
Available online at http://scik.org

Adv. Fixed Point Theory, 7 (2017), No. 2, 266-288

ISSN: 1927-6303

FIXED POINT THEOREMS IN A SPACE WITH THREE METRICS

MOHAMED AMINE FARID, KARIM CHAIRA, EL MILOUDI MARHRANI∗ AND MOHAMMED AAMRI

Laboratory of Algebra, Analysis and Applications (L3A)

Department of Mathematics and Computer Science

Hassan II University of Casablanca, Faculty of Sciences Ben M’Sik, P.B 7955, Sidi Othmane,

Casablanca, Morocco

Copyright c© 2017 Farid, Chaira, Marhrani and Aamri. This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The purpose of this paper is to present some fixed point results for Banach, Kannan and Chatterjea

contraction in a space with three metrics supported by some examples.
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1. Introduction

Since its appearance in 1922, the Banach fixed point theorem [1] solved several problems

of the existence of solutions of nonlinear problems arising in physical, biological, and social

sciences.
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Theorem 1.1. Let (X ,d) be a complete metric space. Let T be a contraction on X, i.e., there

exists r ∈ [0,1[ satisfying

d(T x,Ty)≤ rd(x,y), for all x,y ∈ X .

Then T has a unique fixed point.

The generalization of this theorem have been established in various setting by many authors.

The purpose of this article is to get a generalization of the Banach contraction fixed point theo-

rem in a space with three metrics.

2. Preliminaries

In 1968, Kannan presented the following related fixed point theorem [2].

Theorem 2.1. Let (X ,d) be a complete metric space. Let T be a Kannan mapping on X, i.e.,

there exists r ∈ [0, 1
2 [ satisfying

d(T x,Ty)≤ r (d(x,T x)+d(y,Ty)) , for all x,y ∈ X .

Then T has a unique fixed point.

In 1972, Chatterjea presented the following related fixed point theorem [3].

Theorem 2.2. Let (X ,d) be a complete metric space. Let T be a Chatterjea mapping on X, i.e.,

there exists r ∈ [0, 1
2 [ satisfying

d(T x,Ty)≤ r (d(x,Ty)+d(y,T x)) , for all x,y ∈ X .

Then T has a unique fixed point.

The following results is due to Mizoguchi and Takahashi [5].

Theorem 2.3. Let (X ,d) be a complete metric space. Let T be a mapping satisfying

d(T x,Ty)≤ α(d(x,y))d(x,y), for all x,y ∈ X ,

where α : [0,+∞[→ [0,1[ is a function such that limsup
s→r+

α(s)< 1, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.
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Recently, EL. Marhrani and K. Chaira proved a generalization of the Banach contraction

fixed point theorem in a space with two metrics [4].

Definition 2.4. Let X be a nonempty set and let d, δ be two metrics on X . (X ,d,δ ) is called an

(M)-space if for all Cauchy sequence (xn)n in (X ,d) and (X ,δ ), there exist x∗,y∗ ∈ X such that

lim
n

d(xn,x∗) = lim
n

δ (xn,y∗) = 0.

Theorem 2.5. Let X be non-empty set, d and δ two metrics on X and T : X → X a mapping

such that:

(1) (X ,d,δ ) is a (M)-space.

(2) For all x,y ∈ X, one of the following two conditions:

i. d(x,Ty)≤ δ (x,y),

ii. δ (x,Ty)≤ d(x,y),

implies  d(T x,Ty)≤ α(δ (x,y))δ (x,y),

δ (T x,Ty)≤ α(d(x,y))d(x,y),

where α : [0,+∞[→ [0,1[ is a function such that limsup
s→r+

α(s)< 1, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.

3. Main results

Let X be a non-empty set and let d , δ and γ be three metrics on X .

Definition 3.1. (X ,d,δ ,γ) is called an (M)-space if for all Cauchy sequence (xn)n in (X ,d),

(X ,δ ) and (X ,γ), there exist x∗,y∗,z∗ ∈ X such that

lim
n

d(xn,x∗) = lim
n

δ (xn,y∗) = lim
n

γ(xn,z∗) = 0.

Example 3.2. if (X ,d), (X ,δ ) and (X ,γ) are complete metrics space, then (X ,d,δ ,γ) is an

(M)-space.
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Example 3.3. Let X be the set of all C2 function u from [0,1] into R with u(0) = 0 and

u
′
(0) = 0; we define three metrics on X by:

d(u,v) = sup
x∈[0,1]

|u(x)− v(x)|,

δ (u,v) = sup
x∈[0,1]

|u
′
(x)− v

′
(x)|,

γ(u,v) = sup
x∈[0,1]

|u
′′
(x)− v

′′
(x)|,

for all u,v ∈ X . It is well know that the sequence of the polynomial function defined by:

u1(x) = 0,

un+1(x) = un(x)+
1
2
(1− x−u2

n(x)),

are in X and converge uniformly to x 7→
√

1− x which is not in X . Hence, (X ,d) is non complete.

We define the subsequence (vn)n by:

vn(x) =
∫ x

0
un(t)dt, x ∈ [0,1].

(vn)n converge uniformly to x 7→
∫ x

0

√
1− t dt =

2
3
(1− (1− x)

3
2 ), wich is not in X . Hence,

(X ,δ ) is non complete.

If (wn)n is a Cauchy sequence in (X ,d), (X ,δ ) and (X ,γ), there exist three continuous functions

u,v,w such that (wn)n, (w
′
n)n and (w

′′
n)n converge uniformly to u,v and w, respectively. Then u

is of class C2 and u
′
= v, u

′′
= w on X . Hence

lim
n

d(wn,u) = lim
n

δ (wn,u) = lim
n

γ(wn,u) = 0.

