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Abstract. In this paper, we obtain generalizations of Banach contraction principle, Kannan fixed point theorem

and Chatterjea fixed point theorem for mappings satisfying Suzuki type contractive conditions on cone metric

spaces over Banach algebras without the assumption of normality. The obtained results generalize and improve

the corresponding conclusions in the literature.
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1. Introduction

In 2007, cone metric spaces were reviewed by Huang and Zhang, as a generalization of metric

spaces (see [1]). The distance d(x,y) of two elements x and y in a cone metric space X is defined

to be a vector in an ordered Banach space E, quite different from that which is defined a non-

negative real numbers in general metric space. In 2011, I. Beg, A. Azam and M. Arshad([2])
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introduced the concept of topological vector space-valued cone metric spaces, where the ordered

Banach space in the definition of cone metric spaces is replaced by a topological vector space.

Recently, some authors investigated the problems of whether cone metric spaces are equiva-

lent to metric spaces in terms of the existence of fixed points of the mappings and successfully

established the equivalence between some fixed point results in metric spaces and in (topolog-

ical vector space-valued) cone metric spaces, see [3-6]. Actually, they showed that any cone

metric space (X ,d) is equivalent to a usual metric space (X ,d∗), where the real-metric func-

tion d∗ is defined by a nonlinear scalarization function ξe(see [4]) or by a Minkowski function

qe(see[5]). After that, some other interesting generalizations were developed, see [7].

In 2013, Liu and Xu [8] introduced the concept of cone metric spaces over Banach algebras,

replacing a Banach space E by a Banach algebra A as the underlying spaces of cone metric

spaces. The authors in [8-10] discussed and obtained Banach fixed point theorem, Kannan type

fixed point theorem, Chatterjea type fixed point theorem and ćirić type fixed point theorem in

cone metric spaces over Banach algebras. Especially, the authors in [10] gave an example to

show that fixed point results of mappings in this new space are indeed more different than the

standard results of come metric spaces presented in literature.

In 1968, Kannan[11] obtained the generalization of Banach contractive principle, that is,

Kannan fixed point theorem:

Theorem 1.1. Let X be a metric space and f : X → X a mapping. If there is a α ∈ [0, 1
2) such

that for each x,y ∈ X ,

d( f x, f y)≤ α [d(x, f x)+d(y, f y)].

Then f has a unique fixed point.

In 2011, Shukla and Tiwari[12] obtained the variant result of Kannan fixed point theorem:

Theorem 1.2. Let X be a metric space and f : X → X a mapping. If there is a α ∈ [0, 1
3) such

that for each x,y ∈ X ,

d( f x, f y)≤ α [d(x, f x)+d(y, f y)+d(x,y)].

Then f has a unique fixed point.
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In 1972, Chatterjea[13] obtained the another generalization of Banach contractive principle,

that is, Chatterjea fixed point theorem:

Theorem 1.3. Let X be a metric space, f : X → X a mapping. If there is a α ∈ [0, 1
2) such that

for each x,y ∈ X ,

d( f x, f y)≤ α [d(x, f y)+d(y, f x)].

Then f has a unique fixed point.

2. Preliminaries

Let A always be a Banach algebra. That is, A is a real Banach space in which an operation

of multiplication is defined, subject to the following properties(for all x,y,z ∈A , α ∈ R):

1. (xy)z = x(yz);

2. x(y+ z) = xy+ xz and (x+ y)z = xz+ yz;

3. α(xy) = (αx)y = x(αy);

4. ‖ xy ‖≤‖ x ‖‖ y ‖ .

In this paper, we shall assume that a Banach algebra has a unit (i.e., a multiplicative identity)

e such that ex = xe = x for all x ∈ A . an element x ∈ A is said to be invertible if there is an

inverse element y ∈ A such that xy = yx = e. The inverse of x denoted by x−1. For more detail,

we refer to [14].

We say that the set {x1,x2, · · · ,xn} ⊂A commute if xix j = x jxi for all i, j ∈ {1,2, · · · ,n}.

Proposition 2.1.[14] Let A be a Banach algebra with a unit e, and x ∈A . If the spectral radius

r(x) of x is less than 1, i.e.,

r(x) = lim
n→∞
‖ xn ‖

1
n = inf

n→∞
‖ xn ‖

1
n < 1.

Then (e− x) is invertible. Actually,

(e− x)−1 =
+∞

∑
i=0

xi.

