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Abstract. This paper is devoted to the study of transitive points for the induced set-valued discrete systems, which

is an extension of transitive points for original systems. Some properties of transitive points of set-valued discrete

systems are investigated.

Keywords: transitive point; topological transitivity; set-valued discrete system.

2010 AMS Subject Classification: 54H20, 37B20.

1. Introduction

Throughout this paper a topological dynamical system (abbreviated by TDS) is a pair (X , f ),

where X is a compact metric space with the metric d and f : X→ X is a continuous map. When

X is finite, it is a discrete space and there is no any non-trivial convergence. Hence, we assume

that X contains infinitely many points. (X , f ) induces a set-valued dynamical system (κ(X), f̄ )

with the Hausdorff metric dH , where κ(X) is the space of all non-empty compact subsets of X ,

and f̄ is the induced set-valued map defined by f̄ : κ(X)→ κ(X), f̄ (A) = f (A) = { f (a) : a ∈

A}, A ∈ κ(X). Let N denotes the set of all positive integers and let Z+ = N∪ {0}.
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Topological transitivity, weak mixing and sensitive dependence on initial conditions (see

[2, 5, 10, 12]) are global characteristics of topological dynamical systems. A continuous map

f : X → X is called to be topologically transitive(transitive) if for every pair of non-empty open

sets U and V there exists a positive integer n such that f n(U)∩V 6= /0, f is point transitive if

there exists a point x0 ∈ X such that the orbit of x0 is dense in X , i.e., orb(x0) = X , x0 is called

a transitive point of X . By [5], if X is a compact metric space, then the two definitions are

equivalent. (X , f ) is topologically weakly mixing (weakly mixing) if for any non-empty open

subsets U1,U2,V1 and V2 of X , there exists a n∈N such that f n(U1)∩V1 6= /0 and f n(U2)∩V2 6= /0.

It follows from these definitions that weak mixing implies transitivity.

The properties of topological transitivity, weak mixing and sensitive on initial conditions for

set-valued discrete systems were discussed (see [1, 4, 6, 7, 9, 11, 13, 14]). Also, we continue to

discuss transitive points of set-valued discrete systems, give some properties of transitive points.

2. Preliminaries

A TDS (X , f ) is point transitive if there exists a point x0 ∈ X with dense orbit, that is, orb(x0) =

X , where orb(x0) denotes the closure of orb(x0). Such a point x0 is called transitive point of

(X , f ). If X is a compact metric space without isolated points, then topologically transitive and

point transitive are equivalent (see [5]). A TDS (X , f ) is minimal if orb(x, f ) = X for every

x ∈ X , thai is, every point is transitive point. A point x is called minimal if the subsystem

(orb(x, f ), f ) is minimal.

A point p ∈ X is periodic for f if f k(p) = p for some k ∈ N. An x ∈ X is asymptotically

periodic if there is a periodic point p ∈ X satisfying lim
n→∞

d( f n(x), f n(p)) = 0. y ∈ X is an ω−

limit point of x∈ X if liminf
n→∞

d( f n(x),y) = 0, i.e., the orbit of x accumulates at y. The set ω(x, f )

of all ω− limit points of x is the ω−limit set of x.

The distance from a point x to a non-empty set A in X is defined by

d(x,A) = inf
a∈A

d(x,a).
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Let κ(X) be the family of all non-empty compact subsets of X . The Hausdorff metric on

κ(X) is defined by

dH(A,B) = max{sup
a∈A

d(a,B),sup
b∈B

d(b,A)} for every A,B ∈ κ(X).

It follows from Michael [8] and Engelking [3] that κ(X) is a compact metric space. The

Vietoris topology τυ on κ(X) is generated by the base

υ(U1,U2, · · · ,Un) = {F ∈ κ(X) : F ⊆
n⋃

i=1

Ui and F ∩Ui 6= /0 for all i≤ n}

where U1,U2, · · · ,Un are open subsets of X .

Let f̄ be the induced set-valued map defined by

f̄ : κ(X)→ κ(X), f̄ (F) = f (F), for every F ∈ κ(X).

Then f̄ is well defined. (κ(X), f̄ ) is called a set-valued discrete system.

Banks and Peris established the following celebrating result between a given dynamical sys-

tem and its induced set-valued discrete system.

Theorem 2.1. ([1, 9]) Let X be a compact space, κ(X) be equipped with the Vietoris topology.

If f : X → X is a continuous map, then f̄ : κ(X)→ κ(X) is continuous and (X , f ) is weakly

mixing⇐⇒ (κ(X), f̄ ) is weakly mixing⇐⇒ (κ(X), f̄ ) is topologically transitive.

When the underlying space X is self-dense, the system is transitive if and only if it has

transitive points as X as a compact metric space is of second category. Since X is infinite, the

induced set-valued discrete system (κ(X), f̄ ) is necessarily self-dense. Hence, (κ(X), f̄ ) being

transitive is equivalent to that has transitive points.

If A is a transitive point of (κ(X), f̄ ), then we have the following theorem. The proof of this

result is straightforward.

Theorem 2.2. A is a transitive point of (κ(X), f̄ ) if and only if for any finitely many non-empty

open sunsets U1,U2, · · · ,Up of X, there exists m∈N such that f m(A)∩Ui 6= /0 for i = 1,2, · · · , p,

and f m(A)⊆
p⋃

i=1
Ui.
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3. Main results

Let (X , f ) be any compact and infinite dynamical system with metric d. By Theorem 2.1,

(κ(X), f̄ ) has a transitive point if and only if (X , f ) is weakly mixing. The space X of an

infinite weak mixing system is self-dense; when X is self-dense, so is κ(X).

