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Abstract. For the purpose of this article, we are using the concept of equilibrium problem and prove the strong

convergence theorem by the viscosity approximation methods for finding a common element of the set of fixed

points of κi-strictly pseudo-contractive mappings and of a finite family of the set of solutions of equilibrium prob-

lems and variational inequality problems. Furthermore, we apply our main theorem for the numerical examples.

Keywords: viscosity approximation methods; strictly pseudo-contractive mapping; S-mapping; variational in-

equality problems; the combination of equilibrium problems.

2010 AMS Subject Classification: 47H09, 47H10, 47J20.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H with the inner product 〈·, ·〉

and the norm ‖·‖. A mapping T : C→C is said to be nonexpansive if ‖T x−Ty‖ ≤ ‖x− y‖, for
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all x,y ∈C. Recall that T is a κ-strictly pseudo-contractive mapping if there exists a constant

κ ∈ [0,1) such that

(1.1) ‖T x−Ty‖2 ≤ ‖x− y‖2 +κ ‖(I−T )x− (I−T )y‖2 , ∀x,y ∈C.

If κ = 0, then (1.1) reduces to nonexpansive mappings.

A point x ∈C is called a fixed point of T if T x = x. The set of fixed points of T is denoted by

F(T ) = {x ∈C : T x = x}.

Recall that a mapping f : C→C is said to be contractive if there exists a constant η ∈ (0,1)

such that, for all x,y ∈ H

‖ f (x)− f (y)‖ ≤ η ‖x− y‖ .

A mapping A of C into H is called α-inverse-strongly monotone if there exists a positive real

number α such that

(1.2) 〈x− y,Ax−Ay〉 ≥ α ‖Ax−Ay‖2 , ∀x,y ∈C.

Let A : C→ H. The variational inequality problems is to find a point u ∈C such that

(1.3) 〈v−u,Au〉 ≥ 0, ∀v ∈C.

The set of solutions of the variational inequality problems is denoted by V I(C,A).

Variational inequalities were introduced and investigated by Stampacchia [8] in 1964. It is

well known that variational inequalities cover as diverse disciplines as partial differential equa-

tions, optimal control, optimization, mathematical programming, mechanics and finance; see

[9]−[11].

Let F : C×C→ R be a bifunction. The equilibrium problem for F is to determine its equi-

librium point, that is to find a point x∗ ∈C such that F(x∗,y)≥ 0, for all y ∈C.

The set of all solution of equilibrium problem is denoted by

(1.4) EP(F) = {x ∈C : F(x∗,y)≥ 0,∀y ∈C}.

The methods which are used to solve equilibrium problems have been applied in solving eco-

nomic problem and some problems in pure and applied science; see [1, 2]. Many authors have

studied an iterative scheme for the equilibrium problems; see, for example, [2]−[5].
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In 2013, Suwannaut and Kangtunyakarn [15] introduced the combination of equilibrium

problem which is to find x ∈C such that

(1.5)
N

∑
i=1

aiFi(x,y)≥ 0, ∀y ∈C,

where Fi : C×C→ R be bifunction and ai ∈ (0,1) with ∑
N
i=1 ai = 1, for every i = 1,2, ...,N.

The set of solution (1.5) is denoted by

EP
( N

∑
i=1

aiFi

)
=
{

x ∈C :
( N

∑
i=1

aiFi

)
(x,y)≥ 0,∀y ∈C

}
.

If Fi = F , ∀i = 1,2, ...,N, then (1.5) reduces to (1.4).

In 2007, Takahashi and Takahashi [5] proved the following theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of H. Let F be a bifunction from

C×C to R satisfying A1)−A4) and let S be a nonexpansive mapping of C into H such that

F(S)∩EP(F) 6= /0. Let f be a contraction of H into itself, let {xn} and {un} be sequences

generated by x1 ∈ H and

F(un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0, ∀y ∈C,

xn+1 = αn f (xn)+(1−αn)Sun,

for all n ∈ N, where {αn} ⊂ [0,1] and {rn} ⊂ [0,1] satisfy some control conditions. Then {xn}

and {un} converge strongly to z ∈ F(S)∩EP(F), where z = PF(S)∩EP(F) f (z).