Remark 2.1. 1) r(x)≤‖ x ‖ for any x ∈A (see [14]).
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2) In Proposition 2.1, if the condition r(x)< 1 is replaced by the condition ‖ x ‖< 1, then the

conclusion remains true.

A subset P of a Banach algebra A is called a cone if

1. P is nonempty closed and {0,e} ⊂ P;

2. α P+β P⊂ P for all non-negative real numbers α , β ;

3. P2 = PP⊂ P;

4. P∩ (−P) = {0}.

Where 0 denotes the null of the Banach algebra A .

For a given cone P⊂A , we can define a partial ordering ≤ with respect to P by x≤ y if and

only if y− x ∈ P. x < y stand for x≤ y and x 6= y. While x� y sill stand for y− x ∈ intP, where

intP denotes the interior of P. A cone P is called solid if intP 6= /0.

The cone P is called normal if there is a number M > 0 such that for all x,y ∈A .

0≤ x≤ y =⇒ ‖ x ‖≤M ‖ y ‖ .

The least positive number satisfying the above is called the normal constant of P.

Here, we always assume that P is a solid and ≤ is the partial ordering with respect to P.

Definition 2.1.[1, 9-10] Let X be a non-empty set. Suppose that the mapping d : X ×X → A

satisfies

1. 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

2. d(x,y) = d(y,x) for all x,y ∈ X ;

3. d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a cone metric on X and (X ,d) is called a cone metric space(over a Banach

algebra A ).

Remark 2.2. The examples of cone metric spaces(over a Banach algebra A ) can be found in

[8-10].

Definition 2.2.[1, 8] Let (X ,d) be a cone metric space over a Banach algebra A , x ∈ X and

{xn} a sequence in X . Then:

1. {xn} converges to x whenever for each c ∈A with 0� c there is a natural number N such

that d(xn,x)� c for all n≥ N. We denote this by limn→∞ xn = x or xn→ x.
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2. {xn} is Cauchy sequence whenever for each c ∈A with 0� c there is a natural number

N such that d(xn,xm)� c for all n,m≥ N.

3. (X ,d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 2.3.[15-16] Let P is a solid cone in a Banach space A . A sequence {un} ⊂ P is a

c-sequence if for each c� 0 there exists n0 ∈ N such that un� c for all n≥ n0.

Proposition 2.2.[15] Let P is a solid cone in a Banach space A and let {xn} and {yn} be

sequences in P. If {xn} and {yn} are c-sequences and α,β > 0, then {α xn + β yn} is a c-

sequence.

Proposition 2.3.[15] Let P is a solid cone in a Banach algebra A and {xn} a sequence in P.

Then the following conditions are equivalent:

(1) {xn} is a c-sequence;

(2) for each c� 0there exists n0 ∈ N such that xn < c for all n≥ n0;

(3) for each c� 0there exists n1 ∈ N such that xn ≤ c for all n≥ n1.

Proposition 2.4.[10] Let P is a solid cone in a Banach algebra A and {un} a sequence in P.

Suppose that k ∈ P is an arbitrarily given vector and {un} is a c-sequence in P. Then {kun} is a

c-sequence.

Proposition 2.5.[10]. Let A be a Banach algebra with a unit e, P a cone in A and ≤ be the

semi-order generated by the cone P. The following assertions hold true:

(i) For any x,y ∈A , a ∈ P with x≤ y, ax≤ ay;

(ii) For any sequences {xn},{yn} ⊂ A with xn→ x and yn→ y as n→ ∞, where x,y ∈ A ,

we have xnyn→ xy as n→ ∞.

Proposition 2.6.[10] Let A be a Banach algebra with a unit e, P a cone in A and ≤ be the

semi-order generated by the cone P. Let λ ∈ P. If the spectral radius r(λ ) of λ is less than 1,

then the following assertions hold true:

(i) Suppose that x is invertible and that x−1 > 0 implies x > 0, then for any integer n≥ 1, we

have λ n ≤ λ ≤ e.

(ii) For any u > 0, we have u� λ u, i.e., λ u−u /∈ P.

(iii) If λ ≥ 0, then (e−λ )−1 ≥ 0.
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Proposition 2.7.[10] Let (X ,d) be a complete cone metric space over a Banach algebra A and

P a solid cone in Banach algebra A. Let {xn} be a sequence in X . If {xn} converges to x ∈ X ,

then we have

(i) {d(xn,x)} is a c-sequence.

