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1. Introduction and preliminaries

Since the appearance of Banach’s contraction principle, a variety of generalizations, exten-

sions and applications of this principle have been obtained; see Rhoades[24] for a complete
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survey of this subject, Alber and Guerre-Delabriere [14]defined weakly contractive mappings

on a Hilbert spaces and established a fixed point theorem for such mappings, Dutta and Choud-

hury [13]generalized the weak contractive condition and proved a fixed point theorem for a self-

mapping, which in turn extends Theorem 1 in[24] and the corresponding result in [14], Zhang

and Song [20] introduced generalized weak contractive mappings and obtained a common fixed

point result. Doric [15] extended the result of Zhang and Song using a pair of functions ψ

and ϕ . On the other hand, Banach’s contraction principle is broadly applicable in proving the

existence of solutions to operator equations, including the ordinary differential equations, par-

tial differential equations and integral equations. This principle has been generalized in many

directions. For instance, Matthews [23] introduced the concept of a partial metric as a part of

the study of denotational semantics of dataflow networks. He gave a modified version of Ba-

nach’s contraction principle, more suitable in this context. Many authors followed his idea and

gave their contributions in that sense, see for example [4, 5, 6, 11, 12, 19, 21, 22, 25, 27, 28].

Subsequently, several authors studied the problem of existence and uniqueness of a fixed point

for mappings satisfying different contractive conditions (e.g., [2, 3, 7, 8, 12, 26, 29]). Existence

of fixed points in ordered metric spaces has been initiated in 2004 by Ran and Reurings [9], and

further studied by Nieto and López [10]. Finally, several interesting and valuable results have

appeared in this direction[16, 17]. The aim of this article is to study the necessary conditions

for existence of common fixed points of six maps satisfying generalized weak contractive con-

ditions in the framework of complete two partial metric spaces endowed with a partial order.

Our results extend and strengthen various known results[1, 18, 20].

Following are some definitions and known results needed in the sequel.

Definition 1.1.[23] Let X be a nonempty set. A mapping p : X ×X → R+ is said to be a

partial metric on X if for any x,y,z ∈ X , the following conditions hold true:

(P1): p(x,x) = p(y,y) = p(x,y) if and only if x = y;

(P2): p(x,x)≤ p(x,y);

(P3): p(x,y) = p(y,x);

(P4): p(x,z)≤ p(x,y)+ p(y,z)− p(y,y).
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A nonempty set X equipped with a partial metric p is called partial metric space. We shall

denote it by a pair (X ; p).

If p(x,y) = 0, then (P1) and (P2) imply that x = y. But converse does not hold always.

A trivial example of a partial metric space is the pair (R+, p), where p : R+×R+ → R+ is

defined as p(x,y) = max{x,y}.

Each partial metric p on X generates a T0 topology τp on X which has as a base the family of

open p-balls {Bp(x,ε) : x ∈ X ,ε > 0}, where Bp(x,ε) = {y ∈ X : p(x,y)< p(x,x)+ ε}, for all

x ∈ X and ε > 0. Observe (see [23], p. 187) that a sequence xn in X converges to a point x ∈ X ,

with respect to τp, if and only if p(x,x) = lim
n→∞

p(x,xn). If p is a partial metric on X , then the

mapping pS : X×X → R+ (set of all non-negative real numbers) given by

pS(x;y) = 2p(x;y)− p(x;x)− p(y;y)

is a metric on X .

Example 1.1.[23] If X = {[a,b] : a,b ∈R,a≤ b} then p([a,b], [c,d]) = max{b,d}−min{a,c}

defines a partial metric p on X .

Definition 1.2.[23] Let X be a partial metric space.

(a): A sequence {xn} in X is said to be a Cauchy sequence if lim
n,m→∞

p(xn,xm) exists and

is finite.

(b): X is said to be complete if every Cauchy sequence {xn} in X converges with respect

to τp to a point x ∈ X such that lim
n→∞

p(x,xn) = p(x,x). In this case, we say that the

partial metric p is complete.

Aydi [5] obtained the following result in partial metric spaces.

