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Abstract. Imdad and Javid proved an interesting generalization of Jungck’s common fixed point theorem for two

commuting self-mappings of a complete metric space. However, their result require that the range of one of the

mappings is a complete subspace of the metric space. In this paper, we use the (CLRg) property to obtain one which

does not require the completeness of the range of the mappings involved therein. Our main result generalizes, in

particular, single-valued versions of the classical common fixed point results of Kaneko and Sessa [ Internat. J.

Math. & Math. Sci. 12 (2) (1989), 257 – 262 ] and Pathak [ Acta Math. Hungar 67 (1995), 69 – 78 ]. Also, we

provide an example to distinguish our result from previously known results.
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1. Introduction

Jungck [ 1 ] introduced and discussed the notion of commuting mappings and proved a gen-

eralization of celebrated Banach contraction principle for two commuting self-mappings of a

complete metric space. Sessa [ 3 ] and Jungck [ 2 ] introduced the notions of weakly commuting
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mappings and compatible mappings, respectively in common fixed point considerations. Con-

sequently, the existing literature contains several common fixed point results established under

weak commutativity conditions.

On the other hand, Popa [ 7 ] defined an implicit relation and proved some common fixed

point theorems for compatible mappings satisfying the implicit relation. In [ 5 ], Imdad and

Javid deduced several contractive conditions from the Popa’s implicit relation. They further

established a generalization of the Jungck’s common fixed point theorem in [ 1 ] which satisfy

the implicit relation under the (E.A) property due to Aamri and El Moutawakil [ 4 ].

In this paper, we state and prove a general common fixed point theorem for two self-mappings

of a metric space under (CLRg) property satisfying an implicit relation.

2. Preliminaries

The following definitions and facts will be frequently used in the sequel.

Let X be a non-empty set, and f ,g : X → X be mappings. A point t ∈ X is called a common

fixed point of the self-mappings f and g if t = f t = gt. If a point b ∈ X is such that f b = gb,

then such b is called a coincidence point of the mappings.

Definition 2.1. [ 2 ] Let (X ,d) be a metric space. The mappings f ,g : X → X are said to be

compatible if and only if d( f gxn,g f xn) approaches 0 whenever {xn} is a sequence in X such

that { f xn} approaches t, {gxn} approaches t for some point t ∈ X .

In 1976, Jungck [ 1 ] proved the following common fixed point theorem:

Theorem 2.1. Let f be a continuous mappings of a complete metric space (X ,d) into itself.

Then f has a fixed point in X if there exist α ∈ (0,1) and a mapping g : X→ X which commutes

with f and satisfies g(X)⊂ f (X) and d(gx,gy)≤ αd( f x, f y), for all x,y ∈ X.

Definition 2.2. [ 8 ] Mappings g : X → X , and f : X → X are said to be weakly compatible if

g f x = f gx whenever gx = f x.

Definition 2.3. [ 4 ] Let (X ,d) be a metric space. Mappings g, f : X → X are said to satisfy

property (E.A) if there exists a sequence {xn} ⊂ X such that both {gxn} and { f xn} converge to

t for some t ∈ X .
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Clearly, the class of mappings satisfying property (E.A) contains both compatible and non-

compatible mappings.

Definition 2.4. [ 9 ] Let (X ,d) be a metric space and f ,g : X → X be mappings. The mappings

f and g are said to satisfy the common limit in the range of g property ((CLRg) property for

short) if limn→∞ f xn = limn→∞ gxn = gx for some x ∈ X .

Example 2.1. Let X = [−1,1] equipped with the usual metric and f ,g : X → X be mappings

defined as follows:

f x =


1
3 , if x =−1

x
4 , if −1 < x < 1

3
5 , if x = 1

and

gx =


1
3 , if x =−1

x
2 , if −1 < x < 1

4
5 , if x = 1

For a sequence {xn}= {1
n}, we have limn→∞ f xn = limn→∞ gxn = g0. Thus, the mappings f and

g satisfy the (CLRg) property.

Notice that neither the range of f nor the range of g contains the other.

In 1999, Popa [ 7 ] introduced the following implicit relation and proved some fixed point

theorems for compatible mappings satisfying the relation. To describe the implicit relation, let

Ψ be the family of real lower semi-continuous functions F(t1, t2, ..., t6) : [0,∞)6→ R satisfying

the following conditions:

( ψ1 ) F is non-increasing in the variables t5 and t6,

( ψ2 ) there exists h ∈ (0,1) such that for every u,v≥ 0 with

( ψ21 ) F(u,v,v,u,u+ v,0)≤ 0 or

( ψ22 ) F(u,v,u,v,0,u+ v)≤ 0 we have u≤ hv, and

( ψ3 ) F(u,u,0,0,u,u)> 0, ∀u > 0.
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The following examples of such functions appear in [ 5, 7].

Example 2.2. Define F(t1, t2, ..., t6) : [0,∞)6→ R

as F(t1, t2, ..., t6) = t1− k max{t2, t3, t4, 1
2(t5 + t6)}, where k ∈ (0,1)

Example 2.3. Define F(t1, t2, ..., t6) : [0,∞)6→ R

as F(t1, t2, ..., t6) = t1−hmax
{

t2,
t3 + t4

2
,
t5 + t6

2

}
, where h ∈ (0,1).

Example 2.4. Define F(t1, t2, ..., t6) : [0,∞)6→ R

as F(t1, t2, ..., t6) = t2
1 −at2

2 −
bt5t6

1+ t2
3 + t2

4
, where a > 0, b≥ 0 and a+b < 1.