(ii) For any p ∈ N, {d(xn,xn+p)} is a c-sequence.

Lemma 2.1.[17] If E is a real Banach space with a cone P and if a ≤ λ a with a ∈ P and

0≤ λ < 1, then a = 0.

Lemma 2.2.[18] If E is a real Banach space with a cone P and if 0≤ u� c for all 0� c, then

u = 0.

Lemma 2.3.[18] If E is a real Banach space with a solid cone P and if ‖ xn ‖→ 0 as n→ ∞,

then for any 0� c, there exists N ∈ N such that, for any n > N, we have xn� c.

Lemma 2.4.[10] If A is a Banach algebra and k ∈A with r(k)< 1, then ‖ kn ‖→ 0 as n→ ∞.

Lemma 2.5.[10] Let A be a Banach algebra and x,y∈A . If x and y commute, then the following

hold:

(i) r(xy)≤ r(x)r(y);

(ii) r(x+ y)≤ r(x)+ r(y);

(iii) | r(x)− r(y) |≤ r(x− y).

Lemma 2.6.[10] Let A be a Banach algebra and {xn} a sequence in A . Suppose that {xn}

converge to x ∈A and that xn and x commute for all n, then r(xn)→ r(x) as n→ ∞.

Lemma 2.7.[19-20] Let A be a Banach algebra and {α,β ,γ} ⊂A with r(γ)< 1. If {α,β ,γ}

commute, then

r
(
(e− γ)−1(α +β )

)
≤ r(α +β )

1− r(γ)
≤ r(α)+ r(β )

1− r(γ)
.

Lemma 2.8.[19-20] (Cauchy Principle) Let (X ,d) be a cone metric space over a Banach alge-

bra A , k ∈ P with r(k)< 1. If a sequence {xn} ⊂ X satisfies that

d(xn+1,xn+2)≤ kd(xn,xn+1),∀n = 0,1,2, · · · .

Then {xn} is a Cauchy sequence.
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Lemma 2.9.[19-20] Let (X ,d) be a cone metric space over a Banach algebra A , {xn} ⊂ X a

sequence. If {xn} is convergent, then the limits of {xn} is unique.

Xu and Radenović [10] obtained Banach, Kannan and Chatterjea type fixed point theorems

on cone metric spaces over Banach algebras without the assumption of normality. These results

generalize and improve Banach contraction principle, Theorem 1.1 and Theorem 1.3.

In this paper, we discuss the existence problems of fixed points for mappings satisfying

Suzuki type contractive conditions on cone metric spaces over Banach algebras without the

assumption of normality. Our results further generalize Theorem 1.1-1.3 and the conclusions in

[8-10] and others.

3. Fixed point results

Theorem 3.1. Let (X ,d) be a complete cone metric space over a Banach algebra A , f : X→X a

mapping. Suppose that there exist four commutable elements {α,β ,γ,δ} ⊂ P satisfying e≥ α

and r(α) ≤ 1
2 and r(β )+ r(γ)+ r(δ ) < 1 such that αd(x, f x) ≤ d(x,y) for x,y ∈ X with x 6= y

implies

d( f x, f y)≤ βd(x, f x)+ γd(y, f y)+δd(x,y). (3.1)

If d(X×X) is a totally ordered subset of A , then f has a unique fixed point u and limn→∞ f nx =

u for all x ∈ X .

Proof. Take any element x0 ∈ X and let x1 = f x0. If x1 = x0, then x0 is a fixed point of f , hence

we assume that x1 6= x0. Since (e−α)d(x0, f x0)≥ 0, i.e., αd(x0, f x0))≤ d(x0,x1), by (3.1),

d( f x0, f x1)≤ βd(x0, f x0)+ γd(x1, f x1)+δd(x0,x1).

Let x2 = f x1, then

d(x1,x2)≤ βd(x0,x1)+ γd(x1,x2)+δd(x0,x1).

Since r(γ)< 1 implies (e− γ) is invertible and (e− γ)−1 ≥ 0, we obtain

d(x1,x2)≤ (e− γ)−1(β +δ )d(x0,x1). (3.2)
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If x2 = x1, then x1 is a fixed point of f , hence we assume that x2 6= x1. Similarly, since

(e−α)d(x1, f x1)≥ 0, i.e,, αd(x1, f x1)≤ d(x1,x2), by (3.1),

d( f x1, f x2)≤ βd(x1, f x1)+ γd(x2, f x2)+δd(x1,x2). (3.3)

Let x3 = f x2, then we obtain

d(x2,x3)≤ (e− γ)−1(β +δ )d(x1,x2).