It follows that (X ,d,δ ,γ) is an (M)-space.

Theorem 3.4. Let X be non-empty set, d, δ and γ three metrics on X and T : X → X a mapping

such that:

(1) (X ,d,δ ,γ) is a (M)-space.

(2) For all x,y ∈ X, one of the following three conditions:

i. d(x,Ty)≤ δ (x,y),

ii. δ (x,Ty)≤ γ(x,y),

iii. γ(x,Ty)≤ d(x,y),
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implies 
d(T x,Ty)≤ α(δ (x,y))δ (x,y),

δ (T x,Ty)≤ α(γ(x,y))γ(x,y),

γ(T x,Ty)≤ α(d(x,y))d(x,y),

where α : [0,+∞[→ [0,1[ is a function such that limsup
s→r+

α(s)< 1, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.

Proof. step 1:

Letting x0 ∈ X, we define the sequence (xn)n by xn+1 = T xn, for each n ∈ N, we have

d(xn+1,T xn) = 0≤ δ (xn+1,xn),

so, we obtain that
d(T xn+1,T xn) = d(xn+2,xn+1)≤ α(δ (xn+1,xn))δ (xn+1,xn),

δ (T xn+1,T xn) = δ (xn+2,xn+1)≤ α(γ(xn+1,xn))γ(xn+1,xn),

γ(T xn+1,T xn) = γ(xn+2,xn+1)≤ α(d(xn+1,xn))d(xn+1,xn),

then:

d(xn+1,xn+2) ≤ α(δ (xn+1,xn))δ (xn+1,xn)

≤ α(δ (xn+1,xn))α(γ(xn−1,xn))γ(xn−1,xn)

≤ α(δ (xn+1,xn))α(γ(xn−1,xn))α(d(xn−2,xn−1))d(xn−2,xn−1)

≤ d(xn−2,xn−1), for all n≥ 2.

Analogously, we obtain δ (xn+1,xn+2)≤ δ (xn−2,xn−1) and γ(xn+1,xn+2)≤ δ (xn−2,xn−1).

It follows that (d(x3p,x3p+1))p, (d(x3p+1,x3p+2))p and (d(x3p+2,x3p+3))p converges to d1,d2,

and d3, respectively. And (δ (x3p,x3p+1))p, (δ (x3p+1,x3p+2))p and (δ (x3p+2,x3p+3))p con-

verges to δ1,δ2, and δ3, respectively. And (γ(x3p,x3p+1))p, (γ(x3p+1,x3p+2))p and (γ(x3p+2,x3p+3))p

converges to γ1,γ2, and γ3, respectively.

Since limsup
t→δ

+
1

α(t)< 1, limsup
t→γ

+
3

α(t)< 1 and limsup
t→d+

2

α(t)< 1 there exist p1 ∈ N and r1 ∈ [0,1[

such that for any integer p≥ p1

d(x3p+1,x3p+2)≤ r1d(x3p−2,x3p−1).
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And limsup
t→δ

+
2

α(t)< 1, limsup
t→γ

+
1

α(t)< 1 and limsup
t→d+

3

α(t)< 1 there exist p2 ∈N and r2 ∈ [0,1[,

such that for any integer p≥ p2

d(x3p+2,x3p+3)≤ r2d(x3p−1,x3p).

And limsup
t→δ

+
3

α(t)< 1, limsup
t→γ

+
2

α(t)< 1 and limsup
t→d+

1

α(t)< 1, there exist p3 ∈N and r3 ∈ [0,1[,

such that for any integer p≥ p3

d(x3p+3,x3p+4)≤ r3d(x3p,x3p+1).

It follow that Σp≥1d(x3p−1,x3p), Σp≥1d(x3p−2,x3p−1) and Σp≥0d(x3p,x3p+1) are convergent.

Then

Σn≥0d(xn,xn+1) = Σp≥0d(x3p,x3p+1)+Σp≥1d(x3p,x3p−1)+Σp≥1d(x3p−1,x3p−2)

is convergent. In the same way; we find Σn≥0δ (xn,xn+1) and Σn≥0γ(xn,xn+1) are convergent.

Hence (xn)n is a Cauchy sequence in (X ,d),(X ,δ ) and (X ,γ); Since (X ,d,δ ,γ) is an (M)-space,

there, exist x∗,y∗,z∗ ∈ X such that

lim
n

d(xn,x∗) = lim
n

δ (xn,y∗) = lim
n

γ(xn,z∗) = 0.

Step 2:

Case 1: If x∗ 6= y∗ and y∗ 6= z∗.

Since limn d(T xn,x∗) = 0 and limn δ (xn,x∗) = δ (y∗,x∗) > 0, we obtain d(x∗,T xn) ≤ δ (x∗,xn)

for large integers, which gives

(1)

(2)

(3)


d(T x∗,xn+1) = d(T x∗,T xn)≤ α(δ (x∗,xn))δ (x∗,xn),

δ (T x∗,xn+1) = δ (T x∗,T xn)≤ α(γ(x∗,xn))γ(x∗,xn),

γ(T x∗,xn+1) = γ(T x∗,T xn)≤ α(d(x∗,xn))d(x∗,xn).

Therefor we have

T x∗ = z∗.
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Since limn δ (T xn,y∗) = 0 and limn γ(xn,y∗) = γ(z∗,y∗) > 0, we obtain δ (y∗,T xn) ≤ γ(y∗,xn)

for large integers, which gives

(4)

(5)

(6)


d(Ty∗,xn+1) = d(Ty∗,T xn)≤ α(δ (y∗,xn))δ (y∗,xn),

δ (Ty∗,xn+1) = δ (Ty∗,T xn)≤ α(γ(y∗,xn))γ(y∗,xn),

γ(Ty∗,xn+1) = γ(Ty∗,T xn)≤ α(d(y∗,xn))d(y∗,xn).

