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1. Introduction

Fixed point theory is interesting due its simplicity in approach and richness in mathematical
content. The classical Banach Contraction Principle can be considered as the first ever fixed
point theorem. Many authors have extended improved and generalized Banach’s fixed point
theorem in different ways. Fixed point theory has numerous applications.

In an attempt to generalize fixed point theorems on a metric space, Gahler [1,2] introduced the
notion of 2-metric spaces while Dhage [3] initiated the notion of D - metric spaces. Subsequently

several researchers have proved that most of their claims made are not valid. As a probable
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modification to D - metric spaces Shaban Sedghi, Nabi Shobe and Haiyun Zhou [4] introduced
D*-metric spaces. In 2006, Zead Mustafa and Brailey Sims [5,6] initiated G -metric spaces.
Of these two generalizations, the G -metric space evinced interest in many researchers.
As a generalization of commuting maps Sessa [7] introduced the concept of weakly commuting
mappings which was further generalized by Jungck [8] by initiating the notion of compatibility.
Later Jungck and Rhoades [9] introduced the notion of weakly compatible mappings

The purpose of this paper is to prove a common fixed point theorem for four weakly compatible

selfmaps of a complete G -metric space.

2. Preliminaries

Definition 2.1: [6] Let X be a non-empty setand G:X® —[0,) be a function satisfying:
(Gl) G(x,y,2)=0 if x=y=z

(G2) 0<G(x,x,y)forall x,yeX with x=y

(G3)  G(x,x,¥)<G(x,y,z)forall x,y,zeXwith y=z

(G4) G(x,y,2) =G(o(x,y,z)) for all x,y,ze X, where o(x,y,z) is a permutation of the set

xy.z}

and

(G5)  G(x,y,2) <G(x,w,w)+G(w,y,z) forall x,y,z,weX

Then G is called a G - metric on X and the pair (X,G) iscalled a G - metric Space.
Example 2.2: Let (X, d) be a metric space. Define G¢: X* —»[0,) by
G (x, Y, z) =max{d(x,y),d(y,z),d(z,x)} for x,y,ze X .Then (X, G)isa G-metric Space.
Lemma 2.3: [6] If (X,G) isa G-metric space then G(x,y,y)<2G(y,x,x) forallx,ye X

Definition 2.4: Let (X,G)be a G-metric Space. A sequence {x,} in X is said to be
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G-convergent if there isa x,e X such that to each &>0 there is a natural number N for which
G(x,,x,,%)<¢e forall n>N.

Lemma 2.5: [6] Let (X,G)be a G-metric Space, then for a sequence{x = x and point
x e X the following are equivalent.

(1) {x3} isG-convergentto x.
(2) ds(x,x)—>0 as n—oo (thatis {x,}convergesto x relative to the metric dg)
(3) G(x,,%,X)—>0 as n—»oo
(4) G(x,,x,x)—>0 as n—o0
(5) G(x,,%,X)—>0 as m,n—> oo
Definition 2.6: [6] Let (X,G) be a G-metric space, then a sequence{x }< X is said to be

G-Cauchy if for eache > 0, there exists a natural number N such that G(x,,x,.x)<e for all
n,mI >N,

Note that every G-convergent sequence in a G-metric space  (X,G)is G-Cauchy.

Definition 2.7: [6] A G-metric space (X,G)is said to be G-complete if every G -Cauchy
sequence in  (X,G)is G-convergentin  (X,G)

Definition 2.8: [10] Suppose f and g are self maps of a G-metric space (X,G). The pair fand g
is said to be weakly compatible if G(fgx, gfx,gfx)=0 whenever G(fx,gx,gx)=0

Definition 2.9: Amapping ¢:[0,) —[0,) is said to be a contractive modulus if #(0)=0and
st)<t for t>0

Example 2.10: The mapping ¢:[0,0) —[0,0) defined by ¢(t)=-L for t>0 is a contractive

t+1

modulus



583
COMMON FIXED POINT THEOREM FOR FOUR SELFMAPS

Example 2.11: The mapping ¢#:[0,:0) —»[0,0) defined by ¢(t)=ct where 0<c<1l is a

contractive modulus
Definition 2.12: A real valued function ¢ defined on X cR is said to be upper semi

continuous, if  limsupé(t,) <¢4(t) for every sequence {t,} in with t, >t as n—wx

n—o0

Clearly every continuous function is upper semicontinuous, but not conversely.