Proposition 3.1. If A is a transitive point of (κ(X), f̄ ), then for any m ∈ Z+, f m(A) is again a

transitive point of (κ(X), f̄ ).

Proof. By the assumption and the paragraphy at the beginning of this section, X is self-dense,

and so is κ(X). Since A is a transitive point of (κ(X), f̄ ), it follows that the orbit { f̄ n(A) : n ∈

Z+} is dense in κ(X). Hence, every tail orbit { f̄ n(A) : n ≥ m} remains dense in κ(X), m ∈ N,

i.e., f̄ m(A) is again a transitive point of f̄ for any m ∈ N. Noting that f̄ m(A) = f m(A), further,

f m(A) is a transitive point of (κ(X), f̄ ).

Proposition 3.2. If A is a transitive point of (κ(X), f̄ ), then A is an infinite subset of X. Fur-

thermore, for any m ∈ N, f m(A) is an infinite subset of X.

Proof. Since X is infinite, for any l ∈ N there exist l pairwise disjoint non-empty open

subsets of X , Vi, 1 ≤ i ≤ l. By Theorem 2.2, there exists m ∈ Z+ such that f m(A)∩Vi 6= /0

for i = 1,2, · · · , l(and f m(A) ⊆
l⋃

i=1
Vi), implying card( f m(A)) ≥ l. Hence, card(A) ≥ l. As l is

arbitrary, A is necessarily an infinite subset of X .

Furthermore, for any m ∈ N, f m(A) is again a transitive point of (κ(X), f̄ ) by Proposition

3.1, thus an infinite subset of X .

Proposition 3.3. The set of all transitive points of (κ(X), f̄ ) is a dense Gδ set of κ(X), i.e., the

intersection of countably many dense open subsets.

Proof. By the assumption, (κ(X), f̄ ) is transitive. For a transitive dynamical system, the set

of all transitive points is a dense Gδ set [2, 5, 10, 12].

Proposition 3.4. If A is a transitive point, then ω(A, f̄ ) = κ(X).

proof. By Proposition 3.1, X is self-dense, so is κ(X). Since { f̄ n(A) : n ∈ Z+} is dense in

κ(X), we have ω(A, f̄ ) = κ(X).
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Proposition 3.5. If A is a transitive point of (κ(X), f̄ ), then A is a proper subset of X.

Proof. By Theorem 2.1, (X , f ) is weakly mixing. Hence, f is surjective. If A = X , then for

any m ∈ N, we have f m(A) = X , implying f̄ m(A) = X for every m ∈ N. Therefore, the orbit of

A under f̄ would be a single element. This contradicts to the orbit of A under f̄ to be dense in

κ(X).

Theorem 3.1. If A is a transitive point of (κ(X), f̄ ), then for any m ∈ N, there exist m pairwise

disjoint non-empty compact subsets Ai(1≤ i≤ m) satisfying A =
m⋃

i=1
Ai.

Proof. Since X is infinite set, we can choose pairwise disjoint non-empty open subsets Vi(1≤

i≤m) of X . As A is a transitive point of (κ(X), f̄ ), by Theorem 2.2 there exists n∈Z+ satisfying

f n(A)⊆
m⋃

i=1
Vi and f n(A)∩Vi 6= /0 (1≤ i≤m). For i = 1,2, · · · ,m, put Ai = A∩ f−n(Vi∩ f n(A)).

Since Vi (1≤ i≤m) are pairwise disjoint non-empty open subsets with f n(A)⊆
m⋃

i=1
Vi, Vi∩ f n(A)

(1 ≤ i ≤ m) are compact, thus f−n(Vi ∩ f n(A)) (1 ≤ i ≤ m) are compact. Moreover, we can

check that the constructed A,
is are pairwise disjoint non-empty compact subsets with A =

m⋃
i=1

Ai.

Corollary 3.1. If A is a transitive point of (κ(X), f̄ ), then A is a disconnected compact subset

of X.

Theorem 3.2. If A is a transitive point of (κ(X), f̄ ), then for any non-empty open subsets

Ui(1≤ i≤ m), there exists a strictly increasing sequence of non-negative integers nk satisfying

f nk(A)⊆
m⋃

i=1
Ui and f nk(A)∩Ui 6= /0 for i = 1,2 · · · ,m.

Proof. Since A is a transitive point of (κ(X), f̄ ), by Theorem 2.1, (X , f ) is weakly mixing.

Furthermore, X is self-dense, so is κ(X). From Proposition 3.4, ω(A, f̄ ) = κ(X). As

υ(U1,U2, · · · ,Um) = {F ∈ κ(X) : F ⊆
m⋃

i=1

Ui and F ∩Ui 6= /0 for all i≤ m}

is a non-empty open subset of κ(X), there exists a strictly increasing sequence of non-negative

integers nk satisfying f̄ nk(A) ∈ υ(U1,U2, · · · ,Um), i.e., f nk(A) ⊆
m⋃

i=1
Ui and f nk(A)∩Ui 6= /0 for

i = 1,2 · · · ,m.

Corollary 3.2. If A is a transitive point of (κ(X), f̄ ), then for any non-empty subsets U of X,

there exists a strictly increasing sequence of non-negative integers nk satisfying f nk(A)⊆U.
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Corollary 3.2 implies that every point of A is a transitive point of (X , f ). (Corollary 3.3)

Corollary 3.3. If A is a transitive point of (κ(X), f̄ ), then every x ∈ A is a transitive point of

(X , f ). Moreover, ω(x, f ) = X.
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