,

φ(x(t),x(t))−φ(x(t),y(t))−φ(y(t),x(t))+φ(y(t),y(t))≥ 0, ∀ x,y ∈ H, t ∈Ω.

Definition 2.9. A function G : H → R is said to be a gap function for the RGMVIP (1.1), if it

satisfies the following properties:

(i) G(x)≥ 0, ∀ x ∈ H;

(ii) G(xo) = 0, if and only if xo ∈ H solves the RGMVIP (1.1).

Now we first recall the following well-known results and concepts.

For the VIP (1.4), it is well known that x ∈ K is a solution, if and only if

0 = x−PK[x−αT (x)],

where PK is the orthogonal projector onto K and α > 0 is arbitrary. Hence, the norm of the right

hand side of the above equation can serve as a gap function for VIP (1.4), which is commonly

known as the natural residual vector.

Then, motivated by the proximal map given in [17], we derive a similar characterization for

the RGMVIP (1.1) in the random fuzzy environment by defining the mapping Pφ

α(t) : Ω×H→

dom φ , as

Pφ ,z
α(t)(t,z) = arg min

y(t)∈H

{
φ(g(t,x(t)),y(t))+

1
2α(t)

‖y(t)− z(t)‖2
}
, z(t) ∈ H, t ∈Ω, α > 0,

where α : Ω→ (0,+∞) a measurable function which is the so called proximal mapping in H

for a random fuzzy mapping. Note that the objective function above is proper strongly convex.

Since dom φ is closed, Pφ ,z
α(t)(t,z) is well defined and single-valued.

For any measurable function α : Ω→ (0,+∞) define the residual vector

Rφ ,x
α(t)(t,x(t)) = g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)], x(t) ∈ H. (2.1)

Next, we show that Rφ ,x
α(t)(t,x(t)) plays the role of the natural residual vector in random fuzzy

mapping for the RGMVIP (1.1).

Lemma 2.1. For any measurable function α : Ω→ (0,+∞) and for each t ∈Ω, the measurable

mapping x : Ω→ H is a solution of the RGMVIP (1.1) if and only if Rφ ,x
α(t)(t,x(t)) = 0.
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Proof. Let Rφ ,x
α(t)(t,x(t)) = 0, which implies that g(t,x(t)) = Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)].

It is equivalent to

g(t,x(t)) = arg min
y(t)∈H

{
φ(g(t,x(t)),y(t))+

1
2α(t)

‖y(t)− (g(t,x(t))−α(t)w(t))‖2
}
.

By the optimality conditions (which are necessary and sufficient, by convexity), the latter is

equivalent to

0 ∈ ∂φ(g(t,x(t)),y(t))+
1

α(t)

[
g(t,x(t))− (g(t,x(t))−α(t)w(t))

]
= ∂φ(g(t,x(t)),y(t))+w(t),

which implies

−w(t) ∈ ∂φ(g(t,x(t)),y(t)).

This in turn is equivalent, by the definition of the sub-gradient, to

φ
(
g(t,x(t)),y(t)

)
≥ φ

(
g(t,x(t)),g(t,x(t))

)
−
〈

w(t),y(t)−g(t,x(t))
〉
, ∀ y(t) ∈ H, t ∈Ω,

which implies that x(t) solves the RGMVIP (1.1).

Definition 2.10. A random multi-valued operator T : Ω×H → CB(H) is said to be strongly

g-monotone, if there exists a measurable function θ : Ω→ (0,+∞) such that〈
w1(t)−w2(t),g(t,x1(t))−g(t,x2(t))

〉
≥ θ(t)‖x1(t)− x2(t)‖2,

∀ wi(t) ∈ T (t,xi), ∀ xi(t) ∈ H, i = 1,2, ∀ t ∈Ω.

Definition 2.11. A random operator g : Ω×H→ H is said to be Lipschitz continuous, if there

exists a measurable function L : Ω→ (0,+∞) such that

‖g(t,x1(t))−g(t,x2(t))‖ ≤ L(t)‖x1(t)− x2(t)‖, ∀ xi(t) ∈ H, i = 1,2, ∀ t ∈Ω.

Definition 2.12. A random multi-valued mapping T : Ω×H→CB(H) is said to be Ĥ-Lipschitz

continuous, if there exists a measurable function λ : Ω→ (0,+∞) such that

Ĥ(T (t,x(t)),T (t,xo(t)))≤ λ (t)‖x(t)− xo(t)‖, ∀ x(t),xo(t) ∈ H.

Definition 2.13. Pφ ,x is said to be non-expansive, if

‖Pφ ,x(v)−Pφ ,x(w)‖ ≤ ‖v−w‖,∀x,v,w ∈ H.
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Now, we give the following lemmas.

Lemma 2.2. [4] Let T : Ω×H → CB(H) be a Ĥ-Lipschitz continuous random multi-valued

mapping, then for measurable mapping x : Ω→ H, the multi-valued mapping T (·,x(·)) : Ω→

CB(H) is measurable.