Definition 2.13: Suppose f,g,hand p are selfmaps of a G-metric space such that
f(X)ch(X) and g(X)cp(X) . For x,in X , if {x.} is a sequence in X such that
fXon = MXonyy @NA gXon40 = PXon,, FOr N>0. Then {x } is called an associated sequence of Xx,

relative to selfmaps f,g,hand p

3. Main results
Theorem 3.1. suppose f,g,handP are four selfmaps of a complete G -metric space (X,G)

satisfying the following conditions

(3.1.1) f(X)ch(X) and g(X)c< p(X)
(3.1.2)G(fx,gy,gy) <#(A(x,y) where ¢ is an upper semicontinuous contractive modulus
and A(x, y) = max {G(px, hy, hy), G(fx, hy, hy), G (hy, gy, gy)}
(3.1.3) one of f(X),g(X),h(X),P(X)is closed sub subset of X
(3.1.4) (f,p)and (g,h)are weakly compatible pairs
Then f,g,h and p have a unique common fixed pointin X .
Proof. Let x, € X be an arbitrary point. Then we can construct a sequence {X,} inX such

that  yaq = fXon =MXoni1s Yonis = OXones = PXonsz for n>0 3.15)

From condition (3.1.2) we have
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G(y2nr Yoni1s y2n+l) = G( fXan 9Xon1s gX2n+1) < ¢(’1(X2n ’ X2n+1)

Where

ﬂ’(XZn ’ X2n+1) = max {G( pXZn! hX2n+ll hX2n+1)’ G( fXZn ' hX2n+1' hx2n+1)' G(hx2n+l' gx2n+1! gx2n+l)}

= maX{G(yZn—ll Yons y2n):G(y2n’ Yons y2n)!G(y2n s Yonis y2n+l)}
If G(yZn—lr Yon, y2n) < G(yan Yoni1 y2n+1) then A(XZn ’ X2n+1) = G(yZn ' y2n+1’ y2n+1)
Therefore G(Y2nl Yons1s y2n+1) < ¢(G(y2nl Yons1s y2n+1)) < G(yZn' Yons1s y2n+1)

Which is contradiction since ¢ is contractive modulus

HeNce G(yan, Yanits Yanis) <G(¥an-1: Yan: Yan) (3.1.6)

Similarly, we can show that

G(Yans1) Yani2s Yani2) < G(Yans Yansas Yane1) (3.1.7)

From (3.1.6) and (3.1.7) we have G(y,,Vi.1. Vi) <G(Yn 1 Ya: Vo)

Hence Gy, Y1 Yni) < 4G o1 Ya: o)) (3.18)
The sequence {G(Y,, Y1, Ynea)} IS monotonic decreasing, hence there exists a real number

r>o0such that 1im G(y,, V.1, Vo) =T
nN—o0

Therefore as n— oo equation (3.1.8) gives r < ¢(r)which is possible only ifr =0

Thus  lim G(¥y, Yoz, Vo) =0

We now show that {y,}is a Cauchy sequence

It sufficient to show that {y,.}is a Cauchy.

Suppose {y,,}is not a Cauchy, then there exists, an >0, for which we can find sub
sequences {y,n }{Yom YO {y,,} suchthat mgn, >k and

G(Yom, » Yon, » Yon ) 2 €, ANA  G(Yom, Yo —2) Yon, —2) <&

NOW & <G(Yom, Yo, + Yon, ) <C(Vam  Yon -2+ Yo —2) + C(Yan, 2. Yan -1+ Yon 1) + C(Yan, -1 Yan, + Y2n,)
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on letting k — oowe have lim G(Yam, + Yo, Yoo, ) =€
—>0

Moreover, we have  (G(Yam, : Yan 1 Yan, +1) ~G(Yam, » Yan,  Van, )

<2G(Yzn, » Yan 41+ Yon +1)

on letting k — cowe get kIim G(Yam, + Yon, 1 Yon, 41) =€
—o

AISO  |G(Yam, 41 Van, »Yan ) ~C(Vam, - Yan, + Yan, )| < 26(Yam, 1. Yo, Yom,)

on letting k — oo we get kIim G(Yam, -1 Yon,» Yon, ) =€
—o©

And ‘G(yka—lvyanH!y2nk+1)_G(y2mk—1’y2nk'y2nk) <2G(Yan, + Yon 41+ Yon +1)

on letting k — oo we get 1im G(Yam, 1. Yo, 11 Yon 1) = &

Now by (3.1.2)