Wherefrom

Ty∗ = x∗.

if x∗ 6= z∗.

Since limn γ(T xn,z∗) = 0 and limn d(xn,z∗) = d(x∗,z∗)> 0, we obtain γ(z∗,T xn)≤ d(x∗,xn) for

large integers, which gives

(7)

(8)

(9)


d(T z∗,xn+1) = d(T z∗,T xn)≤ α(δ (z∗,xn))δ (z∗,xn),

δ (T z∗,xn+1) = δ (T z∗,T xn)≤ α(γ(z∗,xn))γ(z∗,xn),

γ(T z∗,xn+1) = γ(T z∗,T xn)≤ α(d(z∗,xn))d(z∗,xn).

So, we have

T z∗ = y∗.

Further, from (2), (6) and (7) we get for k1,k2,k3 ∈ [0,1[: δ (y∗,T x∗)≤ k1γ(z∗,x∗), γ(z∗,Ty∗)≤

k2d(x∗,y∗) and d(x∗,T z∗)≤ δ (y∗,z∗), this yields δ (y∗,z∗)≤ k1γ(x∗,z∗), γ(z∗,x∗)≤ k2d(x∗,y∗)

and d(x∗,y∗)≤ k3δ (y∗,z∗). So, we have

d(x∗,y∗) ≤ k3δ (y∗,z∗)

≤ k3k1γ(x∗,z∗)

≤ k3k1k2d(x∗,y∗),

therefore x∗ = y∗ = z∗, wich is contraction. Thus x∗ = z∗.

Using (2), we obtain δ (y∗,z∗)≤ k4γ(x∗,z∗) for k4 ∈ [0,1[, then y∗ = z∗, which is absurd.

Case 2: if x∗ 6= y∗ and y∗ = z∗.

Then x∗ 6= z∗. Moreover, from (7) we get d(y∗,x∗)≤ k5δ (z∗,y∗) for k5 ∈ [0,1[, therefore x∗ = y∗,

which is contraction.
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Similarly if x∗ = y∗ and y∗ 6= z∗, we get a contraction.

We can conclude that

x∗ = y∗ = z∗.

step 3:

To prove that T x∗ = x∗, we consider the sets A,B and C defined by:

A = {n ∈ N/d(T xn,x∗)≤ δ (xn,x∗)},

B = {n ∈ N/δ (T xn,x∗)≤ γ(xn,x∗)},

C = {n ∈ N/γ(T xn,x∗)≤ d(xn,x∗)}.

We asserts that A or B or C is infinite; if A, B and C are finite, there exist as integer N such that,

for all integers n≥ N,

d(T xn,x∗) > δ (xn,x∗),

δ (T xn,x∗) > γ(xn,x∗),

γ(T xn,x∗) > d(xn,x∗).

Hence we have,

d(xn,x∗) < γ(xn+1,x∗)

< δ (xn+2,x∗)

< d(xn+3,x∗), for all n≥ N.

Therefor we have d(xn,x∗)< d(xn+3,x∗), for all integers n≥ N thus, the sequence (d(x3n,x∗))n

is strictly increasing to 0; which is a false assertion. If we assume that A is infinite, there exists

some subsequence (xσ(n))n such that d(T xσ(n),x∗)≤ δ (xσ(n),x∗),

this yields 
d(T x∗,T xσ(n))≤ α(δ (x∗,xσ(n)))δ (x∗,xσ(n)),

δ (T x∗,T xσ(n))≤ α(γ(x∗,xσ(n)))γ(x∗,xσ(n)),

γ(T x∗,T xσ(n))≤ α(d(x∗,xσ(n)))d(x∗,xσ(n)),

which implies that

γ(T x∗,xσ(n)+1)≤ α(d(x∗,xσ(n)))d(x
∗,xσ(n)).



274 MOHAMED AMINE FARID, KARIM CHAIRA, EL MILOUDI MARHRANI AND MOHAMMED AAMRI

Thus γ(T x∗,x∗) = 0, hence x∗ is a fixed point of T . We have the same results if B or C are

infinite.

step 4:

For the uniqueness of the point, we assume that x and y are two different fixed points of T . We

have d(x,y) ≤ δ (x,y) or δ (x,y) ≤ d(x,y). For the first case, we obtain: d(x,T y) = d(x,y) ≤

δ (x,y) and then 
d(x,y) = d(T x,T y)≤ α(δ (x,y))δ (x,y)< δ (x,y),

δ (x,y) = δ (T x,T y)≤ α(γ(x,y))γ(x,y)< γ(x,y),

γ(x,y) = γ(T x,T y)≤ α(d(x,y))d(x,y)< d(x,y),

which is a contraction.

Thus, T has a unique fixed point in X. This completes the proof.

If δ = γ , we obtain the following result proved by EL. Marhrani and K. Chaira [4].

Corollary 3.5. Let X be non-empty set, d and δ two metrics on X and T : X → X a mapping

such that:

(1) (X ,d,δ ) is a (M)-space.

(2) For all x,y ∈ X, one of the following two conditions:

i. d(x,Ty)≤ δ (x,y),

ii. δ (x,Ty)≤ d(x,y),

implies  d(T x,Ty)≤ α(δ (x,y))δ (x,y),

δ (T x,Ty)≤ α(d(x,y))d(x,y),

where α : [0,+∞[→ [0,1[ is a function such that limsup
s→r+

α(s)< 1, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.

Example 3.6. Let X = [0,1]∪{2,3} endowed with the usual distance d and the distance δ and

γ defined by

δ (x,y) =


|x− y| if x,y ∈ [0,1],

x+ y if x or y is not in [0,1] and x 6= y,

0 if x = y.
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γ(x,y) = 2|x− y|.