If x3 = x2, then x2 is a fixed point of f , hence we assume x3 6= x2. Repeating this process, we

obtain a sequence {xn} satisfying

xn+1 = f xn, xn+1 6= xn, d(xn+1,xn+2)≤ (e− γ)−1(β +δ )d(xn,xn+1),∀n = 0,1,2, · · · . (3.4)

Since r((e−γ)−1(β +δ ))≤ r(β )+r(δ )
1−(γ) < 1 by Lemma 2.7, {xn} is Cauchy by Lemma 2.8 and

(3.4). Hence there exists u ∈ X such that xn→ u as n→ ∞ by the completeness of X .

We claim that for any n = 0,1,2, · · · , one of the following relations holds:

αd(xn, f xn)≤ d(xn,u), α d(xn+1, f xn+1)≤ d(xn+1,u). (3.5)

Otherwise, by the property of d(X ×X), there exists n such that αd(xn, f xn) > d(xn,u) and

αd(xn+1, f xn+1)> d(xn+1,u), hence using (3.4), we obtain

d(xn,xn+1)

≤d(xn,u)+d(xn+1,u)

<αd(xn, f xn)+αd(xn+1, f xn+1)≤ α
(
e+(e− γ)−1(β +δ )

)
d(xn,xn+1),

that is, [
e−
(

α
(
e+(e− γ)−1(β +δ )

))]
d(xn,xn+1)< 0. (3.6)

Since {α,β ,γ,δ} commute, by Lemma 2.5 and Lemma 2.7,

r
(

α
(
e+(e− γ)−1(β +δ )

))
= r(α +α(e− γ)−1(β +δ ))≤ r(α)+

r(α)(r(β )+ r(δ ))
1− r(γ)

< 1,

hence
[
e−
(

α
(
e+(e−γ)−1(β +δ )

))]
is invertible and

[
e−
(

α
(
e+(e−γ)−1(β +δ )

))]−1
≥

0 by Proposition 2.1 and Proposition 2.6, therefore d(xn,xn+1)< 0 by Proposition 2.5 and (3.6).

This is a contradiction.
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By (3.5), there exists an infinite sub-sequence {xni} of {xn} such that αd(xni, f xni)≤ d(xni,u)

for all i ∈ N, hence by (3.1), for each i ∈ N,

d(xni+1, f u)

=d( f xni, f u)

≤βd(xni, f xni)+ γd(u, f u)+δd(xni,u)

=βd(xni,xni+1)+ γd(u, f u)+δd(xni,u),

which implies that

d(xni+1, f u)≤ βd(xni,xni+1)+ γ[d(u,xni+1)+d(xni+1, f u)]+δd(xni,u),∀ i ∈ N,

hence

d(xni+1, f u)≤ (e− γ)−1
βd(xni,xni+1)+(e− γ)−1

γd(u,xni+1)+(e− γ)−1
δd(xni,u),∀ i ∈ N.

(3.7)

Since {xn} converges to u, the right-hand side of (3.7) is a c-sequence by Proposition 2.2, 2.4

and 2.7, hence {d(xni+1, f u)} is also a c-sequence. Therefore, it is easy to prove that {xni+1}

converges to f u by Definition 2.3, so f u = u, i.e., u is the fixed point of f .

Suppose that v is another fixed point of f , then u 6= v. Since αd(u, f u) = 0 ≤ d(u,v), by

(3.1),

d(u,v) = d( f u, f v)≤ βd(u, f u)+ γd(v, f v)+δd(u,v) = δd(u,v),

that is

(e−δ )d(u,v)≤ 0.

Hence u = v since r(δ )< 1, therefore, u is the unique fixed point of f .

If β = γ = 0, then we obtain the following generalization of famous Banach contraction prin-

ciple for Suzuki type contractive mappings in the setting of cone metric spaces over a Banach

algebra without the assumption of normality of the underlying solid cone.

Theorem 3.2. Let (X ,d) be a complete cone metric space over a Banach algebra A , f : X → X

a mapping. Suppose that there exist two commutable elements {α,β} ⊂ P satisfying e≥ α and
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r(α)≤ 1
2 and r(β )< 1 such that αd(x, f x)≤ d(x,y) for x,y ∈ X with x 6= y implies

d( f x, f y)≤ βd(x,y). (3.8)

If d(X×X) is a totally ordered subset of A , then f has a unique fixed point u and limn→∞ f nx =

u for all x ∈ X .