Theorem 1.1. Let (X ,≤X) be a partially ordered set and let p be a partial metric on X such

that (X , p) is complete. Let f : X → X be a nondecreasing map with respect to ≤X . Suppose

that the following conditions hold: for y≤ x, we have:

(i): p( f x, f y)≤ p(x,y)−ϕ(p(x,y));

where ϕ : [0,+∞[→ [0,+∞[ is a continuous and non-decreasing function such that it is

positive in ]0,+∞[, ϕ(0) = 0 and lim
t→+∞

ϕ(t) = ∞

(ii): there exist x0 ∈ X such that x0 ≤X f x0;
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(iii): f is continuous in (X , p), or;

(iiii): if a non-decreasing sequence {xn} converges to x ∈ X , then xn ≤X x for all n.

Then f has a fixed point u ∈ X . Moreover, p(u,u) = 0.

Recently, Abbas and Nazir [1] extended Theorem (1.1) and obtained the following theorem.

Theorem 1.2.[1] Let (X ,�) be a partially ordered set such that there exist a complete partial

metric p on X and f a nondecreasing selfmap on X . Suppose that for every two elements

x,y ∈ X with y� x, we have

ψ(p( f x, f y))≤ ψ(M(x,y))−ϕ(M(x,y)),

where

M(x,y) = max {p(x,y), p( f x,x), p( f y,y),
p(x, f y)+ p(y, f x)

2
},

ψ,ϕ : R+→R+,ψ is continuous and nondecreasing, ϕ is a lower semi continuous, and ψ(t) =

ϕ(t) = 0 if and only if t = 0. If there exists x0 ∈ X with x0 � f x0 and one of the following two

conditions is satisfied:

(a): f is continuous self map on (X , pS);

(b): for any nondecreasing sequence xn in (X ,�) with lim
n→+∞

pS(z,xn) = 0 it follows xn� z

for all n ∈ N,

then f has a fixed point. Moreover, the set of fixed points of f is well ordered if and only if f

has one and only one fixed point.

A nonempty subset W of a partially ordered set X is said to be well ordered if every two elements

of W are comparable.

2. Fixed point results

Throughout the rest of this paper, we denote by (X ,≤,d,δ ) be a complete two partially

ordered metric spaces, i.e., � is a partial order on the set X and d, δ are complete two partially

ordered metric spaces on X. A mapping F : X → X is said to be nondecreasing if x,y in X , x�

y⇒ Fx� Fy .
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Theorem 2.1. Let (X ,≤,d,δ ) be a complete two partially ordered metric space; let F : X → X

be a continuous and nondecreasing mapping such that for all comparable x,y in X :

(1)

(2)

ψ(d(Fx,Fy))≤ ψ(Mδ (x,y))−φ(Mδ (x,y)),

ψ(δ (Fx,Fy))≤ ψ(Md(x,y))−φ(Md(x,y)).

where:

Md(x,y) = max{d(x,y),d(x,Fx),d(y,Fy),d(x,x),d(y,y),
[d(x,Fy)+d(Fx,y)]

2
},

Mδ (x,y) = max{δ (x,y),δ (x,Fx),δ (y,Fy),δ (x,x),δ (y,y),
[δ (x,Fy)+δ (Fx,y)]

2
},

(a): ψ : [0,+∞[→ [0,+∞[ is a continuous and monotone nondecreasing function with

ψ(t) = 0 if and only if t = 0.

(b): φ : [0,+∞[→ [0,+∞[ is a lower semi-continuous function with φ(t) = 0 if and only if

t = 0.

If there exists x0 ∈ X with x0 � Fx0, then F has a fixed point .

Proof. Since F is a nondecreasing function, we obtain by induction that:

x0 � Fx0 � F2x0 � .....� Fnx0 � Fn+1x0 � ....

Put x0 ∈ X , xn+1 = Fxn, Then, for each integer n = 0,1,2, ...., as the elements xn+1 and xn are

comparable, from (1) we get:

(3) ψ(d(xn+1,xn)) = ψ(d(Fxn,Fxn−1))≤ ψ(Mδ (xn,xn−1))−ϕ(Mδ (xn,xn−1)).