Example 2.5. Define F(t1, t2, ..., t6) : [0,∞)6→ R

as F(t1, t2, ..., t6) = t2
1 − t1(at2 + bt3 + ct4)− dt5t6, where a > 0, b,c,d ≥ 0, a+ b+ c < 1, and

a+d < 1.

Imdad and Javid [ 5 ] proved the following interesting generalization of Theorem 2.1. satis-

fying the implicit relation described just above.

Theorem 2.2. Let f and g be self-mappings of a metric space (X ,d) such that :

( i ) f and g satisfy property (E.A),

( ii ) ∀x,y ∈ X and F ∈Ψ,

F(d( f x, f y),d(gx,gy),d(gx, f x),d(gy, f y),d(gx, f y),d(gy, f x))≤ 0,

( iii ) g(X) is a complete subspace X,

Then

( a ) the pair ( f ,g) has a point of coincidence,

( b ) the pair ( f ,g) has a common fixed point provided it is weakly compatible.

We notice that Theorem 2.2. require that g(X) is a complete subspace of X , which may not

always be the case. Therefore, we cannot apply Theorem 2.2. in the event that g(X) is not

complete.

The purpose of this work is to prove a generalization of Theorem 2.1. that relaxes the re-

quirement on completeness of the range of g.



56 JOHNSON ALLEN KESSY

3. Main results

Theorem 3.1. Let (X ,d) be a metric space and f ,g : X → X be mappings such that :

( i ) f and g satisfy the (CLRg) property,

( ii ) ∀x,y ∈ X and F ∈Ψ,

F(d( f x, f y),d(gx,gy),d(gx, f x),d(gy, f y),

d(gx, f y),d(gy, f x))≤ 0,(1)

Then

( a ) the pair ( f ,g) has a point of coincidence,

( b ) the pair ( f ,g) has a common fixed point provided it is weakly compatible.

Proof. Since f and g satisfy (CLRg) property, then there exists a sequence {xn} ⊂ X such

that limn→∞ f xn = limn→∞ gxn = ga = t ∈ X . We claim that ga = f a. Suppose not. Then

d(ga, f a)> 0. Now, from Condition (1), we have

F(d( f a, f xn),d(ga,gxn),d(ga, f a),d(gxn, f xn),d(ga, f xn),d(gxn, f a))≤ 0

Taking limit as n→ ∞ gives

F(d( f a, t),d(ga, t),d(ga, f a),d(t, t),d(ga, t),d(t, f a))≤ 0 or

F(d( f a,ga),d(t, t),d(ga, f a),d(t, t),d(t, t),d(ga, f a))≤ 0 or

F(d( f a,ga),0,d(ga, f a),0,0,d(ga, f a))≤ 0, which by ( ψ22 ) implies

that d( f a,ga)≤ 0. Therefore, f a = ga. This proves ( a ).

Now we establish ( b ). Suppose that f and g are weakly compatible. Then we have gt = g f a =

f ga = f t. We claim that f t = t. Suppose not. Then d( f t, t)> 0. From Condition (1), we have

F(d( f t, f a),d(gt,ga),d(gt, f t),d(ga, f a),d(gt, f a),d(ga, f t))≤ 0 or

F(d( f t, t),d( f t, t),d(gt, f t),d(t, t),d( f t, t),d(t, f t))≤ 0 or

F(d( f t, t),d( f t, t),0,0,d( f t, t),d(t, f t)) ≤ 0, which is a contradiction to ( ψ3 ). Therefore

d( f t, t) = 0. Hence t is a common fixed point of the mappings f and g. Further, we claim

that t is unique. Suppose not and s 6= t is also a common fixed point of the mappings. Then

from Condition (1) we have

F(d( f t, f s),d(gt,gs),d(gt, f t),d(gs, f s),d(gt, f s),d(gs, f t))≤ 0 or
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F(d(t,s),d(t,s),d(t, t),d(s,s),d(t,s),d(s, t))≤ 0 or

F(d(t,s),d(t,s),0,0,d(t,s),d(s, t))≤ 0 which contradicts ( ψ3 ).

Therefore d(s, t) = 0. Hence s = t. This completes the proof.

The following Corollary is a generalization of single-valued versions of Theorems 1 and 2 in

[ 6, 10 ].

Corollary 3.1. Let (X ,d) be a metric space and f ,g : X → X be mappings such that :

( i ) f and g satisfy the (CLRg) property,

( ii ) ∀x,y ∈ X,

d( f x, f y)≤hmax{d(gx,gy),d(gx, f x),

d(gy, f y),
1
2
[d(gx, f y)+d(gy, f x)]}

where h ∈ (0,1).

Then

( a ) the pair ( f ,g) has a point of coincidence,

( b ) the pair ( f ,g) has a common fixed point provided it is weakly compatible.

Example 3.1. Let X = [−1,1] equipped with the usual metric and f and g as defined in Ex-

ample 2.1. Clearly, the mappings are weakly compatible as f g0 = g f 0, and 0 is their point

of coincidence. In fact, 0 is their unique common fixed point. Consider a continuous function

F(t1, t2, ..., t6) = t1−k max{t2, t3, t4, 1
2(t5+t6)}, where k ∈ (0,1), it can be easily established that

f and g satisfy Condition (1) for k =
12
13

.

Remark 3.1. Notice that Theorem 2.1. does not apply to Example 3.1. because the mappings

f and g are discontinuous. Also, since g(X) = (−1
2 ,

1
2)∪ {

1
3 ,

4
5} is not a complete (closed)

subspace of X , then Theorem 2.2. is not applicable too.
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