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Abstract. In this paper, using the known class of A -contractions, we discuss the existence problems of points

of coincidence and common fixed points for four self-mappings with A -implicit contractions on non-complete

2-metric spaces and give some particular forms, also obtain a common fixed point theorem for an infinite family of

self-mappings on complete 2-metric spaces and give a more general result. The obtained results generalize Kannan

type (common) fixed point theorems and its variant forms and other corresponding conclusions.
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1. Introduction and Preliminaries

The following result is a real generalization of Banach contraction principle, i.e., Kannan

type fixed point theorem:
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Theorem 1.1 [1] Let (X ,d) be a complete real metric space, f : X → X a self-mapping. If there

exists k ∈ [0, 1
2) such that

d( f x, f y)≤ k [d(x, f x)+ f (y, f y)],∀x,y ∈ X .

Then f has an unique fixed point z ∈ X .

The next result is a variant form of Theorem 1.1:

Theorem 1.2 [2] Let (X ,d) be a complete real metric space, f : X → X a self-mapping. If there

exists k ∈ [0, 1
3) such that

d( f x, f y)≤ k [d(x,y)+d(x, f x)+ f (y, f y)],∀x,y ∈ X .

Then f has an unique fixed point z ∈ X .

In 2008, The authors in [3] introduced a new general class of contractions(i.e., A -contractions)

and obtained a fixed point theorem which is a generalization of Kannan type theorem and its

variant fixed point theorem(Theorem 1.1-1.2). The authors in [4] gave a integral version of the

corresponding result in [3] on real metric spaces and the authors in [5] generalized the corre-

sponding results in [3] on complex valued metric space.

In this paper, we will discuss and obtain some new common fixed point theorems for a fam-

ily of self-mappings with A -implicit contractions on 2-metric spaces (see [6-9]) and further

generalize the corresponding conclusions.

At first, we give some well known definitions and results.

Let R+ = [0,∞) and A be the set of all functions α : R3
+→ R+satisfying

(α1) α is continuous on the set R3
+ (with respect to the Eucliean metric on R3

+);

(α2) a ≤ k b for some k ∈ [0,1) whenever a ≤ α(a,b,b) or a ≤ α(b,a,b) or a ≤ α(b,b,a)

for all a,b ∈ [0,∞).

Definition 1.1[6-7] A 2-metric space (X ,d) consists of a nonempty set X and a function d :

X×X×X → [0,+∞) such that

(i) for distant elements x,y ∈ X , there exists an u ∈ X such that d(x,y,u) 6= 0;

(ii) d(x,y,z) = 0 if and only if at least two elements in {x,y,z} are equal;

(iii) d(x,y,z) = d(u,v,w), where {u,v,w} is any permutation of {x,y,z};

(iv) d(x,y,z)≤ d(x,y,u)+d(x,u,z)+d(u,y,z) for all x,y,z,u ∈ X .
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Definition 1.2 [6-7] A sequence {xn}n∈N in 2-metric space (X ,d) is said to be a cauchy se-

quence, if for each ε > 0 there exists a positive integer N ∈ N such that d(xn,xm,a)< ε for all

a ∈ X and n,m > N.

Definition 1.3 [8-9] A sequence {xn}n∈N in 2-metric space (X ,d) is said to be convergent to

x ∈ X , if limn→+∞ d(xn,x,a) = 0 for each a ∈ X . And write xn → x and call x the limit of

{xn}n∈N.

Definition 1.4 [8-9] A 2-metric space (X ,d) is said to be complete, if every cauchy sequence in

X is convergent.

Definition 1.5 [10-11] Let f and g be two self-mappings on a set X . If w = f x = gx for some

x ∈ X , then x is called a coincidence point of f and g, and w is called a point of coincidence of

f and g.

Definition 1.6[12] Two mappings f ,g : X → X are said to be weakly compatible if, for every

x ∈ X , holds f gx = g f x whenever f x = gx.

The following three lemmas are known results.