Which implies ψ(d(xn+1,xn)) ≤ ψ(Mδ (xn,xn−1)). Using the monotone property of the ψ −

f unction, we get:

d(xn+1,xn) ≤ Mδ (xn,xn−1).(4)
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Now, from the triangle inequality, for δ we have:

Mδ (xn,xn−1) = max{δ (xn,xn−1),δ (xn,Fxn),δ (xn−1,Fxn−1),δ (xn,xn),

δ (xn−1,xn−1),
[δ (xn,Fxn−1)+δ (Fxn,xn−1)]

2
}

= max{δ (xn,xn−1),δ (xn,xn+1),δ (xn−1,xn),δ (xn,xn),

δ (xn−1,xn−1),
[δ (xn,xn)+δ (xn+1,xn−1)]

2
}

≤ max{δ (xn,xn−1),δ (xn+1,xn),
[δ (xn,xn+1)+δ (xn,xn−1)]

2
}

= max{δ (xn,xn−1),δ (xn+1,xn)}.(5)

If: δ (xn+1,xn)> δ (xn,xn−1), then Mδ (xn,xn−1) = δ (xn+1,xn)> 0 .

By (3) it furthermore implies that:

ψ(d(xn+1,xn)) ≤ ψ(δ (xn+1,xn))−φ(δ (xn+1,xn))

≤ ψ(δ (xn+1,xn))

= ψ(δ (Fxn,Fxn−1)).

From (2) implies:

(6) ψ(d(xn+1,xn))≤ ψ(Md(xn,xn−1))−φ(Md(xn,xn−1)).

Similarly the (5) , we can show that:

Md(xn,xn−1) = max{d(xn,xn−1),d(xn+1,xn)}.

If: d(xn+1,xn)> d(xn,xn−1) then Md(xn,xn−1) = d(xn+1,xn)> 0. By (6) it furthermore implies

that:

ψ(d(xn+1,xn))≤ ψ(d(xn+1,xn))−φ(d(xn+1,xn)).

Which is a contradiction. So, we have:

(7) d(xn+1,xn)≤Md(xn,xn−1)≤ d(xn,xn−1).

Put in (2) , x = xn,y = xn−1 we get:

ψ(δ (Fxn,Fxn−1))≤ ψ(Md(xn,xn−1))−φ(Md(xn,xn−1)).
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Using (7) implies:

ψ(δ (xn+1,xn))≤ ψ(d(xn,xn−1))−φ(d(xn,xn−1)).

Which implies:

ψ(δ (xn+1,xn))≤ ψ(d(xn,xn−1)).

Using the monotone property of the ψ− f unction, we get:

(8) δ (xn+1,xn)≤ d(xn,xn−1).

Put in (1) , x = xn−1,y = xn−2 we get:

ψ(d(Fxn−1,Fxn−2))≤ ψ(Mδ (xn−1,xn−2))−φ(Mδ (xn−1,xn−2)).

Which implies

ψ(d(xn,xn−1))≤ ψ(Mδ (xn−1,xn−2)).

Using the monotone property of the ψ− f unction, and (5) , we have:

(9) d(xn,xn−1))≤Mδ (xn−1,xn−2) = δ (xn,xn−1).

(8) and (9) implies

δ (xn+1,xn)≤ δ (xn,xn−1).

Which is a contradiction. So, we have:

(10) δ (xn+1,xn)≤Mδ (xn,xn−1)≤ δ (xn,xn−1).

Therefore, (7) and (10) , the sequence {d(xn+1,xn)} (resp{δ (xn+1,xn)}) is monotone non in-

creasing and bounded, thus, there exists r ≥ 0 such that:

(11) lim
n→+∞

d(xn+1,xn) = lim
n→+∞

Md(xn,xn−1) = r.

Using (3) , (10) , (2) , and (7) , we obtain:

(12) ψ(d(xn+1,xn))≤ ψ(d(xn−1,xn−2))−φ(d(xn−1,xn−2)).

We suppose that r > 0, then, letting n→ ∞ in the inequality (12) , we get:

ψ(r)≤ ψ(r)−φ(r),
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Which is a contradiction unless r = 0, hence,

(13) lim
n→+∞

d(xn+1,xn) = 0.