(X ,d), (X ,δ ) and (X ,γ) are complete metric spaces. We define α from [0,+∞[ into [0,1[ by

α(t) = 1
3e−t , and consider the mapping defined on X by

T x =

 1
2e7 x if x ∈ [0,1[,

0 if x≥ 1.

We asserts that 
d(T x,Ty)≤ α(δ (x,y))δ (x,y),

δ (T x,Ty)≤ α(γ(x,y))γ(x,y),

γ(T x,Ty)≤ α(d(x,y))d(x,y),

is obviously satisfied if x,y ∈ [0,1[ or x,y ∈ {2,3}, or x ∈ [0,1[ and y ∈ {2,3}.

If x ∈ [0,1[ and y = 1, we have

(d(x,T 1)≤ δ (x,1) or δ (x,T 1)≤ γ(x,1) or γ(x,T 1)≤ d(x,1))⇔ x ∈ [0,
2
3
].

And consequently

d(T x,T 1) =
1

2e7 x≤ 2
9e6 ≤

1
3

e−(1−x)(1− x) = α(δ (x,1))δ (x,1),

δ (T x,T 1) =
1

2e7 x≤ 2
9e6 ≤

2
3

e−2(1−x)(1− x) = α(γ(x,1))γ(x,1),

γ(T x,T 1) = 2
1

2e7 x≤ 4
9e6 ≤

1
3

e−(1−x)(1− x) = α(d(x,1))d(x,1).

If x = 0.999 /∈ [0, 2
3 ], we have
(d(x,T 1)> δ (x,1),

δ (x,T 1)> γ(x,1),

γ(x,T 1)> d(x,1)),

and d(T x,T 1)> α(δ (x,1))δ (x,1).

Thus the assertion is satisfied. Then T has a unique fixed point in X, T 0 = 0.

The following result generalizes theorem 2.2.

Theorem 3.7. Let X be non-empty set, d, δ and γ three metrics on X and T : X → X a mapping

such that:

(1) (X ,d,δ ,γ) is a (M)-space.

(2) For all x,y ∈ X, one of the following three conditions:
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i. d(x,Ty)≤ δ (x,y),

ii. δ (x,Ty)≤ γ(x,y),

iii. γ(x,Ty)≤ d(x,y),

implies 
d(T x,Ty)≤ α(δ (x,y))(d(y,T x)+δ (x,Ty)),

δ (T x,Ty)≤ α(γ(x,y))(δ (y,T x)+ γ(x,Ty)),

γ(T x,Ty)≤ α(d(x,y))(γ(y,T x)+d(x,Ty)),

where α : [0,+∞[→ [0, 1
2 [ is a function such that limsup

s→r+
α(s)<

1
2

, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.

Proof. step 1:

Letting x0 ∈ X, we define the sequence (xn)n by xn+1 = T xn for each n ∈ N, we have

d(xn+1,T xn) = 0≤ δ (xn+1,xn),

so, we obtain that
d(T xn+1,T xn)≤ α(δ (xn+1,xn))(d(xn,T xn+1)+δ (xn+1,T xn)),

δ (T xn+1,T xn)≤ α(γ(xn+1,xn))(δ (xn,T xn+1)+ γ(xn+1,T xn)),

γ(T xn+1,T xn)≤ α(d(xn+1,xn))(γ(xn,T xn+1)+d(xn+1,T xn)),

therefore 
d(T xn+1,T xn)≤ α(δ (xn+1,xn))d(xn,xn+2),

δ (T xn+1,T xn)≤ α(γ(xn+1,xn))δ (xn,xn+2),

γ(T xn+1,T xn)≤ α(d(xn+1,xn))γ(xn,xn+2),

wherefrom 
d(T xn+1,T xn)≤ α(δ (xn+1,xn))(d(xn,xn+1)+d(xn+1,xn+2)),

δ (T xn+1,T xn)≤ α(γ(xn+1,xn))(δ (xn,xn+1)+δ (xn+1,xn+2)),

γ(T xn+1,T xn)≤ α(d(xn+1,xn))(γ(xn,xn+1)+ γ(xn+1,xn+2)),

so, we have 
d(xn+2,xn+1)≤ α(δ (xn+1,xn))

1−α(δ (xn+1,xn))
d(xn,xn+1),

δ (xn+2,xn+1)≤ α(γ(xn+1,xn))
1−α(γ(xn+1,xn))

δ (xn,xn+1),

γ(xn+2,xn+1)≤ α(d(xn+1,xn))
1−α(d(xn+1,xn))

γ(xn,xn+1).
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By hypothesis α(t)
1−α(t) ≤ 1, for all t ∈ [0,+∞[ then

d(xn+2,xn+1)≤ d(xn,xn+1),

δ (xn+2,xn+1)≤ δ (xn,xn+1),

γ(xn+2,xn+1)≤ γ(xn,xn+1).

It follows that (d(xn,xn+1))p, (δ (xn,xn+1))p and (γ(xn,xn+1))p converges to l1, l2 and l1 , re-

spectively.

Since limsup
t→l+1

α(t)<
1
2

, limsup
t→l+2

α(t)<
1
2

and limsup
t→l+3

α(t)<
1
2

,

there exist p1, p2, p3 ∈ N and r1,r2,r3 ∈ [0, 1
2 [ such that:

α(d(xn+1,xn))≤ r1, for all n≥ p1,

α(δ (xn+1,xn))≤ r2, for all n≥ p2,

α(γ(xn+1,xn))≤ r3, for all n≥ p3,

this yields 
α(δ (xn+1,xn))

1−α(δ (xn+1,xn))
≤ r1

1−r1
, for all n≥ p1,

α(γ(xn+1,xn))
1−α(γ(xn+1,xn))

≤ r2
1−r2

, for all n≥ p2,

α(d(xn+1,xn))
1−α(d(xn+1,xn))

≤ r3
1−r3

, for all n≥ p3.