Lemma 1.1 [6-9] Let (X ,d) be a 2-metric space and {xn}n∈N a sequence. If there exists h ∈

[0,1) such that d(xn+2,xn+1,a)≤ hd(xn+1,xn,a) for all a ∈ X and n ∈ N, then d(xn,xm,xl) = 0

for all n,m, l ∈ N, and {xn}n∈N is a cauchy sequence

Lemma 1.2 [6-9] If (X ,d) is a 2-metric space and sequence {xn}n∈N→ x∈X , then limn→+∞ d(xn,b,c)=

d(x,b,c) for each b,c ∈ X .

Lemma 1.3[10-11] Let f ,g : X → X be weakly compatible. If f and g have a unique point of

coincidence w = f x = gx, then w is the unique common fixed point of f and g.

2. Main Results

Theorem 2.1 Let (X, d) be a 2-metric space, S,T,F,G : X → X four mappings satisfying that

S(X)⊂ G(X) and T (X)⊂ F(X). Suppose that for each x,y,a ∈ X ,

d(T x,Sy,a)≤ α
(
d(Gx,Fy,a),d(Gx,T x,a),d(Fy,Sy,a)

)
, (2.1)
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where α ∈A . If one of S(X),T (X),F(X) and G(X) is complete, then T and G, S and F have

an unique point of coincidence in X respectively. Further, if {G,T} and {S,F} are weakly

compatible respectively, then S,T,F,G have an unique common fixed point in X .

Proof Take any element x0 ∈ X , then using the conditions S(X)⊂ G(X) and T (X)⊂ F(X), we

can construct two sequences {xn} and {yn} as follows:

y2n = T x2n = Fx2n+1, y2n+1 = Sx2n+1 = Gx2n+2,n = 0,1, · · · . (2.2)

For any n = 0,1, · · · and a ∈ X , by (2.1),

d(T x2n,Sx2n+1,a)≤ α
(
d(Gx2n,Fx2n+1,a),d(Gx2n,T x2n,a),d(Fx2n+1,Sx2n+1,a)

)
,

i.e.,

d(y2n,y2n+1,a)≤ α
(
d(y2n−1,y2n,a),d(y2n−1,y2n,a),d(y2n,y2n+1,a)

)
,

hence by (α2), we obtain

d(y2n,y2n+1,a)≤ k d(y2n−1,y2n,a), ∀n = 1,2, · · · ,a ∈ X . (2.3)

Similarly, For any n = 0,1, · · · and a ∈ X , by (2.1),

d(T x2n+2,Sx2n+1,a)≤ α
(
d(Gx2n+2,Fx2n+1,a),d(Gx2n+2,T x2n+2,a),d(Fx2n+1,Sx2n+1,a)

)
,

i.e.,

d(y2n+2,y2n+1,a)≤ α
(
d(y2n+1,y2n,a),d(y2n+1,y2n+2,a),d(y2n,y2n+1,a)

)
,

hence by (α2), we obtain

d(y2n+1,y2n+2,a)≤ k d(y2n,y2n+1,a), ∀n = 1,2, · · · ,a ∈ X . (2.4)

Combining (2.3) and (2.4), we have

d(yn+1,yn+2,a)≤ k d(yn,yn+1,a), ∀n = 1,2, · · · ,a ∈ X . (2.5)

Hence {yn} is Cauchy by Lemma 1.1.

Suppose that FX or T X is complete. Since y2n ∈ T X ⊂ FX for all n = 1,2, · · · and {yn} is

Cauchy, there exist u,v ∈ X such that y2n→ u = Fv as n→ ∞. We easily know

d(y2n+1,u,a)≤ d(y2n,u,a)+d(y2n+1,y2n,a)+d(y2n+1,u,y2n), ∀n = 1,2, · · · ,a ∈ X
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implies that y2n+1→ u as n→ ∞ since y2n→ u and {yn} is Cauchy.

By (2.1), for each n ∈ N and a ∈ X ,

d(T x2n,Sv,a)≤ α
(
d(Gx2n,Fv,a),d(Gx2n,T x2n,a),d(Fv,Sv,a)

)
,

i.e.,

d(y2n,Sv,a)≤ α
(
d(y2n−1,u,a),d(y2n−1,y2n,a),d(u,Sv,a)

)
. (2.6)

Letting n→ ∞ in (2.6) and using (α1) and Lemma 1.2, we obtain

d(u,Sv,a)≤ α
(
0,0,d(u,Sv,a)

)
,∀a ∈ X .