Lemma 2.3. [4] Let T1,T2 : Ω→CB(H) be two measurable multi-valued mappings, ε > 0 be

a constant, and w1 : Ω→ H be a measurable selection of T1, then there exists a measurable

selection w2 : Ω→ H of T2 such that for all t ∈Ω,

‖w1(t)−w2(t)‖ ≤ (1+ ε)Ĥ(T1(t),T2(t)).

Lemma 2.4. Let x : Ω→ H be a measurable mapping and α : Ω→ (0,+∞) be a measur-

able function, then for all x(t) ∈ H and for each t ∈ Ω, Rφ ,x
α(t)(t,x(t)) is a gap function for the

RGMVIP (1.1).

Next we show that the RGMVIP (1.1) has a unique solution.

Theorem 2.1. Suppose that for each t ∈ Ω, xo(t) ∈ H is a solution of the RGMVIP (1.1). Let

(Ω,Σ) be a measurable space, and H be a real Hilbert space. Let the random fuzzy mapping

T̂ : Ω×H → F (H) satisfy the condition (I) and T : Ω×H → CB(H) be the random multi-

valued mapping induced by the random fuzzy mapping T̂ . Let g : Ω×H → H be a random

mapping and φ : H×H→ R∪{+∞} be a real valued function such that

(i) for each t ∈ Ω, the measurable mapping T is strongly g-monotone and Ĥ-Lipschitz

continuous with the measurable functions θ ,λ : Ω→ (0,+∞), respectively;

(ii) for each t ∈Ω, the mapping g(t, .) is Lipschitz continuous with the measurable function

L : Ω→ (0,+∞);

(iii) if there exists a measurable function K : Ω→ (0,+∞) such that

∥∥Pφ ,x
α(t)(z)−Pφ ,xo

α(t) (z)
∥∥≤ K(t)

∥∥x(t)− xo(t)
∥∥, ∀ x(t),xo(t),z(t) ∈ H,

with

K(t)< 1−
√

L2(t)−2α(t)θ(t)+α2(t)(1+ ε)λ (t)

then, RGMVIP (1.1) has a unique solution.
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Proof. (Uniqueness). Let the two measurable mappings x1,x2 : Ω→ H be the two solutions of

the RGMVIP (1.1) such that x1(t) 6= x2(t) ∈ H. Then, we have

〈
w1(t),y(t)−g(t,x1(t))

〉
+φ
(
g(t,x1(t)),y(t)

)
−φ
(
g(t,x1(t)),g(t,x1(t))

)
≥ 0, (2.2)

〈
w2(t),y(t)−g(t,x2(t))

〉
+φ
(
g(t,x2(t)),y(t)

)
−φ
(
g(t,x2(t)),g(t,x2(t))

)
≥ 0. (2.3)

Taking y(t) = g(t,x2(t)) in (2.2) and y(t) = g(t,x1(t)) in (2.3), adding the resultants, we have〈
w1(t)−w2(t),g(t,x2(t))−g(t,x1(t))

〉
≥ 0.

Since T is strongly g-monotone with measurable function θ : Ω→ (0,+∞), therefore

0≤
〈

w1(t)−w2(t),g(t,x2(t))−g(t,x1(t))
〉
≤−θ(t)

∥∥x1(t)− x2(t)
∥∥2
,

which implies that x1(t) = x2(t), ∀ t ∈Ω, the uniqueness of the solution of the RGMVIP (1.1).

Now, by using normal residual vector Rφ ,x
α(t)(t,x(t)), we derive the error bounds for the solu-

tion of RGMVIP (1.1).

Theorem 2.2. Suppose that for each t ∈ Ω,xo(t) ∈ H is a solution of the RGMVIP (1.1). Let

(Ω,Σ) be a measurable space, and H be a real Hilbert space. Suppose that g : Ω×H→H be a

random mapping and φ : H×H → R∪{+∞} be a real valued function. Let the random fuzzy

mapping T̂ : Ω×H → F (H) satisfy the condition (I), and a random multi-valued mapping

T : Ω×H→CB(H) induced by the random fuzzy mapping such that

(i) for each t ∈ Ω, the measurable mapping T is strongly g-monotone and Ĥ-Lipschitz

continuous with the measurable functions θ ,λ : Ω→ (0,+∞), respectively;

(ii) for each t ∈Ω, the mapping g(t, .) is Lipschitz continuous with the measurable function

L : Ω→ (0,+∞);

(iii) if there exists a measurable function K : Ω→ (0,+∞) such that

∥∥Pφ ,x
α(t)(z)−Pφ ,xo

α(t) (z)
∥∥≤ K(t)

∥∥x(t)− xo(t)
∥∥, ∀ x(t),xo(t),z(t) ∈ H,

then for any x(t) ∈ H, t ∈Ω and α(t)>
[

L(t)K(t)
θ(t)−K(t)λ (t)(1+ε)

]
, we have

∥∥x(t)− xo(t)
∥∥≤ [ α(t)λ (t)(1+ ε)+L(t)

α(t)θ(t)−L(t)K(t)−K(t)α(t)λ (t)(1+ ε)

]∥∥Rφ ,x
α(t)(t,x(t))

∥∥.
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Proof. Let for each t ∈Ω, xo(t) ∈ H be a solution of the RGMVIP (1.1), then〈
wo(t),y(t)−g(t,xo(t))

〉
+φ
(
g(t,xo(t)),y(t)

)
−φ
(
g(t,xo(t)),g(t,xo(t)

)
≥ 0.