Then exist R1,R2,R3 ∈ [0,1[ such that
d(xn+2,xn+1)≤ R1d(xn,xn+1),

δ (xn+2,xn+1)≤ R2δ (xn,xn+1),

γ(xn+2,xn+1)≤ R3γ(xn,xn+1).

Hence (xn)n is a Cauchy sequence in (X ,d),(X ,δ ) and (X ,γ); since (X ,d,δ ,γ) is an (M)-space,

there exist x∗,y∗,z∗ ∈ X such that

lim
n

d(xn,x∗) = lim
n

δ (xn,y∗) = lim
n

γ(xn,z∗) = 0.

Step 2:

Case 1: If x∗ 6= y∗ and y∗ 6= z∗.

Since limn d(T xn,x∗) = 0 and limn δ (xn,x∗) = δ (y∗,x∗) > 0, we obtain d(x∗,T xn) ≤ δ (x∗,xn)

for large integers, which gives.
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(10)

(11)

(12)


d(T x∗,T xn)≤ α(δ (x∗,xn))(d(xn,T x∗)+δ (x∗,T xn)),

δ (T x∗,T xn)≤ α(γ(x∗,xn))(δ (xn,T x∗)+ γ(x∗,T xn)),

γ(T x∗,T xn)≤ α(d(x∗,xn))(γ(xn,T x∗)+d(x∗,T xn)).

From (12), we have T x∗ = z∗.

Since limn δ (T xn,y∗) = 0 and limn γ(xn,y∗) = γ(z∗,y∗) > 0, we obtain δ (y∗,T xn) ≤ γ(y∗,xn)

for large integers, which gives

(13)

(14)

(15)


d(Ty∗,T xn)≤ α(δ (y∗,xn))(d(xn,Ty∗)+δ (y∗,T xn)),

δ (Ty∗,T xn)≤ α(γ(y∗,xn))(δ (xn,Ty∗)+ γ(y∗,T xn)),

γ(Ty∗,T xn)≤ α(d(y∗,xn))(γ(xn,Ty∗)+d(y∗,T xn)).

So, by (13) we get that Ty∗ = x∗.

If x∗ 6= z∗. Then limn γ(T xn,z∗) = 0 and limn d(xn,z∗) = d(x∗,z∗) > 0, we obtain γ(z∗,T xn) ≤

d(z∗,xn) for large integers, which gives

(16)

(17)

(18)


d(T z∗,T xn)≤ α(δ (z∗,xn))(d(xn,T z∗)+δ (z∗,T xn)),

δ (T z∗,T xn)≤ α(γ(z∗,xn))(δ (xn,T z∗)+ γ(z∗,T xn)),

γ(T z∗,T xn)≤ α(d(z∗,xn))(γ(xn,T z∗)+d(z∗,T xn)).

Using (17), we obtain T z∗ = y∗ and using (14) we get for k1 ∈ [0, 1
2 [

δ (Ty∗,y∗)≤ k1(δ (y∗,Ty∗)+ γ(y∗,z∗)),

then

δ (x∗,y∗)≤ k1(δ (y∗,x∗)+ γ(y∗,z∗)),

therefor we have

δ (x∗,y∗)≤ k1

1− k1
γ(y∗,z∗)< γ(y∗,z∗),
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using (18) we obtain that there exists k2 ∈ [0, 1
2 [ such that

γ(z∗,y∗)≤ k2

1− k2
d(x∗,z∗)< d(x∗,z∗),

and using (10), we get for k3 ∈ [0, 1
2 [

d(z∗,x∗)≤ k3

1− k3
δ (x∗,y∗)< δ (x∗,y∗),

then δ (x∗,y∗)< δ (x∗,y∗), which is contraction.

If x∗ = z∗.

By (11) we conclude that there exists k4 ∈ [0, 1
2 [ such that

δ (T x∗,y∗)≤ k4(δ (y∗,T x∗)+ γ(z∗,x∗)),

then

δ (z∗,y∗)≤ k4δ (y∗,z∗),

which is contraction.

case 2: if x∗ 6= y∗ and y∗ = z∗. Then x∗ 6= z∗.

Using (17), we obtain T z∗ = y∗, and using (16) we obtain that there exists k5 ∈ [0, 1
2 [ such that:

d(y∗,x∗)≤ k5d(y∗,x∗)+δ (y∗,z∗),

it follows that x∗ = y∗, which is contraction.

Similarly if x∗ = y∗ and y∗ 6= z∗, we get a contraction.

Thus

x∗ = y∗ = z∗.

step 3:

As in the step 3 the proof of theorem 3.4, we have a subsequence (xσ(n))n such that:
d(T x∗,T xσ(n))≤ α(δ (x∗,xσ(n)))(d(xσ(n),T x∗)+δ (x∗,T xσ(n))),

δ (T x∗,T xσ(n))≤ α(γ(x∗,xσ(n)))(δ (xσ(n),T x∗)+ γ(x∗,T xσ(n))),

γ(T x∗,T xσ(n))≤ α(d(x∗,xσ(n)))(γ(xσ(n),T x∗)+d(x∗,T xσ(n))).