Next we prove that {xn} is a d-Cauchy (resp δ -Cauchy ) sequence suppose that {xn} is not a

d-Cauchy (resp δ -Cauchy ) sequence, then, there exists ε > 0 (resp ε , > 0) for which we can

find subsequences {xmk} and {xnk} of {xn} with nk > mk > k (resp nk, > mk, > k, ) such that:

(14) d(xnk ,xmk)≥ ε (resp δ (xnk, ,xmk, )≥ ε
,).

Further, corresponding to mk, we can choose nk in such a way that it is the smallest integer with

nk > mk satisfying (14) , then

(15) d(xnk−1,xmk)< ε.

Using (14) , (15) and the triangle inequality , we have:

ε ≤ d(xnk ,xmk)≤ d(xnk ,xnk−1)+d(xnk−1,xmk)< d(xnk ,xnk−1)+ ε.

Letting k→+∞ and using (13) , we obtain:

(16) lim
k→+∞

d(xnk ,xmk) = ε ( resp lim
k→+∞

δ (xnk ,xmk) = ε
,).

Again, the triangle inequality gives us:

d(xnk−1,xmk) ≤ d(xnk−1,xnk)+d(xnk ,xmk)

d(xnk ,xmk) ≤ d(xnk ,xnk−1)+d(xnk−1,xmk).

Then we have:

| d(xnk−1,xmk)−d(xnk ,xmk) |≤ d(xnk ,xnk−1).

Letting k→+∞ in the above inequality and using (13) and (16) , we get:

(17) lim
k→+∞

d(xnk−1,xmk) = ε.
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Similarly, we can show that:

lim
k→+∞

d(xnk ,xmk−1) = lim
k→+∞

d(xnk−1,xmk−1)

= lim
k→+∞

d(xnk ,xmk+1)

= lim
k→+∞

d(xnk−1,xmk) = ε.(18)

As:

Md(xnk−1,xmk−1) = max{d(xnk−1,xmk−1),d(xnk−1,xnk),d(xmk−1,xmk),d(xnk−1,xnk−1),

d(xmk−1,xmk−1),
[d(xnk−1,xmk)+d(xnk ,xmk−1]

2
}.

Using (13) and (16) , (18) , we have:

(19) lim
k→+∞

Md(xnk−1,xmk−1) = max{ε,0,0,0,0,ε}= ε.

For example is chosen k = max{k,k,} , similarly (19) , we have:

(20) lim
k→+∞

Mδ (xnk−1,xmk−1) = ε
,.

As nk > mk and xnk−1 , xmk−1 are comparable. Setting x = xnk−1 and y = xmk−1 in (1) , (2) , we

obtain:

ψ(d(Fxnk−1,Fxmk−1)) = ψ(d(xnk ,xmk)) ≤ ψ(Mδ (xnk−1,xmk−1)))−φ(Mδ (xnk−1,xmk−1))

ψ(δ (Fxnk−1,Fxmk−1)) = ψ(δ (xnk ,xmk)) ≤ ψ(Md(xnk−1,xmk−1)))−φ(Md(xnk−1,xmk−1)).

Letting k→+∞ in the above inequality and using (16) , (19) , (20) , we get:

ψ(ε) ≤ ψ(ε ,)−φ(ε ,)

ψ(ε ,) ≤ ψ(ε)−φ(ε).

Implies:

ψ(ε)≤ ψ(ε ,) ≤ ψ(ε)−φ(ε)

ψ(ε ,)≤ ψ(ε) ≤ ψ(ε ,)−φ(ε ,).
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Which is a contradiction as ε > 0 and ε ,> 0 . Hence {xn} is a d-Cauchy (resp δ -Cauchy)sequence.

By the completeness of X , there exists z ∈ X such that lim
n→+∞

xn = z , that is,

(21) lim
n→+∞

d(xn,z) = d(z,z) = lim
m,n→+∞

d(xm,xn) = 0.

Moreover, the continuity of F implies that:

lim
n→+∞

d(xn+1,z) = lim
n→+∞

d(Fxn,z) = d(Fz,z) = 0.

And this proves that z is a fixed point.

Notice that the continuity of F in Theorem (2.1) is not necessary and can be dropped.