The explicit viscosity method for nonexpansive mappings generates a sequence {xn} through

the iteration process:

(1.6) xn+1 = αn f (xn)+(1−αn)T xn, n≥ 0,

where I is the identity of H and {αn} is a sequence in (0,1). It is well known [6, 7] that under

certain conditions, the sequence {xn} converges in norm to a fixed point q of T which solves

the variational inequality

(1.7) 〈(I− f )q,x−q〉 ≥ 0, x ∈ S,
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where S is the set of fixed points of T , namely, S = {x ∈ H : T x = x}.

Many authors proved a strong convergence theorem by using viscosity method; see, for in-

stance, [5, 6].

In 2010, Kangtunyakarn [12] proved a strong convergence theorem of the iterative scheme

(1.9) to a common fixed point of q ∈
⋂N

i=1 F(Ti).

Theorem 1.2. Let H be a Hilbert space, let f be an α-contraction on H and let A be a strongly

positive linear bounded self-adjoint operator with coefficient γ > 0. Assume that 0 < γ < γ

λ
.

Let {Ti}N
i=1 be a finite family of κi-strict pseudo-contraction of H into itself, for some κi ∈ [0,1)

and κ = max{κi : i = 1,2, ...,N}, with
⋂N

i=1 F(Ti) 6= /0. Let Sn be the S-mappings generated by

T1,T2, ...,TN and α
(n)
1 ,α

(n)
2 , ...,α

(n)
N , where α

(n)
j = (α

n, j
1 ,α

n, j
2 ,α

n, j
3 ) ∈ I× I× I, I = [0,1], α

n, j
1 +

α
n, j
2 +α

n, j
3 = 1 and κ < a≤ α

n, j
1 ,α

n, j
3 ≤ b < 1, for all j = 1,2, ...,N−1,κ < c≤ α

n,N
1 ≤ 1,κ ≤

α
n,N
3 ≤ d < 1,κ ≤ α

n, j
2 ≤ e < 1, for all j = 1,2, ...,N. For a point u ∈ H and x1 ∈ H, let {xn}

and {yn} be the sequences defined iteratively by

(1.8)


yn = βnxn +(1−βn)Snxn,

xn+1 = αnγ
(
anu+(1−an) f (xn)

)
+(1−αnA)yn, n≥ 1,

where {βn},{αn} and {an} are sequences in [0,1]. Assume that the following conditions hold:

(i) lim
n→∞

αn = 0,
∞

∑
n=1

αn = ∞ and lim
n→∞

an = 0;

(ii)
∞

∑
n=1

∣∣∣αn+1, j
1 −α

n, j
1

∣∣∣< ∞,
∞

∑
n=1

∣∣∣αn+1, j
3 −α

n, j
3

∣∣∣< ∞, for all j ∈ {1,2, ...,N} and

∞

∑
n=1
|λn+1−λn|< ∞,

∞

∑
n=1
|βn+1−βn|< ∞,

∞

∑
n=1
|an+1−an|< ∞;

(iii) 0≤ κ ≤ βn < θ < 1, for all n≥ 1, for some θ ∈ (0,1).

Then both {xn} and {yn} strongly converges to q ∈
⋂N

i=1 F(Ti) which solves the following vari-

ational inequality

(1.9) 〈γ f (q)−Aq, p−q〉 ≤ 0, ∀p ∈
N⋂

i=1

F(Ti).

From Theorem 1.1 [5] and [15], we modify the viscosity methods as following:

For every i = 1,2, ...,N, let Fi : C×C→ R be bifunction which satisfy A1)−A4) and ai ∈

(0,1) with ∑
N
i=1 ai = 1, Ti :C→C be κi-strictly pseudo-contractive mapping, for all i= 1,2, ...,N
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and κ =max{κi : i= 1,2, ...,N}. For each j = 1,2, ...,N, let α j = (α
j

1 ,α
j

2 ,α
j

3)∈ I× I× I, where

I = [0,1] and α
j

1 +α
j

2 +α
j

3 = 1, for x1 ∈C and sequence xn generated by

(1.10)


N

∑
i=1

aiFi(un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C,

xn+1 = βn
(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λA)un,∀n≥ 1,

where A : C→ H is α-inverse-strongly monotone mapping and S : C→C is S-mapping gener-

ated by a finite family of strictly pseudo-contractive mappings and a finite real numbers under

suitable conditions of the parameters {βn},{αn},{rn} ∈ [0,1] and λ ∈ (0,2α).