Then there exists k ∈ [0, 1
2 [ such that:

d(T x∗,x∗)≤ k(d(x∗,T x∗)+δ (x∗,y∗)).
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Which implies d(T x∗,x∗)≤ kd(x∗,T x∗) and hence T x∗ = x∗, thus x∗ is a fixed point of T .

step 4:

For the uniqueness of the point, we assume that x and y are two different fixed points of T . We

have d(x,y) ≤ δ (x,y) or δ (x,y) ≤ d(x,y). For the first case, we obtain: d(x,T y) = d(x,y) ≤

δ (x,y) and then


d(x,y) = d(T x,T y)≤ α(δ (x,y))(d(y,T x)+δ (x,T y)),

δ (x,y) = δ (T x,T y)≤ α(γ(x,y))(δ (y,T x)+ γ(x,T y)),

γ(x,y) = γ(T x,T y)≤ α(d(x,y))(γ(y,T x)+d(x,T y)),

then 

d(x,y)≤ α(δ (x,y))
1−α(δ (x,y))δ (x,y)< δ (x,y),

δ (x,y)≤ α(γ(x,y))
1−α(γ(x,y))γ(x,y)< γ(x,y),

γ(x,y)≤ α(d(x,y))
1−α(d(x,y))d(x,y)< d(x,y),

which is contraction. Thus, T has a unique fixed point in X. This completes the proof.

If δ = γ , we obtain the following result.

Corollary 3.8.

Let X be non-empty set, d and δ two metrics on X and T : X → X a mapping such that:

(1) (X ,d,δ ) is a (M)-space.

(2) For all x,y ∈ X, one of the following two conditions:

i. d(x,Ty)≤ δ (x,y),

ii. δ (x,Ty)≤ d(x,y),

implies  d(T x,Ty)≤ α(δ (x,y))(d(y,T x)+δ (x,Ty)),

δ (T x,Ty)≤ α(d(x,y))(δ (y,T x)+d(x,Ty)),

where α : [0,+∞[→ [0, 1
2 [ is a function such that limsup

s→r+
α(s)<

1
2

, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.
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Example 3.9. Let X = {(0,0),(4,0),(0,4),(5,0),(4,5),(5,4)} endowed with the distance d

and δ defined by

d((x,x′),(y,y′)) = |x− y|+ |x′− y′| and δ ((x,x′),(y,y′)) =

√
5

2
(|x− y|+ |x′− y′|),

for all ((x,x′),(y,y′)) ∈ X2.

We put r = 2√
5
, and consider the mapping defined on X by

T (x,x′) =


(x′,0) if x≤ x′ and (x,x′) ∈ X \{(0,4)},

(0,x′) if x > x′ and (x,x′) ∈ X \{(0,4)},

(0,0) if (x,x′) = (0,4).

First case : ((x,x′),(y,y′)) 6∈ {((4,5),(5,4)),((5,4),(4,5))}, we have
d(T (x,x′),T (y,y′))≤ r (d((y,y′),T (x,x′))+δ ((x,x′),T (y,y′))) ,

δ (T (x,x′),T (y,y′))≤ r (δ ((y,y′),T (x,x′))+d((x,x′),T (y,y′))) .

Second case : (x,x′) = (4,5) and (y,y′) = (5,4).

d((x,x′),T (y,y′)) = 5 and δ ((x,x′),T (y,y′)) =
5
√

5
2

,

d((y,y′),T (x,x′)) = 4 and δ ((y,y′),T (x,x′)) =
4
√

5
2

,

d((x,x′),(y,y′)) = 2 and δ ((x,x′),(y,y′)) =
√

5.

Note that

d((x,x′),T (y,y′))> δ ((x,x′),(y,y′)),

and

δ ((x,x′),T (y,y′))> d((x,x′),(y,y′)).

Since d(T (x,x′),T (y,y′)) = 9 and δ (T (x,x′),T (y,y′)) = 9
√

5
2 , so

d(T (x,x′),T (y,y′))> r (d((y,y′),T (x,x′))+δ ((x,x′),T (y,y′))) ,

δ (T (x,x′),T (y,y′))> r (δ ((y,y′),T (x,x′))+d((x,x′),T (y,y′))) .
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Similarly for (x,x′) = (5,4) and (y,y′) = (4,5).

Hence, T satisfies the hypotheses of corollary 3.8 but we haven’t
d(T (x,x′),T (y,y′))≤ r (d((y,y′),T (x,x′))+δ ((x,x′),T (y,y′))) ,

δ (T (x,x′),T (y,y′))≤ r (δ ((y,y′),T (x,x′))+d((x,x′),T (y,y′))) ,

on the hole space. Note that T have a unique fixed point x∗ = (0,0).

If d = δ = γ , we obtain the following result.

Corollary 3.10. Let (X ,d) a complete metric space and let T : X → X be a mapping such that,

for all x,y ∈ X,

d(x,Ty)≤ d(x,y) implies d(T x,Ty)≤ α(d(x,y))(d(y,T x)+d(x,Ty)),

where α : [0,+∞[→ [0, 1
2 [ is a function such that limsup

s→r+
α(s)<

1
2

, for all r ≥ 0.

Then, there exist a unique element x∗ ∈ X such that T x∗ = x∗.

Remarque 3.11. In corollary 3.10 if the function α is replaced by a constant r ∈ [0, 1
2 [ we get

the theorem 2.2

The following result generalizes theorem 2.1.

Theorem 3.12. Let X be non-empty set, d, δ and γ three metrics on X and T : X→ X a mapping

such that:

(1) (X ,d,δ ,γ) is a (M)-space.

(2) For all x,y ∈ X, one of the following three conditions:

i. d(x,Ty)≤ δ (x,y),

ii. δ (x,Ty)≤ γ(x,y),

iii. γ(x,Ty)≤ d(x,y),

implies 
d(T x,Ty)≤ α(δ (x,y))(d(x,T x)+δ (y,Ty)),

δ (T x,Ty)≤ α(γ(x,y))(δ (x,T x)+ γ(y,Ty)),

γ(T x,Ty)≤ α(d(x,y))(γ(x,T x)+d(y,Ty)),
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where α : [0,+∞[→ [0, 1
2 [ is a function such that limsup

s→r+
α(s)<

1
2

, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.

