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Abstract. We discuss some common fixed point theorems for weakly contractive occasionally weakly biased

mappings on metric spaces with illustrative examples.
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1. Introduction and Preliminaries

Let (X ,d) be a metric space. A mapping f : X → X , is called contraction if for each x,y ∈ X ,

there exists a constant k ∈ [0,1) such that

(1.1) d( f x, f y)≤ kd(x,y)
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Alber and Guerre- Delabriere[2] defined the concept of weakly contractive mapping on

Hilbert spaces and proved the existence of fixed points. Rhoades [11] showed that most re-

sults of Alber and Guerre-Delabriere[2] are still true for any Banach space. Note that in Alber

and Gurre–Delabriere[2], ϕ is assumed with an additional condition lim
t→∞

ϕ(t) = ∞. However,

Rhoades [11] obtained the result without using this additional condition. Following Rhoades

[11], a mapping f : (X ,d)→ (X ,d) is called a weakly contractive, if for each x,y ∈ X

(1.2) d( f x, f y)≤ d(x,y)−ϕ(d(x,y))

where ϕ : [0,∞)→ [0,∞) is continuous, non-decreasing and positive on (0,∞) with ϕ(0) = 0.

Let f ,g : (X ,d)→ (X ,d) be two mappings, then the mapping f is called g-weakly contractive[15]

if for each x,y ∈ X

(1.3) d( f x, f y)≤ d(gx,gy)−ϕ(d(gx,gy)),

where ϕ : [0,∞)→ [0,∞) is a lower semi-continuous function from right such that ϕ is positive

on (0,∞) and ϕ(0) = 0. If g = I, an identical operator, then f is reduced to weak contraction.

Further, if g = I and ϕ(t) = (1− k)t where k ∈ (0,1), then g-weakly contractive is reduced

to inequality(1.1). If ψ(t) = t−ϕ(t) and g = I, then ψ(t) is upper semi-continuous from right

and inequality (1.3) reduces into contractive types of Boyd and Wong [4]. Thus

(1.4) d( f x, f y)≤ ψ(d(x,y))

Further more, if k(t) = 1− ϕ(t)
t for t > 0 and k(0) = 0 together with g = I, then inequality(1.3)

is closely related to Reich type[10]. In fact, the classes of weak contractive are closely related

to Boyd and Wong [4], and Riech[10] types (see also [16],[15]).

We denote C( f ,g) = {x ∈ X : f x = gx} and F( f ,g) = {x ∈ X : f x = gx = x}.

In the sequel we need the following definitions.

Definition 1.1[13]. Mappings f and g are called weakly commuting if d( f gx,g f x)≤ d( f x,gx),

for all x ∈ X .
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Definition 1.2[1](also see Sastry and Murthy[12]). Mappings f and g are called said to satisfy

property (E.A) if there exists a sequences {xn} in X such that lim
n→∞

f xx = lim
n→∞

gxn = t for some

t ∈ X .

Definition 1.3[9]. Mappings f and g are called weakly compatible if f gx = g f x for all x ∈

C( f ,g).

Definition 1.4[8]. Mappings f and g are called weakly g-biased if d(g f x,gx)≤ d( f gx, f x) for

all x ∈C( f ,g).

If the role of f and g are interchanged in above definition, then the mappings are called

weakly f -biased. Note that weakly compatible mappings implies weakly biased mappings (i.e.

both f - and g-biased) but the converse is not true in general[14].

Definition 1.5[3]. Mappings f and g are called occasionally weakly compatible(owc) if f gx =

g f x for some x ∈C( f ,g).

From above definitions, one may agree that weakly compatible mappings pair implies owc

but the converse may not be true in general ( also see [3]).

Definition 1.6[5]. Mappings f and g are called occasionally weakly g-biased if d(g f x,gx) ≤

d( f gx, f x) for some x ∈C( f ,g).

If the role of mappings are interchanged, then the mappings pair is called occasionally weakly

f -biased. Further, it may be noted that the notions of owc and weakly g-biased mappings are

occasionally weakly g-biased but the converse does not hold in general(see [5]).