Hence d(u,Sv,a) = 0 for all a ∈ X by (α2), so Fv = u = Sv. This shows that u is a point of

coincidence of S and F .

Since u = Sv ∈ SX ⊂ GX , there exists w ∈ X such that u = Gw. By (2.1), for all n = 1,2, · · ·

and a ∈ X ,

d(Tw,Sx2n+1,a)≤ α
(
d(Gw,Fx2n+1,a),d(Gw,Fw,a),d(Fx2n+1,Sx2n+1,a)

)
i.e.,

d(Tw,y2n+1,a)≤ α
(
d(u,y2n,a),d(u,Fw,a),d(y2n,y2n+1,a)

)
. (2.7)

Letting n→ ∞ in (2.7), we obtain

d(Tw,u,a)≤ α
(
0,d(u,Fw,a),0)

)
.

Hence we have

Tw = u = Gw,

that is, u ia also a point of coincidence of T and G.

If z = T x = Gx is also a point of coincidence of T and G, then using (2.1), we obtain

d(T x,Sv,a)≤ α
(
d(Gx,Fv,a),d(Gx,T x,a),d(Fv,Sv,a)

)
,

i.e.,

d(z,u,a)≤ α
(
d(z,u,a),0,0

)
,

hence d(z,u,a) = 0 for all a ∈ X by (α2). So u = z, this means that u is the unique point of

coincidence of T and G. Similarly, u is also the unique point of coincidence of S and F .
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If {G,T} and {S,F} are weakly compatible respectively, then u is the unique common fixed

point of {G,T} and {S,F} respectively by Lemma 1.3. Hence we easily know that u is the

unique common fixed point of {S,T,F,G}. Similarly, we can obtain the same conclusion for

SX or GX being complete.

Using Theorem 2.1, we are easy to obtain the following common fixed point theorems.

Theorem 2.2 Let (X, d) be a 2-metric space, S,T,F : X → X three mappings satisfying that

S(X)∪T (X)⊂ F(X). Suppose that for each x,y,a ∈ X ,

d(T x,Sy,a)≤ α
(
d(Fx,Fy,a),d(Fx,T x,a),d(Fy,Sy,a)

)
,

where α ∈ A . If one of S(X),T (X) and F(X) is complete, {F,T} and {S,F} are weakly

compatible respectively, then S,T,F have an unique common fixed point in X .

Theorem 2.3 Let (X, d) be a 2-metric space, T,F,G : X → X three mappings satisfying that

T (X)⊂ F(X)∩G(X). Suppose that for each x,y,a ∈ X ,

d(T x,Ty,a)≤ α
(
d(Gx,Fy,a),d(Gx,T x,a),d(Fy,Ty,a)

)
,

where α ∈ A . If one of T (X),F(X) and G(X) is complete, {G,T} and {T,F} are weakly

compatible respectively, then T,F,G have an unique common fixed point in X .

Theorem 2.4 Let (X, d) be a 2-metric space, S,T : X→ X two mappings. Suppose that for each

x,y,a ∈ X ,

d(T x,Sy,a)≤ α
(
d(x,y,a),d(x,T x,a),d(y,Sy,a)

)
,

where α ∈A . If S(X) or T (X) is complete, then S,T have an unique common fixed point.

Theorem 2.5 Let (X, d) be a complete 2-metric space, F,G : X → X two surjective mappings.

Suppose that for each x,y,a ∈ X ,

d(x,y,a)≤ α
(
d(Gx,Fy,a),d(Gx,x,a),d(Fy,y,a)

)
,

where α ∈A .Then F,G have an unique common fixed point in X .

Remark 2.1 If T = S and G = F in Theorem 2.4 and Theorem 2.5 respectively, then we obtain

two fixed point theorems. The first case is the version of the corresponding conclusion in [3] on

2-metric spaces, the second case is a more generalization of a known fixed point theorem for a

mappings with a quasi-contractive condition on 2-metric spaces.
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Next, we obtain common fixed point theorems for an infinite family of self-mappings on

complete 2-metric spaces.

Theorem 2.6 Let (X ,d) be a complete 2-metric space, {Ti}∞
i=1 a family of self-mappings on X .