Substituting y(t) = Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)] in the above inequality, we have〈
wo(t),P

φ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,xo(t))

〉
+φ
(
g(t,xo(t)),P

φ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

)
−φ
(
g(t,xo(t)),g(t,xo(t)

)
≥ 0.

(2.4)

For any fixed x(t) ∈ H and measurable function α : Ω→ (0,+∞), we observe that

g(t,x(t))−α(t)w(t) ∈
(
I +α(t)∂φ

)(
I +α(t)∂φ

)−1
(g(t,x(t))−α(t)w(t))

=
(
I +α(t)∂φ

)
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],

which is equivalent to

−w(t)+
1

α(t)

[
g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
]

∈ ∂φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
)
.

By the definition of a sub-differential, we have〈
w(t)− 1

α(t)

(
g(t,x(t))−Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)]
)
,

y(t)−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

〉
+φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],y(t)
)

−φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

)
≥ 0.

Taking y(t) = g(t,xo(t)) in the above, we get〈
w(t)− 1

α(t)

(
g(t,x(t))−Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)]
)
,

g(t,xo(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

〉
+φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],g(t,xo(t))
)

−φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

)
≥ 0.
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This implies that

〈
−w(t)+

1
α(t)

(
g(t,x(t))−Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)]
)
,

Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,xo(t))

〉
+φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],g(t,xo(t))
)

−φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

)
≥ 0.

(2.5)

Adding (2.4) and (2.5), we get

〈
wo(t)−w(t)+

1
α(t)

[
g(t,x(t))−Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)]
]
,

Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,xo(t))

〉
+φ
(
g(t,xo(t)),P

φ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

)
−φ
(
g(t,xo(t)),g(t,xo(t))

)
+φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],g(t,xo(t))
)

−φ
(
Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)],Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

)
≥ 0.

Since φ is skew symmetric, we get

〈
wo(t)−w(t)+

1
α(t)

[
g(t,x(t))−Pφ ,xo

α(t) [g(t,x(t))−α(t)w(t)]
]
,

Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,xo(t))

〉
≥ 0.

This can also be written as

α(t)
〈

wo(t)−w(t),Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,x(t))

〉
+α(t)

〈
wo(t)−w(t),g(t,x(t))−g(t,xo(t))

〉
+
〈

g(t,x(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)],

Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,x(t))

〉
+
〈

g(t,x(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)],g(t,x(t))−g(t,xo(t))

〉
≥ 0,
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which implies that

α(t)
〈

wo(t)−w(t),Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,x(t))

〉
+
〈

g(t,x(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)],g(t,x(t))−g(t,xo(t))

〉
≥ α(t)

〈
wo(t)−w(t),g(t,xo(t))−g(t,x(t))

〉
+
〈

g(t,x(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)],

g(t,x(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

〉
.

By using the strong g-monotonicity of T , we get

α(t)
〈

wo(t)−w(t),Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,x(t))

〉
+
〈

g(t,x(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)],g(t,x(t))−g(t,xo(t))

〉
≥ α(t)θ(t)

∥∥xo(t)− x(t)
∥∥2

+
∥∥Rφ ,xo

α(t)(t,x(t))
∥∥2
.

Also the above inequality can be written as

α(t)
〈

wo(t)−w(t),Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−g(t,x(t))

−Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]+Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
〉

+
〈

g(t,x(t))−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]

+Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)],g(t,x(t))−g(t,xo(t))

〉
≥ α(t)θ(t)

∥∥xo(t)− x(t)
∥∥2

+
∥∥Rφ ,xo

α(t)(t,x(t))
∥∥2
.