Motivated by the above related literature, we prove a strong convergence theorem by modi-

fying the viscosity methods for finding a common element of the set of solutions of equilibrium

problems and variational inequality problems. Moreover, we apply our main result to obtain a

strong convergence theorem for finding a common element of the set of fixed point of κi-strictly

pseudo-contractive mappings. Finally, we also give a numerical examples to support our main

theorem.

2. Preliminaries

In this section, we use some lemmas that will be used for our main result in the next section.

Let C be a nonempty closed convex subset of a real Hilbert space H. We denote weak and

strong convergence by 88⇀′′ and 88→′′, respectively, and let PC be the metric projection of H

onto C, that is, for x ∈ H, PCx ∈C satisfies the property

‖x−PCx‖= min
y∈C
‖x− y‖

and it is well-known that, for all x,y ∈ H and t ∈ [0,1],

‖tx+(1− t)y‖2 = t ‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2

and PC is a firmly nonexpansive mapping of H onto C, that is,

‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 , ∀x,y ∈ H.
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Lemma 2.1. ([19]) For given z ∈ H and u ∈C,

u = PCz⇔ 〈u− z,v−u〉 ≥ 0, ∀v ∈C.

Lemma 2.2. ([16]) Each Hilbert space H satisfies Opial’s condition, i.e., for any sequence

{xn} ⊂ H with xn ⇀ x, the inequality

liminf
n→∞

‖xn− x‖< liminf
n→∞

‖xn− y‖ ,

holds for every y ∈ H with y 6= x.

Lemma 2.3. ([18]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1−αn)sn +δn,∀n≥ 0,

where {αn} is a sequence in (0,1) and {δn} is a sequence such that

(1):
∞

∑
n=1

αn = ∞,

(2): limsup
n→∞

δn

αn
≤ 0 or

∞

∑
n=1
|δn|< ∞.

Then, lim
n→∞

sn = 0.

Lemma 2.4. ([19]) Let H be a real Hilbert space, let C be a nonempty closed convex subset of

H and let A be a mapping of C into H. Let u ∈C. Then, for λ > 0,

u = PC(I−λA)u⇔ u ∈V I(C,A),

where PC is the metric projection of H onto C.

Lemma 2.5. ([21]) Let C be a nonempty closed convex subset of a real Hilbert space H and

S : C→C be a self-mapping of C. If S is a κ-strict pseudo-contractive mapping, then S satisfies

the Lipschitz condition

‖Sx−Sy‖ ≤ 1+κ

1−κ
‖x− y‖ ,∀x,y ∈C.

For solving the equilibrium problem for a bifunction F : C×C → R, let us assume that

F : C×C→ R satisfy the following conditions:

(A1) F(x,x) = 0 for all x ∈C;
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(A2) F is monotone, i.e., F(x,y)+F(y,x)≤ 0 for all x,y ∈C;

(A3) For each x,y,z ∈C,

lim
t↓0

F
(
tz+(1− t)x,y

)
≤ F(x,y);

(A4) For each x ∈C,y 7→ F(x,y) is convex and lower semicontinuous.

Lemma 2.6. ([15]) Let C be a nonempty closed convex subset of a real Hilbert space H. For

i = 1,2, ...,N, let Fi : C×C→ R be bifunctions satisfying (A1)− (A4) with
⋂N

i=1 EP(Fi) 6= /0.

Then

EP
( N

∑
i=1

aiFi

)
=

N⋂
i=1

EP(Fi),

where ai ∈ (0,1), for every i = 1,2, ...,N and ∑
N
i=1 ai = 1.

Lemma 2.7. [14]) Let C be a nonempty close convex subset of H and F be a bifunction of C×C

into R satisfying (A1)− (A4). Let r > 0 and x ∈ H, then there exists z ∈C such that

F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0,∀y ∈C.