Example 1.7. Let X = [0,1]⊂R with usual metric d. Define f ,g : X→X by f x= 1
3 +x, gx= 1

2 ,

for x < 1
2 , f 1

2 = 2
3 = g1

2 , f x = 1, gx = 1− x, for x > 1
2 . Here, C( f ,g) = {1

6 ,
1
2}. Also, we have

f 1
6 = 1

2 = g1
6 , f 1

2 = 2
3 = g1

2 and f g1
6 = 2

3 = g f 1
6 , but f g1

2 = 1 6= g f 1
2 = 1

3 . The mappings pair

( f ,g) is occasionally weakly compatible but not weakly compatible. However, the mappings

are weakly biased and hence occasionally weakly biased.

Example 1.8. Let X = [0,1] ⊂ R with usual metric d. Define f ,g : X → X by f x = 1, gx = 1
2 ,

for x < 1
2 , f 1

2 = 0 = g1
2 , f x = x, gx = 1− x, for x > 1

2 . Here, C( f ,g) = {1
2}. Also, we have

f 1
2 = 0 = g1

2 and |g f 1
2 − g1

2 | = |
1
2 − 0| = 1

2 ≤ | f g1
2 − f 1

2 | = |1− 0| = 1. The mappings pair
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( f ,g) is weakly biased and hence occasionally weakly g-biased but neither weakly compatible

nor owc.

Example 1.9. Let X = [0,1] ⊂ R with usual metric d. Define f ,g : X → X by f x = 2x, gx =

1−2x, for x≤ 1
4 , f x= 1,gx= 1

4 , for 1
4 < x≤ 1

2 , f x= 7
8 , gx= 1+8x

8 , for 1
2 < x≤ 3

4 , f x= 1
6 ,gx= 3

4 ,

for 3
4 < x≤ 1. Here, C( f ,g) = {1

4 ,
3
4}. Also f 1

4 = 1
2 = g1

4 and f 3
4 = 7

8 = g3
4 implies that

|g f
1
4
−g

1
4
|= 1

4
≤ | f g

1
4
− f

1
4
|= 1

2

and

|g f
3
4
−g

3
4
|= 1

8
6≤ | f g

3
4
− f

3
4
|= 17

24

Therefore, the pair ( f ,g) is occasionally weakly g-biased, but it is neither weakly g-biased nor

weakly compatible(resp. owc)

In this paper, we prove some common fixed point theorems for weak contraction occasionally

weakly biased mappings pair on metric spaces.

2. Main Results

Song[15] proved the following theorem.

Theorem 1.1 (Song[15]). Let (X ,d) be a metric space and f ,g : X→ X two self mappings with

f X ⊂ gX . Assume that either f X or gX is complete, and f is g-weakly contractive mapping,

then C( f ,g) 6= φ . If in addition, ( f ,g) is weakly compatible, then F( f ,g) is singleton.

Let ϕ : [0,∞)→ [0,∞) be a lower semi-continuous function with ϕ(t) = 0 if and only it t = 0.

Let f and g be two self mappings on a metric space (X ,d). We denote

(2.1) M(x,y) = max
{

d(gx,gy),d( f x,gy),d( f y,gx),
1
2
[d( f x,gx)+d( f y,gy)]

}
and

(2.2) N(x,y) = max
{

d(gx, f y),d( f x, f y),d(gx,gy),
1
2
[d( f x,gx)+d( f y,gy)]

}
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Theorem 2.2. Let f and g be two self mappings of a metric space (X ,d) satisfying the following

inequality

d( f x, f y)≤M(x,y)−ϕ

(
M(x,y)

)
,∀x,y ∈ X(2.3)

If ( f ,g) satisfies property-(E.A) and gX is closed in X , then C( f ,g) 6= φ . Further, if ( f ,g) is

occasinally weakly g-biased, then F( f ,g) is singleton.

Proof. Since f and g satisfy property (E.A), there exists a sequence in X such that f xn,gxn→ t

for some t ∈ X . As gX is closed and t ∈ X , there exists u ∈ X such that t = gu. We claim that

f u = gu. By (2.1) and (2.3), we obtain

d( f xn, f u)≤M(xn,u)−ϕ

(
M(xn,u)

)

and

M(xn,u) = max
{

d(gxn,gu),d( f xn,gu),d( f u,gxn),
1
2
[d( f xn,gxn)+d( f u,gu)]

}

On letting n→ ∞, we obtain

d(gu, f u)≤ max
{

0,0,d( f u,gu),
1
2

d( f u,gu)
}

−ϕ

(
max

{
0,0,d( f u,gu),

1
2

d( f u,gu)
})