G(Yam, » Yan 1+ Yon +1) = G(FXam + 0o 110 OXon, 11) < (A(Xom,  Xon, 1)) (3.1.9)
Where

AXom, + Xan, +1) = MAX{G(PXom, ,hXop 11, MXon 1), G(fXom WX 1, WX 11), G(NXon 41, OXon, 110 OXon, 11)}

=max{G(Yam, 1. Yo, + Y2 ):C(Yam, + Yan, + Yon ):C(Yan, » Yon, 411 Yon, 1)}
on letting k — oowe have
k“_To AXom, + Xon, 1) = max{e, &,0} =&
therefore from (3.1.9) we have & <4¢(s) this is a contradiction since £>0

Therefore {y,,} isa Cauchy sequence in X .

Since X is complete G-metric space, then there exists a point zeX such that
lim y,, = lim fX,, = lim hX,,,1 = lim y,, 4 = lim gx,,,, = lim px,,,, =2 (3.1.10)
s Nosoo Nosoo osoo s Nosoo
Suppose that p(x) isa closed subset of X there exists apoint ueX suchthat z=pu

We now show that fu=z.If fuzzthen G(fu,z,z)>0

Now from (3.1.2) we have
G( fu: z, Z) = G( fU, gx2n+lv gX2n+l) < ¢(/1(U, X2n+1))

Where
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ﬂv(u’ X2n+1) = max {G( pu, hX2n+1’ hx2n+1)’ G( fu1 hX2n+1v hx2n+1)! G(hX2n+l! OXon+1s gx2n+l)}

letting n—>o0 we have

lim A(U, Xpp4) = max{G(pu, z,2),G(fu,z,2),G(z,z, z)}

=max{G(z,z,2),G(fu,z,2),G(z,z,2)}
=G(fu,z,2)

Hence G(fu,z,2) < ¢(G(fu,z,2)) <G(fu,z,2)

which is a contradiction, thus G(fu,z,z)=0implies fu=z

Therefore fu=pu=z (3.1.12)
Since the pair (f, p) is weakly compatible then fpu = pfu which gives fz = pz

If fz=z thenG(fz,z,2)>0

Now from (3.1.2)  G(fz,z,2) = G(fz, 9%yp.1, I¥opsy) < A(A(U, Xop.1))

Where A(z,%,,.,;) = max {G( PZ, W01, WXon1), G(FZ, X1, MXo011), G(WXan.1, OXonat s OXonan) |

On letting n—oc we have

lim A(z,X5p,1) = max{G(pz, z,2),G(fz,2,2),G(z,z, z)}

=max{G(fz,z,2),G(fz,2,2),G(z,z,2)}
=G(fz,2,2)

Hence G(fz,z,2) < ¢(G(fz,2,2)) < G(fz,2,2)

which is a contradiction thus G(fz,z,z)=oimplies fz=z

Therefore fz=z=pz showingthat zis common fixed pointof f,p
Since f(X)c h(X)there exists a point ve X such that hv=z

We now prove that gv=z.If gv=zthen G(z,gv,gv)>0

By (3.1.2) we have G(z,gv, gv) = G(fz,gv, gv) < ¢(A(z,v))

Where
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A(z,v) = max{G(pz, hv, hv), G(fz, hv,hv),G(hv, gv, gv)}
=max{G(z,z,2),G(z,z,2),G(z,9v, 9v)}
=G(z,9v,9v)
Hence G(z, gv, gv) < ¢(G(z, gv, gv)) < G(z, 9v, gv)
which is a contradiction thus G(z,gv,gv)=0 giveSgv=1z
Therefore hv=gv=z

Since the pair (g,h) is weakly compatible then gz=hz

If gz=z thenG(z,gz,92)>0

Now from (3.1.2)
G(z,02,92) = G(fz,92,92) < ¢(A(z, 2))
Where

Az,2) = max{G(pz, hz, hz),G(fz,hz,hz),G(hz, gz, gz)}
=max{G(z, 9z,9z),G(z, 9z, 9z),G(gz, 9z, g2)}

=G(z,9z,92)
Hence G(z, 9z, 9z) < ¢(G(z, 9z, 92)) < G(z, 9z, 9z)
which is a contradiction thus G(z, gz, gz) =0 implies gz =z

Therefore hz=2z=gz, showing that z is common fixed point of g,h

Thus zis common fixed point of f,g,h and p

(3.1.12)

587

The proof is similar if one of f(X),g(X),h(X) is a closed subset of X with appropriate changes.