Theorem 2.2. Under the same hypotheses of Theorem (2.1) and without assuming the continu-

ity of F , assume that whenever {xn} is a nondecreasing sequence in X such that xn→ x ∈ X im-

plies xn ≤ x for all n ∈ N, then F has a fixed point in X .

Proof. Following similar arguments to those given in Theorem (2.1), we construct a nonde-

creasing sequence{xn} in X such that xn→ z for some z ∈ X . Using the assumption of X , we

have xn � z for every n ∈ N. Now, we show that Fz = z. By (1) , (2) , we have:ψ(d(Fz,xn+1)) = ψ(d(Fz,Fxn))≤ ψ(Mδ (z,xn))−φ(Mδ (z,xn)),

ψ(δ (Fz,xn+1)) = ψ(δ (Fz,Fxn))≤ ψ(Md(z,xn))−φ(Md(z,xn)).

Which implies:

(22)

ψ(d(Fz,xn+1))≤ ψ(Mδ (z,xn)),

ψ(δ (Fz,xn+1))≤ ψ(Md(z,xn))−φ(Md(z,xn)).

Where:

d(Fz,z) ≤ Md(z,xn) = max{d(z,xn),d(Fz,z),d(xn,xn+1),d(z,z),

d(xn,xn),
[d(z,xn+1)+d(Fz,xn)]

2
}

≤ max{d(z,xn),d(Fz,z),d(xn,xn+1),d(z,z),

d(xn,xn),
[d(z,xn+1)+d(Fz,z)+d(z,xn)]

2
}.
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Taking limit as n→+∞, by (21) , we obtain :

lim
n→+∞

Md(z,xn) = d(Fz,z).

Similarly, we can show that:

lim
n→+∞

Mδ (z,xn) = δ (Fz,z).

Therefore, letting n→ ∞ in (22) , we get:

(23)

ψ(d(Fz,z))≤ ψ(δ (Fz,z)),

ψ(δ (Fz,z))≤ ψ(d(Fz,z))−φ(d(Fz,z)).

Which implies:

ψ(d(Fz,z))≤ ψ(d(Fz,z))−φ(d(Fz,z)).

Which is a contradiction unless d(Fz,z) = 0, thus Fz = z.

Next theorem gives a sufficient condition for the uniqueness of the fixed point.

Theorem 2.3. Let all the conditions of Theorem (2.1) (resp.Theorem (2.2)) be fulfilled and let

the following condition be satisfied: For arbitrary two point x,y ∈ X . There exists z ∈ X which

is comparable with both x and y. Then the fixed point of F is unique.

Proof. Suppose that there exist z,x ∈ X which are fixed points. We distinguish two cases.

Case 1: If x is comparable to z, then Fnx = x is comparable to Fnz = z for n = 1,2,3, ... and:

ψ(d(x,z)) = ψ(d(Fnx,Fnz))

≤ ψ(Mδ (F
n−1x,Fn−1z))−φ(Mδ (F

n−1x,Fn−1z))

≤ ψ(Mδ (x,z))−φ(Mδ (x,z)).(24)

Where:

Mδ (x,z) = max{δ (x,z),δ (x,Fx),δ (z,Fz),δ (x,x),δ (z,z),
[δ (x,Fz)+δ (Fx,z)]

2
}

= max{δ (x,z),δ (x,x),δ (z,z), [δ (x,z)+δ (x,z)]
2

}

= δ (x,z).(25)
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Using (24) and (25) , we have:

(26) ψ(d(x,z))≤ ψ(δ (x,z))−φ(δ (x,z)).

Similarly, we can show that:

(27) ψ(δ (x,z))≤ ψ(d(x,z))−φ(d(x,z)).

Using (26) and (27) , we have:

ψ(d(x,z))≤ ψ(d(x,z))−φ(d(x,z)).

Which is a contradiction unless d(x,z) = 0 , this implies that x = z

Case 2: If x is not comparable to z, then there exists y ∈ X comparable to x and z, the mono-

tonicity of F implies that Fny is comparable to Fnx = x and Fnz = z, for n = 0,1,2, ...