Lemma 2.8. ([17]) Assume that F : C×C → R satisfies (A1)− (A4). For r > 0, define a

mapping Tr : H→C as follows:

Tr(x) =
{

z ∈C : F(z,y)+
1
r
〈y− z,z− x〉 ≥ 0,∀y ∈C

}
,

for all x ∈ H. Then, the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for any x,y ∈ H,

‖Tr(x)−Tr(y)‖2 ≤ 〈Tr(p)−Tr(y),x− y〉 ;

(iii) F(Tr) = EP(F);

(iv) EP(F) is closed and convex.

Remark 2.9. From Lemma 2.6 and 2.8, ([15]) prove the following results;

(i) ∑
N
i=1 aiFi satisfying A1)−A4);

(ii) F(Tr) =
⋂N

i=1 EP(Fi),
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where r > 0 and ai ∈ (0,1), for every i = 1,2, ...,N with ∑
N
i=1 ai = 1.

In 2009, Kangtunyakarn and Suantai ([20]) introduced the S-mapping generated by a finite

family of κi-strictly pseudo-contractions and a finite real numbers. The definition can be seen

below:

Definition 2.1. Let C be a nonempty convex subset of a real Hilbert space. Let {Ti}N
i=1 be

a finite family of κi-strictly pseudo-contractions of C into itself. For each j = 1,2, ...,N, let

α j = (α
j

1 ,α
j

2 ,α
j

3) ∈ I × I × I, where I = [0,1] and α
j

1 + α
j

2 + α
j

3 = 1. Define the mapping

S : C→C as follows:

U0 = I,

U1 = α
1
1 T1U0 +α

1
2U0 +α

1
3 I,

U2 = α
2
1 T2U1 +α

2
2U1 +α

2
3 I,

U3 = α
3
1 T3U2 +α

3
2U2 +α

3
3 I,

.

.

.

UN−1 = α
N−1
1 TN−1UN−2 +α

N−1
2 UN−2 +α

N−1
3 I,

S =UN = α
N
1 TNUN−1 +α

N
2 UN−1 +α

N
3 I.

This mapping is called an S-mapping generated by T1,T2, ...,TN and α1,α2, ...,αN .

Lemma 2.10. ([22]) Let C be a nonempty closed convex subset of a real Hilbert space H.

Let {Ti}N
i=1 be a finite family of κi-strictly pseudo-contractive mapping of C into itself with⋂N

i=1 F(Ti) 6= /0 and κ = max{κi : i = 1,2, ...,N} and let α j = (α
j

1 ,α
j

2 ,α
j

3) ∈ I× I× I, where

I = [0,1],α j
1 +α

j
2 +α

j
3 = 1,α j

1 ,α
j

2 ∈ (κ,1), for all i = 1,2, ...,N − 1 and αN
1 ∈ (κ,1],αN

3 ∈

(κ,1],α j
2 ∈ (κ,1], for all j = 1,2, ...,N, let S be the mapping generated by T1,T2, ...,TN and

α1,α2, ...,αN . Then F(S) =
⋂N

i=1 F(Ti) and S is a nonexpansive mapping.
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3. Main result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. For every

i = 1,2, ...,N, let Fi : C×C→ R be bifunction with satisfy A1)−A4), Ti : C→C be κi-strictly

pseudo-contractive mapping and let A : C→ H be α-inverse strongly monotone mapping with

F =
⋂N

i=1 EP(Fi)∩
⋂N

i=1 F(Ti)∩V I(C,A) 6= /0. Let S be S-mapping generated by T1,T2, ...,TN

and α1,α2, ...,αN , where α j = (α
j

1 ,α
j

2 ,α
j

3)∈ I× I× I, I = [0,1] with α
j

1 +α
j

2 +α
j

3 = 1 and κ <

α
j

1 ,α
j

3 < 1, for all i = 1,2, ...,N−1,κ < αN
1 ≤ 1,κ ≤ αN

3 < 1,κ ≤ α
j

2 < 1, for all j = 1,2, ...,N,

where κ = max{κi : i = 1,2, ...,N}. Let the sequence {xn} generated by x1 ∈C and

(3.1)