We now prove the uniqueness,

if possible assume w is other fixed point of f,g,h and p
From (3.1.2)

G(z,w,w) =G(fz, gw, gw) < ¢(A(z,w))

Where
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A(z,w) = max{G(pz, hw, hw), G( fz, hw, hw), G (hw, gw, gw)}
=max{G(z,w, w),G(z,w, w),G(w,w, w)}
=G(z,w, W)

Hence G(z,w,w) < ¢(G(z,w,w)) < G(z,w,w) Which is a contradiction, hence z=w

Proving that z is the unique common fixed point of f,g,hand p

As an illustration, we have the following

EXAMPLE 3.2: Let X =[0,1] with  G(x,y,z)=|x—y|+|y—-z|+|z—x]| for x,y,zeX.
Then G is a G-metricon X.

Define f:X -»X,g:X > X,h:X > X,p:X - X by

i 9 1

L if xe[0,2) L if xe[0,1) w x<0.2) w x<l0)
_J15¢ 12 _J10° 2 TRV | D I T |
= gx = ) hx=4 = ifx== px=4 = ifx==
Lif xe[L 1] Lifxe[1,1] 2 2 2 2

2’ 2’ 2’ 2’ Eifxe (3.1 w5 if xe(3.1]

X ={Z 1} oX =& 31X ={% 1,43, pX ={2 .2, 83} showing that X < hX,gX c pX

Clearly fX,gX,hx and Qx are closed subsets of X
As f(3)=p(E) we have pf(3) = fp(3),showing that(f, p) is weakly compatible.
And  h(3)=g(3)we have gh(3)=hg(3),showing that(g,h) is weakly compatible.

Consider the function ¢(t) = 100t

101

Now we prove the condition (3.1.2) of the theorem 3.1.

case(i). If x,ye[0,%)

G(fx, gy, gy) = &.G(px, hy. hy) = & G(fx.hy,hy) =&, G(hy, gy, gy) =&
A(x,y) =max {G(px, hy, hy), G(fx, hy, hy), G(hy, gy, gy)} =max {2, 4 11 =2
B ) = 9D = B2

G(fx, 9y, 9y) = 5t < 202 = #(A(X, Y)
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Proving that the condition (3.1.2) of the Theorem3.1 satisfied in this case.
case(ii). iIf x,ye(¢,1

G(fx, gy, gy) =0, G(px,hy,hy) = &,G(fx hy,hy) = 32,G(hy, gy, gy) = 12
A(x,y) =max {G(px, hy, hy), G(x.hy. hy). G(hy, gy, ay)} = max (. &2, 2} = 2
PA(X,Y) = #(33) = 138

G(x, gy, gy) =0 <32 = #(A(x. ¥))

Proving that the condition (3.1.2) of the Theorem3.1 satisfied in this case.
case(iii). if xe[0,4),ye (3,1

G(fx, gy, gy) = 12,G(px hy,hy) = 33, G(fx, hy,hy) =0, G(hy, gy, gy) = 33
(%, y) = max {G(px,hy, hy), G(fx, hy, hy), G(hy, gy, gy)} = max {$2,0, 22} = £
PA(X,Y) = #(53) = 3550
G(fx, gy, gy) =32 < 338 = 4(A(x, Y))

Proving that the condition (3.1.2) of the Theorem3.1 satisfied in this case.
case(iv). if ye[0,2),xe(,1]

G(fx gy, gy) =2,G(px hy,hy) = & , G(x, hy,hy) = 35, G(hy, gy, 9y) = 35
A(x,y) = max{G(px, hy, hy), G(x, hy, hy), G(hy, gy, ay)} = max {5, &, 55} =
PA(X,Y) = (35) = 1516
G(fx, gy, gy) = 7 < 1% = $(A(X, Y))