= d( f u,gu)−ϕ(d( f u,gu))

which gives f u = gu. Therefore, C( f ,g) 6= φ . Since ( f ,g) is occasionally weakly g-biased

mappings, then f u = gu for some u ∈C( f ,g) and

(2.4) d(g f u,gu)≤ d( f gu. f u).
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Also, f u = gu yields f f u = f gu and g f u = ggu. Now we show that f f u = f u, otherwise by

(2.1), (2.3) and (2.4), we obtain

d( f f u, f u)≤M( f u,u)−ϕ

(
M( f u,u)

)
= max

{
d(g f u,gu),d( f f u,gu),

1
2
[d( f f u,g f u)+d( f u,gu)]

}
−ϕ

(
max

{
d(g f u,gu),d( f f u,gu),

1
2
[d( f f u,g f u)+d( f u,gu)]

})
≤ d( f f u, f u)−ϕ(d( f f u, f u))

which gives ϕ(d( f f u, f u)) = 0⇒ f f u = f u. By occasionally weakly g-biased of f and g, we

obtain

d(g f u,gu)≤ d( f gu, f u) = d( f f u, f u) = 0,

which in turn gives g f u = f u. Therefore, f u = z is a common fixed point of f and g. For the

uniqueness, let z 6= z′ ∈ X such that f z = gz = z and f z′ = gz′ = z′, then by (2.1) and (2.3), we

obtain

d(z,z′) = d( f z, f z′)

≤M(z,z′)−ϕ

(
M(z,z′)

)
= d(z,z′)−ϕ(d(z,z′))

which yields ϕ(d(d,z′)) = 0 and z = z′. This completes the proof.

The following example illustrate the validity of above theorem.

Example 2.3. Let X = [0,1) ⊂ R with usual metric d(x,y) = |x− y|. Define f ,g : X → X by

f x= 1
2 , for 0≤ x≤ 1

2 f x= 1
4 , for 1

2 < x< 1 and gx= 1
2(1+x), for 0≤ x< 1

2 , g1
2 =

1
2 , gx= 3

4 , for
1
2 < x < 1. Here, f X = {1

4 ,
1
2} is not contained in gX = [1

2 ,
3
4 ], and gX is closed in X . Mappings

f and g satisfy property (E.A), to verify this, let {xn} be a sequence in X , xn > 0, n = 1,2,3, ...

such that xn → 0 as n→ ∞ then f xn,gxn → 1
2 ∈ X . One can also verify that ( f ,g) satisfies

inequality (2.3) for every x,y∈ X taking with ϕ(t) = t
2 . Also, C( f ,g) = {0, 1

2} and f 0 = 1
2 = g0

which implies f and g are occasionally weakly g-biased mappings. Thus, all the conditions of

the theorem are satisfied and 1
2 is the unique common point.
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Corollary 2.4 Let f and g be two self mappings of a metric space (X ,d) satisfying the follow-

ing: for every x,y ∈ X ,

(2.5) d( f x, f y)≤ ψ(M(x,y))

where ψ : [0,∞)→ [0,∞) is a function such that 0 < ψ(t) < t for t > 0 and ψ(0) = 0. If

( f ,g) satisfies the property (E.A) and gX is closed in X , then C( f ,g) 6= φ . Further, if ( f ,g) is

occasionally weakly g-biased, then F( f ,g) is singleton.

Proof. Letting ϕ(t) = t−ψ(t), then 0 < ψ(t) = t−ϕ(t)< t for t > 0 (by definition of ψ) and

inequality (2.5) implies that

d( f x, f y)≤M(x,y)−ϕ

(
M(x,y)

)
Therefore, the result follows from Theorem 2.2.

Corollary 2.5 Let f and g be two self mappings of a metric space (X ,d) such that for every

x,y ∈ X

(2.6) d( f x, f y)≤ α

(
M(x,y)

)
M(x,y)

where α : [0,∞)→ [0,1) is a function. If ( f ,g) satisfies the property (E.A) and gX is closed in

X , then C( f ,g) 6= φ . Further, if ( f ,g) is occasionally weakly g-biased, then F( f ,g) is singleton.

Proof. Setting ϕ(t) = [1−α(t)]t, then equation (2.6) implies that

d( f x, f y)≤M(x,y)−ϕ(M(x,y))

The result follows from Theorem 2.2.