N

∑
i=1

aiFi(un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C,

xn+1 = βn
(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λA)un,∀n≥ 1,

where {βn},{αn} ⊆ [0,1] and λ ∈ (0,2α). Suppose the following conditions hold:

(i)
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,

(ii) 0 < a≤ βn,rn ≤ b < 1, for all n≥ 1,

(iii) f : C→C be η-contraction,

(iv)
N

∑
n=1

ai = 1, where ai > 0, for all i = 1,2, ...,N,

(v)
∞

∑
n=1
|αn+1−αn|< ∞,

∞

∑
n=1
|βn+1−βn|< ∞,

∞

∑
n=1
|rn+1− rn|< ∞.

Then {xn} converges strongly to z = PF f (z).

Proof. First, we show that (I− λA) is a nonexpansive mapping. Let x,y ∈ C. Since A is α-

inverse strongly monotone and λ < 2α , we have

‖(I−λA)x− (I−λA)y‖2 = ‖x− y‖2−2λ 〈x− y,Ax−Ay〉+λ
2 ‖Ax−Ay‖2

≤ ‖x− y‖2−2αλ ‖Ax−Ay‖2 +λ
2 ‖Ax−Ay‖2

= ‖x− y‖2 +λ (λ −2α)‖Ax−Ay‖2

≤ ‖x− y‖2 .
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Then (I−λA) is a nonexpansive mapping. We will divide our proof into 5 steps.

Step 1: we show that the sequence {xn} is bounded. Since

N

∑
i=1

aiFi(un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C.

Form Remark 2.9, we have un = Trnxn and
⋂N

i=1 EP(Fi) = F(Trn).

Let z ∈ F . By nonexpansiveness of (I−λA) and Trn , we obtain

‖xn+1− z‖=
∥∥βn
(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λA)un− z

∥∥
=
∥∥βn
(
αn f (xn)+(1−αn)Sxn− z

)
+(1−βn)

(
PC(I−λA)un− z

)∥∥
≤βn

∥∥αn
(

f (xn)− z
)
+(1−αn)(Sxn− z)

∥∥
+(1−βn)‖PC(I−λA)un− z‖

≤βn
(
αn ‖ f (xn)− f (z)‖+αn ‖ f (z)− z‖+(1−αn)‖Sxn− z‖

)
+(1−βn)‖PC(I−λA)un− z‖

≤βn
(
αnη ‖xn− z‖+αn ‖ f (z)− z‖+(1−αn)‖xn− z‖

)
+(1−βn)‖un− z‖

=βn

((
1−αn(1−η)

)
‖xn− z‖+αn ‖ f (z)− z‖

)
+(1−βn)‖xn− z‖

≤max
{
‖x1− z‖ , ‖ f (z)− z‖

1−η

}
.

By induction we can prove that {xn} is bounded and so is {un}.

Step 2: we will show that limn→∞ ‖xn+1− xn‖= 0. By definition of xn, we have

‖xn+1− xn‖=
∥∥∥(βn

(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λA)un

)
−
(

βn−1
(
αn−1 f (xn−1)+(1−αn−1)Sxn−1

)
+ (1−βn−1)PC(I−λA)un−1

)∥∥∥
(3.2)
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≤βn
∥∥(αn f (xn)+(1−αn)Sxn

)
−
(
αn−1 f (xn−1)+(1−αn−1)Sxn−1

)∥∥
+ |βn−βn−1|‖αn−1 f (xn−1)+(1−αn−1)Sxn−1‖

+(1−βn)‖PC(I−λA)un−PC(I−λA)un−1‖

+ |βn−1−βn|‖PC(I−λA)un−1‖

≤βn
(
αn ‖ f (xn)− f (xn−1)‖+ |αn−αn−1|‖ f (xn−1)‖

+(1−αn)‖Sxn−Sxn−1‖+ |αn−1−αn|‖Sxn−1‖
)