Proof. step 1:

Letting x0 ∈ X, we define the sequence (xn)n by xn+1 = T xn for each n ∈ N, we have

d(xn+1,T xn) = 0≤ δ (xn+1,xn),

therefor we have
d(T xn+1,T xn)≤ α(δ (xn+1,xn))(d(xn+1,T xn+1)+δ (xn,T xn)),

δ (T xn+1,T xn)≤ α(γ(xn+1,xn))(δ (xn+1,T xn+1)+ γ(xn,T xn)),

γ(T xn+1,T xn)≤ α(d(xn+1,xn))(γ(xn+1,T xn+1)+d(xn,T xn)),

wherefrom 
d(xn+2,xn+1)≤ α(δ (xn+1,xn))(d(xn+1,xn+2)+δ (xn,xn+1)),

δ (xn+2,xn+1)≤ α(γ(xn+1,xn))(δ (xn+1,xn+2)+ γ(xn,xn+1)),

γ(xn+2,xn+1)≤ α(d(xn+1,xn))(γ(xn+1,xn+2)+d(xn,xn+1)),

this yields 
d(xn+2,xn+1)≤ a(n)δ (xn,xn+1),

δ (xn+2,xn+1)≤ b(n)γ(xn,xn+1),

γ(xn+2,xn+1)≤ c(n)d(xn,xn+1),

with 
a(n) = α(δ (xn+1,xn))

1−α(δ (xn+1,xn))
,

b(n) = α(γ(xn+1,xn))
1−α(γ(xn+1,xn))

,

c(n) = α(d(xn+1,xn))
1−α(d(xn+1,xn))

.

Thus, we have

d(xn+2,xn+1) ≤ a(n)δ (xn,xn+1)

≤ a(n)b(n−1)γ(xn−1,xn)

≤ a(n)b(n−1)c(n−2)d(xn−2,xn−1), for all n≥ 2.
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Analogously, we obtain δ (xn+2,xn+1)≤ b(n)c(n−1)a(n−2)δ (xn−2,xn−1) and γ(xn+2,xn+1)≤

c(n)a(n−1)b(n−2)γ(xn−2,xn−1).

By hypothesis, 0≤ α(t)
1−α(t) < 1, ∀t ∈ [0,+∞[, then:

d(xn+2,xn+1)≤ d(xn−2,xn−1),

δ (xn+2,xn+1)≤ δ (xn−2,xn−1),

γ(xn+2,xn+1)≤ γ(xn−2,xn−1).

It follows that (d(x3p,x3p+1))p, (d(x3p+1,x3p+2))p and (d(x3p+2,x3p+3))p converges to d1,d2,

and d3, respectively. And (δ (x3p,x3p+1))p, (δ (x3p+1,x3p+2))p and (δ (x3p+2,x3p+3))p con-

verges to δ1,δ2, and δ3, respectively. And (γ(x3p,x3p+1))p, (γ(x3p+1,x3p+2))p and (γ(x3p+2,x3p+3))p

converges to γ1,γ2, and γ3, respectively.

Since limsup
t→δ

+
1

α(t)<
1
2

, limsup
t→γ

+
3

α(t)<
1
2

and limsup
t→d+

2

α(t)<
1
2

.

There exist p1 ∈ N and r1 ∈ [0, 1
2 [ such that for any integer p≥ p1

max{α(d(x3p+1,x3p+2));α(δ (x3p,x3p+1));α(γ(x3p+2,x3p+3))} ≤ r1.

Hence 
α(δ (x3p+1,x3p))

1−α(δ (x3p+1,x3p))
≤ r1

1−r1
,

α(γ(x3p,x3p−1))
1−α(γ(x3p,x3p−1))

≤ r1
1−r1

,

α(d(x3p−1,x3p−2))
1−α(d(x3p−1,x3p−2))

≤ r1
1−r1

.

There exist R1 ∈ [0,1[ such that

d(x3p+1,x3p+2)≤ R1d(x3p−2,x3p−1).

In the same way, we find that exist p2, p3 ∈ N and R2,R3 ∈ [0,1[ such that

d(x3p+2,x3p+3)≤ R2d(x3p−1,x3p) for p≥ p2,

d(x3p+4,x3p+3)≤ R3d(x3p,x3p+1) for p≥ p3.

It follow that Σp≥1d(x3p−1,x3p), Σp≥1d(x3p−2,x3p−1) and Σp≥0d(x3p,x3p+1) are convergent.

Therefore

Σn≥0d(xn,xn+1) = Σp≥0d(x3p,x3p+1)+Σp≥1d(x3p,x3p−1)+Σp≥1d(x3p−1,x3p−2),
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is convergent. In the same way; we find Σn≥0δ (xn,xn+1) and Σn≥0γ(xn,xn+1) are convergent.

Hence (xn)n is a Cauchy sequence in (X ,d), (X ,δ ) and (X ,γ); since (X ,d,δ ,γ) is an (M)-space,

there exist x∗,y∗,z∗ ∈ X such that

lim
n

d(xn,x∗) = lim
n

δ (xn,y∗) = lim
n

γ(xn,z∗) = 0.

Step 2:

If x∗ 6= y∗. And since limn d(T xn,x∗)= 0 and limn δ (xn,x∗)= δ (y∗,x∗)> 0, we obtain d(x∗,T xn)≤

δ (x∗,xn) for large integers, which gives

(19)

(20)

(21)


d(T x∗,T xn)≤ α(δ (x∗,xn))(d(x∗,T x∗)+δ (xn,T xn)),

δ (T x∗,T xn)≤ α(γ(x∗,xn))(δ (x∗,T x∗)+ γ(xn,T xn)),

γ(T x∗,T xn)≤ α(d(x∗,xn))(γ(x∗,T x∗)+d(xn,T xn)).