By using the Cauchy-Schwarz inequality along with the triangular inequality, we have

α(t)
∥∥wo(t)−w(t)

∥∥∥∥Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
∥∥

+α(t)
∥∥wo(t)−w(t)

∥∥∥∥Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]−g(t,x(t))

∥∥
+
∥∥g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
∥∥∥∥g(t,xo(t))−g(t,x(t))

∥∥
+
∥∥Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]−Pφ ,xo
α(t) [g(t,x(t))−α(t)w(t)]

∥∥∥∥g(t,xo(t))−g(t,x(t))
∥∥

≥ α(t)θ(t)
∥∥xo(t)− x(t)

∥∥2
+
∥∥Rφ ,xo

α(t)(t,x(t))
∥∥2
.
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Now using the Ĥ-Lipschitz continuity of T , the Lipschitz continuity of g, and assumption (iii)

on Pφ ,x
α(t)(.), we have

α(t)λ (t)(1+ ε)
∥∥xo(t)− x(t)

∥∥K(t)
∥∥xo(t)− x(t)

∥∥
+α(t)λ (t)(1+ ε)

∥∥xo(t)− x(t)
∥∥∥∥Rφ ,x

α(t)(t,x(t))
∥∥

+
∥∥Rφ ,x

α(t)(t,x(t))
∥∥L(t)

∥∥xo(t)− x(t)
∥∥+K(t)L(t)

∥∥x(t)− xo(t)
∥∥2

≥ α(t)θ(t)
∥∥xo(t)− x(t)

∥∥2
+
∥∥Rφ ,xo

α(t)(t,x(t))
∥∥2
.

The above can be again written as

K(t)α(t)λ (t)(1+ ε)
∥∥xo(t)− x(t)

∥∥2
+α(t)λ (t)(1+ ε)

∥∥xo(t)− x(t)
∥∥∥∥Rφ ,x

α(t)(t,x(t))
∥∥

+L(t)
∥∥Rφ ,x

α(t)(t,x(t))
∥∥∥∥xo(t)− x(t)

∥∥+K(t)L(t)
∥∥x(t)− xo(t)

∥∥2

≥ α(t)θ(t)
∥∥xo(t)− x(t)

∥∥2
+
∥∥Rφ ,x

α(t)(t,x(t))
∥∥2
.

Therefore, we have[
−K(t)α(t)λ (t)(1+ ε)−L(t)K(t)+α(t)θ(t)

]∥∥xo(t)− x(t)
∥∥2

≤ [α(t)λ (t)(1+ ε)+L(t)]
∥∥xo(t)− x(t)

∥∥∥∥Rφ ,x
α(t)(t,x(t))

∥∥
Hence,

∥∥xo(t)− x(t)
∥∥≤ [ α(t)λ (t)(1+ ε)+L(t)

α(t)θ(t)−L(t)K(t)−L(t)α(t)λ (t)(1+ ε)

]∥∥Rφ ,x
α(t)(t,x(t))

∥∥,
∀ x(t) ∈ H, t ∈Ω,

where

α(t)>

[
L(t)K(t)

θ(t)−K(t)λ (t)(1+ ε)

]
.

3. Regularized gap functions

In this section our main motivation is to overcome the non differentiability of residual vector

Rφ ,x
α(t) i.e., the gap function defined by (2.1). Now by using an approach due to Fukushima

[7], we construct another gap function associated with problem RGMVIP (1.1), which can be
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viewed as a regularized gap function. For α > 0, the functions Gα is defined by

Gα(x(t)) = max
y(t)∈H

{〈
w(t),g(t,x(t))− y(t)

〉
−φ
(
g(t,x(t)),y(t)

)
+φ
(
g(t,x(t)),g(t,x(t))

)
− 1

2α

∥∥g(t,x(t))− y(t)
∥∥2
} (3.1)

which is finite valued everywhere and is differentiable whenever all operators involved in

Gα(x(t)), are differentiable.

Lemma 3.1. For any α > 0,Gα(x(t)) can be written as

Gα(x(t)) =
〈

w(t),g(t,x(t))−Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

〉
−φ
(
g(t,x(t)),

Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
+φ
(
g(t,x(t)),g(t,x(t))

)
− 1

2α

∥∥g(t,x(t))−Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

∥∥2
, ∀ x(t) ∈ H

(3.2)

Proof. If x(t) /∈ dom φ , then equation (3.2) holds, because φ ∼= +∞, while the other terms are

all finite (recall that Pφ ,x
α(t)(t,z) ∈ dom φ , for any z(t) ∈ H). Consider now any x(t) ∈ dom φ .

Denote by F(y) the function being maximized in (3.1). Let z(t) be the (unique, by concavity of

F(y)) element at which the maximum is realized in (3.1). Then z(t) is uniquely characterized

by the optimality condition

0 ∈ ∂ (−F(z)) = w(t)+∂φ(.,z)+
1
α
(z(t)−g(t,x(t))

= ∂φ(.,z)+
1

α(t)
[z(t)− (g(t,x(t))−α(t)w(t))].

But, this inclusion also uniquely characterizes the solution of the problem

z = arg min
y(t)∈H

{
φ(g(t,x(t)),y(t))+

1
2α

∥∥y(t)− (g(t,x(t))−α(t)w(t))
∥∥2
}

= Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)],

where the above equation follows from the definition of the proximal mapping Pφ ,x
α(t)(.).

Next we show the function Gα(x(t)) for α > 0 given by (3.1) is a gap function for RGMVIP

(1.1).