Proving that the condition (3.1.2) of the Theorem3.1 is true in this case.

case(v). if x=1,ye[0,1)

G(fx, gy, gy) =2, G(px,hy,hy) =2, G(fx hy,hy) = %, G(hy, gy, gy) = 55

589
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(%, y) = max {G(px,hy, hy), G(fx, hy, hy), G(hy, gy, ay)} = max {5, &, 4} = &
A% Y) = H(5) = 016
G(fx, gy, gy) = <189 = $(A(X, Y))
Proving that the condition (3.1.2) of the Theorem 3.1 is true in this case.
case(vi). if x=1,ye(t,1]
G(fx,gy,gy) =0, G(px,hy,hy) =L, G(fx,hy,hy) =12,G(hy, gy, gy) = 12
(%, y) = max {G(px,hy, hy), G(fx,hy, hy), G(hy, gy, gy)} = max {£ 12 128} - 12
G(fx, gy, gy) =0< 130 = §(A(x,y)
Proving that the condition (3.1.2) of the Theorem3.1 is true in this case.
case(vii). if y=1,xe[0,%)
G( fx, ay, gy) = %,G(px, hy, hy) = %1 G(fX, hy! hy) = %,G(hy, ay, gy) =0
(%, y) = max {G(px,hy, hy), G(fx, hy, hy), G(hy, gy, gy)} = max {2, 2,0} = 2
G(fx, gy, gy) =2 <20 = g(A(x,y)
Proving that the condition (3.1.2) of the Theorem3.1 is true in this case.
case(viii). if y=1,xe(¢,1
G(fx, gy, gy) =0, G(px, hy,hy) =2, G(fx,hy,hy) =0, G(hy,gy,gy) =0

(%, y) = max {G(px, hy, hy), G(fx, hy, hy), G(hy, ay, gy)} = max {£,0,0} = £

G(fx, gy, gy) =0< 22 = g(A(x,y)

Proving that the condition (3.1.2) of the Theorem3.1 is true in this case.
Hence the condition (3.1.2) in all cases.

Therefore, all the conditions of the Theorem 3.1 satisfied

Clearly % is a unique common fixed point of f,g,hand p
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Corollary 3.3: suppose f,g,handp are four selfmaps of a complete G -metric space (x,G)

satisfying the following conditions

(33.1) f(X)ch(X) and g(X)c p(X)

(3.3.2)G(fx, gy, gy) <#(A(x,y) Where ¢ is an upper semicontinuous contractive modulus
and A(x, y) = max {G(px,hy, hy), G(fx,hy, hy), G (hy, gy, gy)}

(3.3.3) one of f(X),g(X),h(X),P(X)is closed sub subset of X

(3.3.4) The pairs (f,p)and (g,h) are commuting

Then f,g,h and p have a unique common fixed point in X

Proof: From the fact that commutativity implies weakly compatibility, the proof of the Corollary

follows from the Theorem3.1

Corollary 3.4: suppose f,gandpP are three selfmaps of a complete G -metric space (X,G)

satisfying the following conditions

(34.1) f(X)cp(X) and g(X)c p(X)
(3.4.2) G(fx,9y,gy) <g(A(x,y) Where ¢ is an upper semi continuous contractive modulus
and A(x, y) = max{G(px, py, py), G(fx, py, py),G(py. gy, 9y)}
(3.4.3) one of f(X),g(X),P(X) isclosed sub subset of X
(3.4.4) (f,p)and (g, p)are weakly compatible pairs
Then f,gand phave a uniqgue common fixed point in X

Proof: By taking h=p in Theorem 3.1.
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Corollary 3.5: suppose f and g are two selfmaps of a complete G -metric space (X,G)

satisfying the following conditions

385.1) f(X)=p(X)

(3.5.2) G(fx, fy, fy) <#(A(x,y) Where ¢ iS an upper semi continuous contractive modulus

and A(x, y) = max{G(px, py, py), G(fx, py, py),G(py. fy, fy)}

(3.5.3) one of f(Xx),P(X)is closed sub subset of X

(3.5.4) (f,p)isweakly compatible pair

Then f and phave a unique common fixed point in X

Proof: By taking h=pand f =g inTheorem 3.1.
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