Remark 3.1. (1) if β = γ and δ = 0, then Theorem 3.1 is a new generalization of Theorem 1.1

and the corresponding results in [8,10]; if β = γ = δ , then Theorem 3.2 is a new generalization

of Theorem 1.2.

(2) If (3.1) and (3.8) holds for all x,y ∈ X instead of all x,y ∈ X with αd(x,dx)≤ d(x,y) and

x 6= y, then Theorem 3.1 and Theorem 3.2 reduce to Theorem 1.1-1.2 and Banach type fixed

point theorem respectively.

Example 3.1. Let A =C1
R[0,1] and define a norm on A by ‖ x ‖= ‖ x ‖

∞
+‖ x′ ‖

∞
for x ∈A .

Define multiplication in A as just pointwise multiplication. Then A is a real Banach algebra

with unit e, i.e., e(t) = 1 for all t ∈ [0,1]. The set P = {x ∈ A : x ≥ 0} is not normal(see[10,

21]).

Let X = {a,b,c} and define d : X×X →A as follows: for each t ∈ [0,1] and x ∈ X ,

d(a,b)(t) = d(b,a)(t) = 1.9et ,d(a,c)(t) = d(c,a)(t) = 2.1et ,

d(b,c)(t) = d(c,b)(t) = 0.2et ,d(x,x)(t) = 0.

Then (X ,d) is a complete cone metric space over a Banach algebra A without normality and

d(X×X) = {1.9et ,2.1et ,0.2et ,0} is a totally ordered subset of A .

Define a mapping f : X→ X by f a= a, f b= a, f c= b. Let α,β ∈ P be α(t) = 2
5 +

t
15 ,β (t) =

98
100 +

t
100 for all t ∈ [0,1]. It is easy to prove that e(t) = 1 ≥ α(t) for all t ∈ [0,1] and r(α) =

7
15 < 1

2 , r(β ) = 99
100 < 1.

Case (i) For x = a,y = b,

αd(a, f a)(t) = α(t)d(a,a)(t) = 0≤ 1.9et = d(a,b)(t)

and

d( f a, f b)(t) = d(a,a)(t) = 0≤ (
98

100
+

t
100

)×1.9et = βd(a,b)(t)

for all t ∈ [0,1], hence (3.8) holds;



78 MEIXIANG JIN, YONGJIE PIAO

Case (ii) For x = a,y = c,

α d(a, f a)(t) = 0≤ 2.1et = d(a,c)(t)

and

d( f a, f c)(t) = d(a,b)(t) = 1.9et ≤ (
98
100

+
t

100
)×2.1et = β d(a,c)(t)

for all t ∈ [0,1], hence (3.8) holds;

Case (iii) For x = b,y = c,

α d(b, f b)(t) = α d(b,a)(t) = (
2
5
+

t
15

)1.9et > 0.2et = d(b,c)(t)

and

d( f b, f c)(t) = d(a,b)(t) = 1.9et > (
98
100

+
t

100
)×0.2et = β d(b,c)(t)

for all t ∈ [0,1], hence (3.8) holds.

Hence f , α, β satisfy all of the conditions in Theorem 3.2, so f has a unique fixed point a.

On the other hand, the second inequality in case (iii) shows that f does not satisfy the con-

tractive condition in Banach contraction principle. Hence Theorem 3.2 really generalizes the

Banach fixed point theorem and other corresponding conclusion.

Theorem 3.3. Let (X ,d) be a complete cone metric space over a Banach algebra A , f : X → X

a mapping. Suppose that there exist commutable elements {α,β ,γ,δ} ⊂ P satisfying e ≥ α

and r(α)≤ 1
2 and 2max{r(β ),r(γ)}+ r(δ )< 1 such that αd(x, f x)≤ d(x,y) for x,y ∈ X with

x 6= y implies

d( f x, f y)≤ βd(x, f y)+ γd(y, f x)+δd(x,y). (3.9)

If d(X×X) is a totally ordered subset of A , then f has a unique fixed point u and limn→∞ f nx =

u for all x ∈ X .