Theorem 3.1. If α > 0, then we have

Gα(x(t))≥
1

2α

∥∥Rφ ,x
α(t)(t,x(t))

∥∥2
, ∀ x(t) ∈ H.
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In particular, Gα(x(t)) = 0, if and only if x(t) is a solution of RGMVIP (1.1).

Proof. For any fixed x(t) ∈ H, t ∈Ω and α > 0.

g(t,x(t))−α(t)w(t) ∈(I +α(t)∂φ)(I +α(t)∂φ)−1[g(t,x(t))−α(t)w(t)]

=(I +α(t)∂φ)Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)],

which is equivalent to

−w(t)+
1

α(t)

[
g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
]

∈ ∂φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
)
.

By the definition of a sub-differential, we have〈
w(t)− 1

α(t)

[
g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
]
,

y(t)−Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

〉
+φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],y(t)
)

−φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
≥ 0.

Taking y(t) = g(t,x(t)) in the above inequality, we get

〈
w(t)− 1

α(t)

[
g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
]
,

g(t,x(t))−Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

〉
+φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],g(t,x(t))
)

−φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
≥ 0,

or 〈
w(t),g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
〉

+φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],g(t,x(t))
)

−φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
≥ 1

α(t)

〈
Rφ ,x

α(t)(t,x(t)),R
φ ,x
α(t)(t,x(t))

〉
.

(3.3)
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Combining (3.2) and (3.3) and by using the skew symmetry of φ , we get

Gα(x(t))≥
1

α(t)

〈
Rφ ,x

α(t)(t,x(t)),R
φ ,x
α(t)(t,x(t))

〉
− 1

2α(t)

∥∥Rφ ,x
α(t)(t,x(t))

∥∥2

=
1

2α(t)

∥∥Rφ ,x
α(t)(t,x(t))

∥∥2
.

Clearly, we have Gα(x(t))≥ 0, ∀ x(t) ∈ H.

Now, from the above conclusion, if Gα(x(t)) = 0, then Rφ ,x
α(t)(t,x(t)) = 0. Hence by Lemma

2.1, we see that x(t) ∈H is a solution of RGMVIP (1.1). Conversely, if x(t) ∈H is a solution of

RGMVIP (1.1), then g(t,x(t)) = Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)], consequently, from (3.2) we have

Gα(x(t)) = 0.

As a consequence of Theorem 2.2 and Theorem 3.1, we have the following result on error

bound in terms of Gα(t)(x(t)) for RGMVIP (1.1).

Corollary 3.1. Suppose that for each t ∈ Ω,xo(t) ∈ H is a solution of the RGMVIP (1.1). Let

(Ω,Σ) be a measurable space, and H be a real Hilbert space. Let the random fuzzy mapping

T̂ : Ω×H → F (H) satisfy the condition (I) and T : Ω×H → CB(H) be the random multi-

valued mapping induced by the random fuzzy mapping T̂ . Let g : Ω×H → H be a random

mapping and φ : H×H→ R∪{+∞} be a real valued function such that

(i) for each t ∈ Ω, the measurable mapping T is strongly g-monotone and Ĥ-Lipschitz

continuous with the measurable functions θ ,λ : Ω→ (0,+∞), respectively;

(ii) for each t ∈Ω, the mapping g(t, .) is Lipschitz continuous with the measurable function

L : Ω→ (0,+∞);

(iii) if there exists a measurable function K : Ω→ (0,+∞) such that

‖Pφ ,x
α(t)(z)−Pφ ,xo

α(t) (z)‖ ≤ K(t)‖x(t)− xo(t)‖,∀x(t),xo(t),z(t) ∈ H,

then for any x(t) ∈ H, t ∈Ω and α(t)>
[

L(t)K(t)
θ(t)−K(t)λ (t)(1+ε)

]
, we have

∥∥x(t)− xo(t)
∥∥≤ [ α(t)λ (t)(1+ ε)+L(t)

α(t)θ(t)−L(t)K(t)−K(t)α(t)λ (t)(1+ ε)

]
√

2α
√

Gα(x(t)).

Now, we derive the error bound for RGMVIP (1.1) without using the Lipschitz continuity of

T .
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Theorem 3.2. Suppose that for each t ∈ Ω,xo(t) ∈ H is a solution of the RGMVIP (1.1). Let

(Ω,Σ) be a measurable space, and H be a real Hilbert space. Let the random fuzzy mapping

T̂ : Ω×H → F (H) satisfy the condition (I) and T : Ω×H → CB(H) be the random multi-

valued mapping induced by the random fuzzy mapping T̂ . Let g : Ω×H → H be a random

mapping and φ : H×H → R∪{+∞} be a real valued function such that for each t ∈ Ω, the

measurable mapping T is strongly g-monotone and Ĥ-Lipschitz continuous with the measurable

functions θ ,λ : Ω→ (0,+∞), respectively, then for any x(t) ∈ H, t ∈Ω, we have

∥∥x(t)− xo(t)
∥∥≤ [ 1√(

θ(t)− L2(t)
2α(t)

)
]√

Gα(x(t)).