Suppose that for each i, j ∈ N with i 6= j and a ∈ X ,

d(Tix,Tjy,a)≤ α
(
d(x,y,a),d(x,Tix,a),d(y,Tiy,a)

)
, (2.8)

where α ∈A . Then {Ti}∞
i=1 have an unique common fixed point z ∈ X .

Proof Take an element x1 ∈ X and construct a sequence {xn}∞
n=1 as follows

T xn = xn+1,n = 1,2, · · · . (2.9)

For any n ∈ N and a ∈ X , using (2.8) and (2.9), we have

d(Tnxn,Tn+1xn+1,a)≤ α
(
d(xn,xn+1,a),d(xn,Tnxn,a),d(xn+1,Tn+1xn+1,a)

)
,

i.e.,

d(xn+1,xn+2,a)≤ α
(
d(xn,xn+1,a),d(xn,xn+1,a),d(xn+1,xn+2,a)

)
,

using (α2), we obtain

d(xn+1,xn+2,a)≤ k d(xn,xn+1,a),∀n ∈ N, a ∈ X .

Hence {xn} is a Cauchy sequence by Lemma 1.1. Let xn→ u as n→ ∞ by the completeness of

X .

For any fixed n ∈ N and any i ∈ N with i > n and a ∈ X , by (2.8) and (2.9),

d(Tnu,Tixi,a)≤ α
(
d(u,xi,a),d(u,Tnu,a),d(xi,Tixi,a)

)
,

i.e.,

d(Tnu,xi+1,a)≤ α
(
d(u,xi,a),d(u,Tnu,a),d(xi,xi+1,a)

)
. (2.10)

Let i→ ∞ in (2.10) and using (α1) and Lemma 1.2 and the Cauchy property of {xi}, we

obtain

d(Tnu,u,a)≤ α
(
0,d(u,Tnu,a),0)

)
,∀a ∈ X .

Hence Tnu = u (∀n ∈ N) by (α2), i.e., u is a common fixed point of {Ti}∞
i=1.
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Suppose that v is also a common fixed point of {Ti}∞
i=1, then for any a ∈ X ,

d(u,v,a) = d(T1u,T2v,a)≤ α
(
d(u,v,a),d(u,T1u,a),d(v,T2v,a)

)
= α

(
d(u,v,a),0,0

)
,

hence d(u,v,a) = 0 for all a∈ X , therefore u = v. This shows that u is the unique common fixed

point of {Ti}∞
i=1.

Using Theorem 2.6, we obtain the following more general common fixed point theorem.

Theorem 2.7 Let (X ,d) be a complete 2-metric space, {Ti}∞
i=1 a family of self-mappings on X

and {mi}∞
i=1 a family of natural numbers. Suppose that for each i, j ∈ N with i 6= j and a ∈ X ,

d(T mi
i x,T m j

j y,a)≤ α
(
d(x,y,a),d(x,T mi

i x,a),d(y,T m j
i y,a)

)
, (2.11)

where α ∈A . Then {Ti}∞
i=1 have an unique common fixed point u ∈ X .

Proof Let fi = T mi
i for all i= 1,2, · · · , then { fi}∞

i=1 satisfies all conditions of Theorem 2.6, hence

{ fi}∞
i=1 have an unique common fixed point u ∈ X .

Fix any i ∈ N. Since fiTiu = Ti fiu = Tiu, Tiu is a fixed point of fi. For any j ∈ N with j 6= i,

by (2.11)

d( fiTiu, f jTiu,a)≤ α
(
d(Tiu,Tiu,a),d(Tiu, fiTiu,a),d(Tiu, f jTu,a)

)
,∀a ∈ X ,

hence

d(Tiu, f jTiu,a)≤ α
(
0,0,d(Tiu, f jTu,a)

)
,∀a ∈ X .

This implies d(Tiu, f jTiu,a) = 0 for all a ∈ X by (α2), hence Tiu is a fixed point of f j for

j 6= i, further Tiu is a common fixed point of { fk}∞
k=1 for any i ∈ N. Therefore Tiu = u by the

uniqueness of common fixed points of { fk}∞
k=1 for any i ∈ N, hence u is a common fixed point

of {Ti}∞
i=1. Obviously, u is the unique common fixed point of {Ti}∞

i=1.
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