Moreover,

(28)

ψ(d(z,Fny)) = ψ(d(Fnz,Fny))≤ ψ(Mδ (F
n−1z,Fn−1y))−φ(Mδ (F

n−1z,Fn−1y)),

ψ(δ (z,Fny)) = ψ(δ (Fnz,Fny))≤ ψ(Md(Fn−1z,Fn−1y))−φ(Md(Fn−1z,Fn−1y)).

Where:

Md(Fn−1z,Fn−1y) = max{d(Fn−1z,Fn−1y),d(Fn−1z,Fnz),d(Fn−1y,Fny),d(Fn−1z,Fn−1z),

d(Fn−1y,Fn−1y),
[d(Fn−1z,Fny)+d(Fnz,Fn−1y)]

2
}

= max{d(z,Fn−1y),d(z,z),d(Fn−1y,Fny),d(Fn−1y,Fn−1y),

[d(z,Fny)+d(z,Fn−1y)]
2

}

≤ max{d(z,Fn−1y),d(z,Fny)}.(29)

Similarly, we can show that:

(30) Mδ (F
n−1z,Fn−1y)≤max{δ (z,Fn−1y),δ (z,Fny)}.

For n sufficiently large, because d(Fn−1y,Fn−1y)→ 0 and d(Fn−1y,Fny)→ 0

(resp.δ (Fn−1y,Fn−1y)→ 0 and δ (Fn−1y,Fny)→ 0) when n→ ∞.

Similarly as in the proof of Theorem (2.1.), it can be shown that:

d(z,Fny)≤Md(z,Fn−1y)≤ d(z,Fn−1y) (resp δ (z,Fny)≤Mδ (z,F
n−1y)≤ δ (z,Fn−1y)).
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It follows that the sequence {d(z,Fny)} (resp {δ (z,Fny)} is nonnegative decreasing and, con-

sequently, there exists α ≥ 0 (resp α , ≥ 0) such that:

lim
n→∞

d(z,Fny) = lim
n→∞

Md(z,Fn−1y) = α (resp lim
n→∞

δ (z,Fny) = lim
n→∞

Mδ (z,F
n−1y) = α

,).

We suppose that α > 0 (resp α , > 0 ), then letting n→ ∞ in (28), we have:

ψ(α)≤ ψ(α ,)−φ(α ,),

ψ(α ,)≤ ψ(α)−φ(α).

Which implies:
ψ(α)≤ ψ(α ,),

ψ(α ,)≤ ψ(α)−φ(α).

Then:

ψ(α)≤ ψ(α)−φ(α).

Which is a contradiction. Hence α = 0 . Similarly, it can be proved that:

lim
n→∞

d(x,Fny) = 0.

Now, passing to the limit in d(x,z)≤ d(x,Fny)+d(Fny,z) , it follows that d(x,z) = 0 , so x =

z , and the uniqueness of the fixed point is proved.

Now we present an example to support the useability of our results.

Example 2.1. Let X = {0,1,2} and a partial order be defined as x� y whenever y � x , and

define d : X×X → R+ as follows:

d(0,0) = 1, d(1,1) = 3, d(2,2) = 0,

d(1,0) = d(0,1) = 12, d(2,0) = d(0,2) = 7, d(2,1) = d(1,2) = 5.

Then (X ,�,d) is a complete partially ordered metric space.

And define δ : X×X → R+ as follows:

δ (0,0) = 1, δ (1,1) = 0, δ (2,2) = 0,

δ (1,0) = δ (0,1) = 12, δ (2,0) = δ (0,2) = 10, δ (2,1) = d(1,2) = 6.

Then (X ,�,δ ) is a complete partially ordered metric space.

Let F : X → X be defined by:

F0 = 1, F1 = 2, F2 = 2.

Define ψ , φ : [0,+∞[→ [0,+∞[ by ψ(t) = 2t and φ(t) = t
2 . We next verify that the function
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F satisfies the two inequalities (1) and (2) . For that, given x,y ∈ X with x� y , so y� x . Then

we have the following cases.

Case 1:If x = 1 , y = 0 , then:

d(F1,F0) = d(2,1) = 5, δ (F1,F0) = δ (2,1) = 6.