Proof. From (3.1), it can be written as

Gα(x(t))≥
〈

w(t),g(t,x(t))−g(t,xo(t))
〉
−φ
(
g(t,x(t)),g(t,xo(t))

)
+φ
(
g(t,x(t)),g(t,x(t))

)
− 1

2α

∥∥g(t,x(t))−g(t,xo(t))
∥∥2
.

By using the strong g-monotonicity of T , we have

Gα(x(t))≥
〈

w(t)−wo(t),g(t,x(t))−g(t,xo(t))
〉
+
〈

wo(t),g(t,x(t))−g(t,xo(t))
〉

−φ
(
g(t,x(t)),g(t,xo(t))

)
+φ
(
g(t,x(t)),g(t,x(t))

)
− 1

2α

∥∥g(t,x(t))−g(t,xo(t))
∥∥2

or
≥ θ(t)

∥∥x(t)− xo(t)
∥∥2

+
〈
wo(t),g(t,x(t))−g(t,xo(t))

〉
−φ
(
g(t,x(t)),g(t,xo(t))

)
+φ
(
g(t,x(t)),g(t,x(t))

)
− 1

2α(t)
L2(t)

∥∥x(t))− xo(t))
∥∥2
.

(3.4)

Since g(t,xo(t)) is a solution of RGMVIP (1.1).〈
wo(t),y(t)−g(t,xo(t))

〉
+φ
(
g(t,xo(t)),y(t)

)
−φ
(
g(t,xo(t)),g(t,xo(t))

)
≥ 0.

Taking y(t) = g(t,x(t)) in the above inequality〈
wo(t),g(t,x(t))−g(t,xo(t))

〉
+φ
(
g(t,xo(t)),g(t,x(t))

)
−φ
(
g(t,xo(t)),g(t,xo(t))

)
≥ 0.

(3.5)
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Combining (3.4) and (3.5) and using the skew symmetry of φ , we get

Gα(x(t))≥ θ(t)
∥∥x(t)− xo(t)

∥∥2− 1
2α(t)

L2(t)
∥∥x(t)− xo(t)

∥∥2

Gα(x(t))≥

(
θ(t)− L2(t)

2α(t)

)∥∥x(t)− xo(t)
∥∥2

which implies

∥∥x(t)− xo(t)
∥∥2 ≤ 1(

θ(t)− L2(t)
2α(t)

)Gα(x(t))

∥∥x(t)− xo(t)
∥∥≤ 1√(

θ(t)− L2(t)
2α(t)

)√Gα(x(t))

4. D-Gap Function

In this section, we consider another gap function associated with RGMVIP (1.1), which can

be viewed as a difference of two regularized gap functions with distinct parameters, known as

the D-gap function, which was introduced and studied by [18, 19, 23] for solving variational

inequalities and complementarity problems.

For each x(t) ∈ H, the difference of two regularized gap functions Gα(x(t))−Gβ (x(t)),

where α > β > 0 for RGMVIP (1.1) will not be well defined for x(t) /∈ dom φ , as both quantities

are not finite. Nevertheless, we shall define the D-gap function by taking a formal difference of

equations (3.1) for the two parameters α > β > 0.

The D-gap function associated with RGMVIP (1.1) is given by

Dα,β (x(t)) = max
y(t)∈H

{〈
w(t),g(t,x(t))− y(t)

〉
−φ
(
g(t,x(t)),y(t)

)
+φ
(
g(t,x(t)),g(t,x(t))

)
+

1
2β

∥∥g(t,x(t))− y(t)
∥∥2

− 1
2α

∥∥g(t,x(t))− y(t)
∥∥2
}
,x(t) ∈ H,α > β > 0.

(4.1)
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The D-gap function defined by (4.1) can be written as

Dα,β (x(t)) =
〈

w(t),Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
〉

−φ
(
Pφ ,x

β (t)[g(t,x(t))−β (t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
+φ
(
Pφ ,x

β (t)[g(t,x(t))−β (t)w(t)],Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]

)
+

1
2β

∥∥g(t,x(t))−Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]

∥∥2

− 1
2α

∥∥g(t,x(t))−Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

∥∥2
.

Further, it can be written as

Dα,β (x(t)) =
〈

w(t),Rφ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
〉

−φ
(
Pφ ,x

β (t)[g(t,x(t))−β (t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
+φ
(
Pφ ,x

β (t)[g(t,x(t))−β (t)w(t)],Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]

)
+

1
2β

∥∥Rφ ,x
β (t)(t,x(t))

∥∥2− 1
2α

∥∥Rφ ,x
α(t)(t,x(t))

∥∥2
.

(4.2)

Next, we derive global error bounds for RGMVIP (1.1).