Proof. Take any element x0 ∈ X and let x1 = f x0. If x1 = x0, then x0 is a fixed point of f , hence

we assume x1 6= x0. Since (e−α)d(x0, f x0)≥ 0, i.e., αd(x0, f x0))≤ d(x0,x1), by (3.9),

d( f x0, f x1)≤ βd(x0, f x1)+ γd(x1, f x0)+δd(x0,x1) = βd(x0, f x1)+δd(x0,x1).
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Let x2 = f x1, then we have

d(x1,x2)

≤βd(x0,x2)+δd(x0,x1)

≤β [d(x0,x1)+d(x1,x2)]+δd(x0,x1)

=(β +δ )d(x0,x1)+βd(x1,x2),

hence

(e−β )d(x1,x2)≤ (β +δ )d(x0,x1). (3.10)

Since r(β )< 1, (e−β ) is invertible and (e−β )−1 ≥ 0, hence by (3.10), we obtain

d(x1,x2)≤ (e−β )−1(β +δ )d(x0,x1).

If x2 = x1, then x1 is a fixed point of f , hence we assume x2 6= x1. Similarly, since (e−

α)d(x1, f x1)≥ 0, i.e., αd(x1, f x1)≤ d(x1,x2), by (3.9),

d( f x1, f x2)≤ βd(x1, f x2)+ γd(x2, f x1)+δd(x1,x2).

Let x3 = f x2, then

d(x2,x3)≤ βd(x1,x3)+δd(x1,x2)≤ β [d(x1,x2)+d(x2,x3)]+δd(x1,x2). (3.11)

Hence we obtain

d(x2,x3)≤ (e−β )−1(β +δ )d(x1,x2).

Repeating this process, we obtain a sequence {xn} satisfying

xn+1 = f xn, xn+1 6= xn, d(xn+1,xn+2)≤ (e−β )−1(β +δ )d(xn,xn+1),∀n = 0,1,2, · · · . (3.12)

Since r((e− β )−1(β + δ )) ≤ r(β )+r(δ )
1−(β ) < 1 by Lemma 2.7, {xn} is Cauchy by Lemma 2.8

and (3.12). Hence there exists u ∈ X such that xn→ u as n→ ∞ by the completeness of X .

Using the similar proof in Theorem 3.1, we can sure that (3.5) also holds. Hence there exists

an infinite sub-sequence {xni} of {xn} such that αd(xni, f xni) ≤ d(xni,u) for all i ∈ N by (3.5).
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In view of (3.9), for each i ∈ N,

d(xni+1, f u)

=d( f xni, f u)

≤βd(xni, f u)+ γd(u, f xni)+δd(xni,u)

=βd(xni, f u)+ γd(u,xni+1)+δd(xni,u),

which implies that

d(xni+1, f u)≤ β [d(xni,xni+1)+d(xni+1, f u)]+ γd(u,xni+1)+δd(xni,u),∀ i ∈ N,

hence

d(xni+1, f u)≤ (e−β )−1
βd(xni,xni+1)+(e−β )−1

γd(u,xni+1)+(e−β )−1
δd(xni,u),∀ i ∈ N.

(3.13)

Since {xn} converges to u, the right-hand side of (3.13) is a c-sequence by Proposition 2.2,

2.4 and 2.7, hence {d(xni+1, f u)} is also a c-sequence. Therefore, it is easy to prove that {xni+1}

converges to f u by Definition 2.3, so f u = u, i.e., u is the fixed point of f .

Suppose that v is another fixed point of f , then u 6= v. Since αd(u, f u) = 0 ≤ d(u,v), by

(3.9),

d(u,v) = d( f u, f v)≤ βd(u, f v)+ γd(v, f u)+δd(u,v) = (β + γ +δ )d(u,v),

that is,

[e− (β + γ +δ )]d(u,v)≤ 0. (3.14)

But r(β + γ +δ )≤ r(β )+ r(γ)+ r(δ )< 1, hence [e− (β + γ +δ )] is invertible and [e− (β +

γ +δ )]−1 ≥ 0, therefore by Proposition 2.5 and (3.14),

d(u,v) = 0,

that is, u = v. Hence u is the unique fixed point of f .

Remark 3.2. If β = γ = 0, then Theorem 3.3 is the Banach type fixed point theorem; if β = γ

and δ = 0, then Theorem 3.3 is a generalization of Theorem 1.3 and the corresponding results

in [8,10]; if β = γ = δ , then Theorem 3.3 is a new version and generalization of Theorem 1.3.
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