And:

Md(1,0) = max{d(1,0),d(1,F1),d(0,F0),d(1,1),d(0,0),
[d(1,F0)+d(F1,0)]

2
},

= max{12,5,12,3,1,
3+7

2
}= 12.

Mδ (1,0) = max{δ (1,0),δ (1,F1),δ (0,F0),δ (1,1),δ (0,0),
[δ (1,F0)+δ (F1,0)]

2
},

= max{12,6,12,0,1,
0+10

2
}= 12.

As: 
ψ(d(F1,F0) = 10≤ 24− 12

2 = 18 = ψ(Mδ (1,0))−φ(Mδ (1,0)),

ψ(δ (F1,F0) = 12≤ 24− 12
2 = 18 = ψ(Md(1,0))−φ(Md(1,0)).

The inequality (1) and (2) are satisfied in this case.

Case 2: If x = 2 , y = 0 , then:

d(F2,F0) = d(2,1) = 5, δ (F2,F0) = δ (2,1) = 6.

And:

Md(2,0) = max{d(2,0),d(2,F2),d(0,F0),d(2,2),d(0,0),
[d(2,F0)+d(F2,0)]

2
},

= max{7,0,12,0,1,
5+7

2
}= 12.

Mδ (2,0) = max{δ (2,0),δ (2,F2),δ (0,F0),δ (2,2),δ (0,0),
[δ (2,F0)+δ (F2,0)]

2
},

= max{10,0,12,0,1,
6+10

2
}= 12.

As: 
ψ(d(F2,F0) = 10≤ 24− 12

2 = 18 = ψ(Mδ (2,0))−φ(Mδ (2,0)),

ψ(δ (F2,F0) = 12≤ 24− 12
2 = 18 = ψ(Md(2,0))−φ(Md(2,0)).
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The inequality (1) and (2) are satisfied in this case.

Case 3: If x = 2, y = 1, then as d(F2,F1) = 0, δ (F2,F1) = 0, Md(2,1) = 5 and Mδ (2,1) = 6,

the inequality (1) and (2) are satisfied in this case.

Case 4: If x= 0, y= 0, then as d(F0,F0) = 3, δ (F0,F0) = 0, Md(0,0) = 12 and Mδ (0,0) = 12,

the inequality (1) and (2) are satisfied in this case.

Case 5: If x = 1, y = 1, then as d(F1,F1) = 0, δ (F1,F1) = 0, Md(1,1) = 5 and Mδ (1,1) = 6,

the inequality (1) and (2) are satisfied in this case.

Case 6: If x = 2, y = 2, then as d(F2,F2) = 0, δ (F2,F2) = 0, Md(2,2) = 0 and Mδ (2,2) = 0,

the inequality (1) and (2) are satisfied in this case.

So, F, ψ and φ satisfy all the hypotheses of Theorem (2.1). Therefore F has a unique fixed

point. Here 2 is the unique fixed of F .

If we take ψ(t) = t in Theorem (2.1) , we have the following corollary.

Corollary 2.1. Let (X ,≤,d,δ ) be a complete two partially ordered metric space; let F : X→ X

be a nondecreasing mapping such that for all comparable x,y in X with:d(Fx,Fy)≤Mδ (x,y)−φ(Mδ (x,y)),

δ (Fx,Fy)≤Md(x,y)−φ(Md(x,y)).

where:

Md(x,y) = max{d(x,y),d(x,Fx),d(y,Fy),d(x,x),d(y,y),
[d(x,Fy)+d(Fx,y)]

2
},

Mδ (x,y) = max{δ (x,y),δ (x,Fx),δ (y,Fy),δ (x,x),δ (y,y),
[δ (x,Fy)+δ (Fx,y)]

2
},

φ : [0,+∞[→ [0,+∞[ is a lower semi-continuous function with φ(t) = 0 if and only if t = 0.

If there exists x0 ∈ X with x0 � Fx0 and one of the following two conditions is satisfied:

(i): F is a continuous in (X ,d,δ ).

(ii): {xn} is a nondecreasing sequence in X such that xn→ x ∈ X implies xn ≤ x for all

n ∈ N .