Theorem 4.1. For all x(t) ∈ H, t ∈Ω, α > β > 0, we have

1
2

( 1
β
− 1

α

)∥∥Rφ ,x
β (t)(t,x(t))

∥∥2 ≤
∥∥Dα,β (x(t))

∥∥≤ 1
2

( 1
β
− 1

α

)∥∥Rφ ,x
α(t)(t,x(t)))

∥∥2
.

In particular Dα,β (x(t)) = 0, if and only if, x(t) ∈ H solves RGMVIP (1.1).

Proof. By the definition of a sub-differential, we have

〈
w(t)− 1

α(t)

[
g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
]
,

y(t)−Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

〉
+φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],y(t)
)

−φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
≥ 0.
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Taking y(t) = Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)] in the above inequality, we get〈

w(t)− 1
α(t)

[
g(t,x(t))−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
]
,

Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]−Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)]
〉

+φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]

)
−φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
≥ 0,

which implies that〈
w(t),Rφ ,x

α(t)(t,x(t))−Rφ ,x
β (t)(t,x(t))

〉
≥ 1

α(t)

〈
Rφ ,x

α(t)(t,x(t)),R
φ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
〉

−φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]

)
+φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
.

(4.3)

Combining (4.2) and (4.3) and using the skew symmetry of φ , we get

Dα,β (x(t))≥
1

α(t)

〈
Rφ ,x

α(t)(t,x(t)),R
φ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
〉

+
1

2β

∥∥Rφ ,x
β (t)(t,x(t))

∥∥2− 1
2α(t)

∥∥Rφ ,x
α(t)(t,x(t))

∥∥2

=
1
2

( 1
β
− 1

α

)∥∥Rφ ,x
β (t)(t,x(t))

∥∥2

+
1
α

〈
Rφ ,x

α(t)(t,x(t)),R
φ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
〉

− 1
2α

∥∥Rφ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
∥∥2

− 1
α

〈
Rφ ,x

β (t)(t,x(t)),R
φ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
〉

=
1
2

( 1
β
− 1

α

)∥∥Rφ ,x
β (t)(t,x(t))

∥∥2
+

1
2α

∥∥Rφ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
∥∥2

≥ 1
2

( 1
β
− 1

α

)∥∥Rφ ,x
β (t)(t,x(t))

∥∥2
,

(4.4)

which implies the left most inequality in the assertion.

On the other hand,

−w(t)+
1
β

Rφ ,x
β (t)(t,x(t)) ∈ ∂φ

(
Pφ ,x

β (t)[g(t,x(t))−β (t)w(t)]
)
,



202 SHAMSHAD HUSAIN AND NISHA SINGH

which implies that〈
w(t),Rφ ,x

α(t)(t,x(t))−Rφ ,x
β (t)(t,x(t))

〉
≤ 1

β

〈
Rφ ,x

β (t)(t,x(t)),R
φ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
〉

−φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
β (t)[g(t,x(t))−β (t)w(t)]

)
+φ
(
Pφ ,x

α(t)[g(t,x(t))−α(t)w(t)],Pφ ,x
α(t)[g(t,x(t))−α(t)w(t)]

)
.

(4.5)

Similarly, to the analysis above, we then obtain

Dα,β (x(t))≤
1
β

〈
Rφ ,x

β (t)(t,x(t)),R
φ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
〉

+
1

2β

∥∥Rφ ,x
β (t)(t,x(t))

∥∥2− 1
2α

∥∥Rφ ,x
α(t)(t,x(t))

∥∥2

=
1
2

( 1
β
− 1

α

)∥∥Rφ ,x
α(t)(t,x(t))

∥∥2

− 1
2β

∥∥Rφ ,x
α(t)(t,x(t))−Rφ ,x

β (t)(t,x(t))
∥∥2

≤ 1
2

( 1
β
− 1

α

)∥∥Rφ ,x
α(t)(t,x(t))

∥∥2
,

(4.6)

which implies the right most inequality in the assertion. Combining (4.4) and (4.6), we obtain

the required result. The last assertion now follows from Lemma 2.1.

As a consequence of Theorem 2.2 and Theorem 4.1, we obtain the following result on the

global error bound for RGMVIP (1.1).

Corollary 4.1. Suppose that for each t ∈ Ω,xo(t) ∈ H is a solution of the RGMVIP (1.1). Let

(Ω,Σ) be a measurable space, and H be a real Hilbert space. Let the random fuzzy mapping

T̂ : Ω×H → F (H) satisfy the condition (I) and T : Ω×H → CB(H) be the random multi-

valued mapping induced by the random fuzzy mapping T̂ . Let g : Ω×H → H be a random

mapping and φ : H×H→ R∪{+∞} be a real valued function such that

(i) for each t ∈ Ω, the measurable mapping T is strongly g-monotone and Ĥ-Lipschitz

continuous with the measurable functions θ ,λ : Ω→ (0,+∞), respectively;

(ii) for each t ∈Ω, the mapping g(t, .) is Lipschitz continuous with the measurable function

L : Ω→ (0,+∞);
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(iii) if there exists a measurable function K : Ω→ (0,+∞) such that

‖Pφ ,x
α(t)(z)−Pφ ,xo

α(t) (z)‖ ≤ K(t)‖x(t)− xo(t)‖,∀x(t),xo(t),z(t) ∈ H,

then for any x(t) ∈ H, t ∈Ω and α(t)>
[

L(t)K(t)
θ(t)−K(t)λ (t)(1+ε)

]
, we have

∥∥x(t)− xo(t)
∥∥≤ [ α(t)λ (t)(1+ ε)+L(t)

α(t)θ(t)−L(t)K(t)−K(t)α(t)λ (t)(1+ ε)

]√
2αβ

α−β

√
Dα,β (x(t)).