Using (19), we obtain T x∗ = x∗ and by (20) we conclude that δ (T x∗,y∗) ≤ δ (x∗,T x∗) so, we

have T x∗ = y∗, also x∗ = y∗, which is contraction.

Similarly if x∗ 6= z∗ and y∗ = z∗, we get a contraction.

Thus

x∗ = y∗ = z∗.

step 3:

As in the step 3 the proof of theorem 3.1, we have a subsequence (xσ(n))n such that:
d(T x∗,T xσ(n))≤ α(δ (x∗,xσ(n)))(d(x∗,T x∗)+δ (xσ(n),T xσ(n))),

δ (T x∗,T xσ(n))≤ α(γ(x∗,xσ(n)))(δ (x∗,T x∗)+ γ(xσ(n),T xσ(n)))

γ(T x∗,T xσ(n))≤ α(d(x∗,xσ(n)))(γ(x∗,T x∗)+d(xσ(n),T xσ(n))).

Furthermore, limsup
n

α(δ (x∗,xσ(n))<
1
2

implies that exists k ∈ [0, 1
2 [ such that

d(T x∗,T xσ(n))≤ k(d(x∗,T x∗)+δ (xσ(n),T xσ(n))),

and consequently

d(T x∗,x∗)≤ kd(x∗,T x∗).
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Thus d(T x∗,x∗) = 0, hence, x∗ is a fixed point of T .

step 4:

For the uniqueness of the point, we assume that x and y are two different fixed points of T . We

have d(x,y) ≤ δ (x,y) or δ (x,y) ≤ d(x,y). For the first case, we obtain: d(x,T y) = d(x,y) ≤

δ (x,y) and then 
d(T x,T y)≤ α(δ (x,y))(d(x,T x)+δ (y,T y)),

δ (T x,T y)≤ α(γ(x,y))(δ (x,T x)+ γ(y,T y)),

γ(T x,T y)≤ α(d(x,y))(γ(x,T x)+d(y,T y)).

Then d(x,y) = 0, thus, T has a unique fixed point in X. This completes the proof.

If δ = γ , we obtain the following result.

Corollary 3.13. Let X be non-empty set, d and δ two metrics on X and T : X → X a mapping

such that:

(1) (X ,d,δ ) is a (M)-space.

(2) For all x,y ∈ X, one of the following two conditions:

i. d(x,Ty)≤ δ (x,y),

ii. δ (x,Ty)≤ d(x,y),

implies  d(T x,Ty)≤ α(δ (x,y))(d(x,T x)+δ (y,Ty)),

δ (T x,Ty)≤ α(d(x,y))(δ (x,T x)+d(y,Ty)),

where α : [0,+∞[→ [0, 1
2 [ is a function such that limsup

s→r+
α(s)<

1
2

, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.

Corollary 3.14. Let (X ,d,δ ,γ) a (M)-space and T : X → X a mapping such that:
d(T x,Ty)≤ α(δ (x,y))(d(x,T x)+δ (y,Ty)),

δ (T x,Ty)≤ α(γ(x,y))(δ (x,T x)+ γ(y,Ty)),

γ(T x,Ty)≤ α(d(x,y))(γ(x,T x)+d(y,Ty)),

where α : [0,+∞[→ [0, 1
2 [ is a function such that limsup

s→r+
α(s)<

1
2

, for all r ≥ 0.

Then T has a unique fixed point x∗ ∈ X.
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Example 3.15. Let X = [0,1] endowed with the usual distance d and the distance δ and γ

defined by δ (x,y) = 2|x− y| and γ(x,y) = 3|x− y|.

(X ,d), (X ,δ ) and (X ,γ) are complete metric spaces. We define α from [0,+∞[ into [0,1[ by

α(t) = 5
12e−

t
6 , and consider the mapping defined on X by

T x =

 1
10x if x ∈ [0,1[,

0 if x = 1.

For x,y ∈ [0,1[, we have

d(T x,Ty) =
1

10
|x− y| ≤ 5

12
e−

1
3 |x−y|(

9
10

x+
9
5

y) = α(δ (x,y))(d(x,T x)+δ (y,Ty)),

δ (T x,Ty) =
1
5
|x− y| ≤ 5

12
e−

1
2 |x−y|(

9
5

x+
27
10

y) = γ(d(x,y))(δ (x,T x)+ γ(y,Ty)),

γ(T x,Ty) =
3

10
|x− y| ≤ 5

12
e−

1
6 |x−y|(

27
10

x+
9

10
y) = γ(d(x,y))(γ(x,T x)+d(y,Ty)).

For x ∈ [0,1[ and y = 1 T satisfy corollary 3.14, similarly for y ∈ [0,1[ and x = 1. Then T has

a unique fixed point in X, T 0 = 0.

Corollary 3.16. Let (X ,d) a complete metric space and let T : X → X be a mapping such that,

for all x,y ∈ X,

d(x,Ty)≤ d(x,y) implies d(T x,Ty)≤ α(d(x,y))(d(x,T x)+d(y,Ty)),

where α : [0,+∞[→ [0, 1
2 [ is a function such that limsup

s→r+
α(s)<

1
2

, for all r ≥ 0.

Then, there exist a unique element x∗ ∈ X such that T x∗ = x∗

Remarque 3.17. In corollary 3.16 if the function α is replaced by a constant r ∈ [0, 1
2 [ we get

the theorem 2.1.
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