Then F has a fixed point. Moreover, if the following condition is satisfied: For arbitrary two

points x,y in X , there exists z ∈ X which is comparable with both x and y , then the fixed point

of F is unique.
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If we take φ(t) = (1− k)t for k ∈ [0,1[ in Corollary (2.1), we have the following corollary:

Corollary 2.2. Let (X ,≤,d,δ ) be a complete two partially ordered metric space ;let F : X→ X

be a nondecreasing mapping such that for all comparable x,y in X with:d(Fx,Fy)≤ kMδ (x,y),

δ (Fx,Fy)≤ kMd(x,y),

where:

Md(x,y) = max{d(x,y),d(x,Fx),d(y,Fy),d(x,x),d(y,y),
[d(x,Fy)+d(Fx,y)]

2
},

Mδ (x,y) = max{δ (x,y),δ (x,Fx),δ (y,Fy),δ (x,x),δ (y,y),
[δ (x,Fy)+δ (Fx,y)]

2
},

And k ∈ [0,1[ . If there exists x0 ∈ X with x0 � Fx0 and one of the following two conditions is

satisfied:

(i): F is a continuous in (X ,d,δ ).

(ii): {xn} is a nondecreasing sequence in X such that xn→ x ∈ X implies xn ≤ x for all

n ∈ N .

Then F has a fixed point. Moreover, if the following condition is satisfied: For arbitrary two

points x,y in X , there exists z ∈ X which is comparable with both x and y , then the fixed point

of F is unique.

Corollary 2.3. Let (X ,≤,d,δ ) be a complete two partially ordered metric space; let F : X→ X

be a nondecreasing mapping such that for all comparable x,y in X with:d(Fx,Fy)≤ δ (x,y)−φ(Mδ (x,y)),

δ (Fx,Fy)≤ d(x,y)−φ(Md(x,y)),

where:

φ : [0,+∞[→ [0,+∞[ is a lower semi-continuous function with φ(t) = 0 if and only if t = 0.

If there exists x0 ∈ X with x0 � Fx0 and one of the following two conditions is satisfied:

(i): F is a continuous in (X ,d,δ ).

(ii): {xn} is a nondecreasing sequence in X such that xn→ x ∈ X implies xn ≤ x for all

n ∈ N .
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Then F has a fixed point. Moreover, if the following condition is satisfied:For arbitrary two

points x,y in X , there exists z ∈ X which is comparable with both x and y , then the fixed point

of F is unique.

Remark. So our results can be viewed as the generalization and extension of corresponding

results in [1, 5, 12] and several other comparable results.

3. Application

De note by Λ the set of functions α : [0,+∞[→ [0,+∞[ satisfying the following hypotheses:

(h1): : α is Lebesgue-integrable mapping on each compact subset of [0,+∞[

(h2): : For every ε > 0 , we have:

∫
ε

0
α(s)ds > 0.

We have the following results.

Corollary 3.1. Let (X ,≤,d,δ ) be a complete two partially ordered metric space; let F : X →

X be a nondecreasing mapping such that for all comparable x,y in X with:
∫ d(Fx,Fy)

0
α1(s)ds≤

∫ Mδ (x,y)

0
α1(s)ds−

∫ Mδ (x,y)

0
α2(s)ds,∫

δ (Fx,Fy)

0
α1(s)ds≤

∫ Md(x,y)

0
α1(s)ds−

∫ Md(x,y)

0
α2(s)ds,

where: α1,α2 ∈ Λ . If there exists x0 ∈ X with x0 � Fx0 , Then F has a fixed point.

Proof. Follows from Theorem (2.1) by taking ψ(t) =
∫ t

0
α1(s)ds and φ(t) =

∫ t

0
α2(s)ds .

Corollary 3.2. Under the same hypotheses of Corollary (3.1) and without assuming the continu-

ity of F, assume that whenever {xn} is a nondecreasing sequence in X such that xn→ x ∈ X im-

plies xn ≤ x for all n ∈ N, then F has a fixed point in X.

Proof. Follows from Theorem (2.2) by taking ψ(t) =
∫ t

0
α1(s)ds and φ(t) =

∫ t

0
α2(s)ds .
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