Now, we derive the global error bound for RGMVIP (1.1) without using the Lipschitz conti-

nuity of T .

Theorem 4.2. Suppose that for each t ∈ Ω,xo(t) ∈ H is a solution of the RGMVIP (1.1). Let

(Ω,Σ) be a measurable space, and H be a real Hilbert space. Let the random fuzzy mapping

T̂ : Ω×H → F (H) satisfy the condition (I) and T : Ω×H → CB(H) be the random multi-

valued mapping induced by the random fuzzy mapping T̂ . Let g : Ω×H → H be a random

mapping and φ : H×H → R∪{+∞} be a real valued function such that for each t ∈ Ω, the

measurable mapping T is strongly g-monotone and Ĥ-Lipschitz continuous with the measurable

functions θ ,λ : Ω→ (0,+∞), respectively, then for any x(t) ∈ H, t ∈Ω, we have

∥∥x(t)− xo(t)
∥∥≤ 1√

θ(t)+ L2(t)
2

(
1
β
− 1

α

)√Dα,β (x(t)).

Proof. From (4.1), it can be written as

Dα,β (x(t))≥
〈

w(t),g(t,x(t))−g(t,xo(t))
〉

−φ
(
g(t,x(t)),g(t,xo(t))

)
+φ
(
g(t,x(t)),g(t,x(t))

)
+

1
2β

∥∥g(t,x(t))−g(t,xo(t))
∥∥2− 1

2α

∥∥g(t,x(t))−g(t,xo(t))
∥∥2
.
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By using the strong g-monotonicity of T , we get

Dα,β (x(t))≥
〈

w(t)−wo(t),g(t,x(t))−g(t,xo(t))
〉
+
〈

wo(t),g(t,x(t))−g(t,xo(t))
〉

−φ
(
g(t,x(t)),g(t,xo(t))

)
+φ
(
g(t,x(t)),g(t,x(t))

)
+

1
2β

∥∥g(t,x(t))−g(t,xo(t))
∥∥2− 1

2α

∥∥g(t,x(t))−g(t,xo(t)
∥∥2
.

≥
〈

wo(t),g(t,x(t))−g(t,xo(t))
〉
+θ(t)

∥∥x(t)− xo(t)
∥∥2

−φ
(
g(t,x(t)),g(t,xo(t))

)
+φ
(
g(t,x(t)),g(t,x(t))

)
+

1
2β

∥∥g(t,x(t))−g(t,xo(t))
∥∥2− 1

2α

∥∥g(t,x(t))−g(t,xo(t)
∥∥2
.

(4.7)

Since xo(t) ∈ H is a solution of RGMVIP (1.1)〈
wo(t),y(t)−g(t,xo(t))

〉
+φ
(
g(t,xo(t)),y(t)

)
−φ
(
g(t,xo(t)),g(t,xo(t))

)
≥ 0.

Taking y(t) = g(t,x(t)) in the above inequality〈
wo(t),g(t,x(t))−g(t,xo(t))

〉
+φ
(
g(t,xo(t)),g(t,x(t))

)
−φ
(
g(t,xo(t)),g(t,xo(t))

)
≥ 0.

(4.8)

Combining (4.7) with (4.8) and using the skew symmetry of φ , we get

Dα,β (x(t))≥ θ(t)
∥∥x(t)− xo(t)

∥∥2
+

1
2β

∥∥g(t,x(t))−g(t,xo(t))
∥∥2

− 1
2α

∥∥g(t,x(t))−g(t,xo(t))
∥∥2
.

≥ θ(t)
∥∥x(t)− xo(t)

∥∥2
+

1
2β

L2(t)
∥∥x(t)− xo(t)

∥∥2

− 1
2α

L2(t)
∥∥x(t)− xo(t)

∥∥2

Dα,β (x(t))≥
(

θ(t)+
L2(t)
2β
− L2(t)

2α

)∥∥x(t)− xo(t)
∥∥2

which implies ∥∥x(t)− xo(t)
∥∥≤ 1√

θ(t)+ L2(t)
2β
− L2(t)

2α

√
Dα,β (t,x(t))

≤ 1√
θ(t)+ L2(t)

2

( 1
β
− 1

α

)√Dα,β (t,x(t)).
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