Theorem 2.6. Let f and g be two self mappings of a metric space (X ,d) satisfying

d( f x,gy)≤ N(x,y)−ϕ

(
N(x,y)

)
,∀x,y ∈ X(2.7)

If ( f ,g) satisfies the property-(E.A) and f X is closed in X , then C( f ,g) 6= φ . Further, if ( f ,g)

is occasionally weakly g-biased, then F( f ,g) is singleton.

Proof. Since f and g satisfy property-(E.A), there exists a sequence {xn} in X such that

f xn,gxn→ t for some t ∈ X . As f X is closed and t ∈ X , there exists u ∈ X such that t = f u. We
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claim that f u = gu. By (2.2) and (2.7), we obtain

d( f xn,gu)≤ N(xn,u)−ϕ (N(xn,u))

and

N(xn,u) = max
{

d(gxn, f u),d( f xn, f u),d(gxn,gu),
1
2
[d( f xn,gxn)+d( f u,gu)]

}
On letting n→ ∞, we obtain

d(gu, f u)≤ max
{

0,0,d( f u,gu),
1
2

d( f u,gu)
}

−ϕ

(
max

{
0,0,d( f u,gu),

1
2

d( f u,gu)
})

= d( f u,gu)−ϕ (d( f u,gu))

which gives f u = gu. Therefore, C( f ,g) 6= φ .

Since ( f ,g) is occasionally weakly g-biased mappings, then f u = gu for some u ∈C( f ,g) and

(2.8) d(g f u,gu)≤ d( f gu. f u).

Also, f u = gu yields f f u = f gu and g f u = ggu. Now we show that f f u = f u, otherwise by

(2.7), (2.2)and (2.8), we obtain

d( f f u, f u) = d( f f u,gu)

≤ N( f u,u)−ϕ

(
N( f u,u)

)
= max

{
d(g f u, f u),d( f f u, f u),

1
2

d( f f u,g f u)
}

−ϕ

(
max

{
d(g f u, f u),d( f f u, f u),

1
2

d( f f u,g f u)
})

≤ max{d( f f u, f u),d( f f u, f u),d( f f u, f u)}

−ϕ (max{d( f f u, f u),d( f f u, f u),d( f f u, f u)})

= d( f f u, f u)−ϕ(d( f f u, f u))

which gives ϕ(d( f f u, f u)) = 0⇒ f f u = f u.

By occasionally weakly g-biased of f and g, we obtain
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d(g f u,gu)≤ d( f gu, f u) = d( f f u, f u) = 0,

which in turn gives g f u = f u. Therefore, f u = z is a common fixed point of f and g. For the

uniqueness, let z 6= z′ ∈ X such that f z = gz = z and f z′ = gz′ = z′, then by (2.2) and (2.7), we

obtain

d(z,z′) = d( f z,gz′)

≤ N(z,z′)−ϕ(N(z,z′))

= d(z,z′)−ϕ(d(z,z′))

which yields ϕ(d(d,z′)) = 0 and z = z′. This completes the proof.

The validity of above theorem is illustrated by the following example.

Example 2.7. Let X = [0,1) ⊂ R with usual metric d. Define f ,g : X → X by f x = 1
2 , for

0≤ x≤ 1
2 , f x = 0, for x > 1

2 and gx = 1
2(1+x), for 0≤ x < 1

2 , g1
2 = 1

2 , gx = 3
5 , for x > 1

2 . Here,

f X = {0, 1
2} is not contained in gX = [1

2 ,
3
4), and f X is closed in X . Mappings f and g satisfy

property (E.A), to verify this, let {xn} be a sequence in X , xn > 0, n = 1,2,3, ... such that xn→ 0

as n→ ∞ then f xn,gxn→ 1
2 ∈ X . One can also verify that f and g satisfy inequality(2.7) for

every x,y∈ X taking with ϕ(t) = t
2 . Also, C( f ,g) = {0, 1

2} and f 0 = 1
2 = g0 implies f and g are

occasionally weakly g-biased mappings. Thus, all the conditions of the theorem are satisfied

and f 0 = 1
2 is the unique common point.

Corollary 2.8. Let f and g be two self mappings of a metric space (X ,d) satisfying

d( f x,gy)≤ N(x,y)−ϕ

(
N(x,y)

)
,∀x,y ∈ X

If ( f ,g) satisfies the property-(E.A) and f X is closed in X , then C( f ,g) 6= φ . Further, if ( f ,g)

is occasionally weakly compatible, then F( f ,g) is singleton.
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