+ |βn−βn−1|
(
αn−1 ‖ f (xn−1)‖+(1−αn−1)‖Sxn−1‖

)
+(1−βn)‖PC(I−λA)un−PC(I−λA)un−1‖

+ |βn−1−βn|‖PC(I−λA)un−1‖

≤βn
(
αnη ‖xn− xn−1‖+ |αn−αn−1|‖ f (xn−1)‖

+(1−αn)‖xn− xn−1‖+ |αn−1−αn|‖Sxn−1‖
)

+ |βn−βn−1|
(
αn−1 ‖ f (xn−1)‖+(1−αn−1)‖Sxn−1‖

)
+(1−βn)‖un−un−1‖+ |βn−1−βn|‖PC(I−λA)un−1‖

≤βn

(
|αn−αn−1|M+ |αn−1−αn|M+

(
1−αn(1−η)

)
‖xn− xn−1‖

)
+ |βn−βn−1|

(
αn−1M+(1−αn−1)M

)
+(1−βn)‖un−un−1‖

+ |βn−1−βn|M

=βn

(
2M|αn−αn−1|+

(
1−αn(1−η)

)
‖xn− xn−1‖

)
+2M|βn−βn−1|+(1−βn)‖un−un−1‖ ,(3.3)

where M = maxn∈N
{
‖ f (xn)‖ ,‖Sxn‖ ,‖PC(I−λA)un‖

}
.

Since un = Trnxn and definition of Trn , we obtain

(3.4)
N

∑
i=1

aiFi(Trnxn,y)+
1
rn
〈y−Trnxn,Trnxn− xn〉 ≥ 0,∀y ∈C

and

(3.5)
N

∑
i=1

aiFi(Trn+1xn+1,y)+
1

rn+1

〈
y−Trn+1xn+1,Trn+1xn+1− xn+1

〉
≥ 0.
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From (3.4) and (3.5). It follow that

(3.6)
N

∑
i=1

aiFi(Trnxn,Trn+1xn+1)+
1
rn

〈
Trn+1xn+1−Trnxn,Trnxn− xn

〉
≥ 0

and

(3.7)
N

∑
i=1

aiFi(Trn+1xn+1,Trnxn)+
1

rn+1

〈
Trnxn−Trn+1xn+1,Trn+1xn+1− xn+1

〉
≥ 0.

From (3.6),(3.7) and the fact that
N

∑
i=1

aiFi satisfies (A2), we have

1
rn

〈
Trn+1xn+1−Trnxn,Trnxn− xn

〉
+

1
rn+1

〈
Trnxn−Trn+1xn+1,Trn+1xn+1− xn+1

〉
≥ 0.

Which implies that〈
Trnxn−Trn+1xn+1,

Trn+1xn+1− xn+1

rn+1
− Trnxn− xn

rn

〉
≥ 0.

It follows that

(3.8)
〈

Trn+1xn+1−Trnxn,Trnxn−Trn+1xn+1 +Trn+1xn+1− xn−
rn

rn+1
(Trn+1xn+1− xn+1)

〉
≥ 0.

From (3.8), we obtain

∥∥Trn+1xn+1−Trnxn
∥∥2 ≤

〈
Trn+1xn+1−Trnxn,Trn+1xn+1− xn−

rn

rn+1
(Trn+1xn+1− xn+1)

〉
=

〈
Trn+1xn+1−Trnxn,xn+1− xn +(1− rn

rn+1
)(Trn+1xn+1− xn+1)

〉
≤
∥∥Trn+1xn+1−Trnxn

∥∥[‖xn+1− xn‖+ |1−
rn

rn+1
|

×
∥∥Trn+1xn+1− xn+1

∥∥]
=
∥∥Trn+1xn+1−Trnxn

∥∥[‖xn+1− xn‖+
1

rn+1
|rn+1− rn|

×
∥∥Trn+1xn+1− xn+1

∥∥]
≤
∥∥Trn+1xn+1−Trnxn

∥∥[‖xn+1− xn‖+
1
d
|rn+1− rn|

×
∥∥Trn+1xn+1− xn+1

∥∥],
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which yields

(3.9) ‖un+1−un‖ ≤ ‖xn+1− xn‖+
1
d
|rn+1− rn|‖un+1− xn+1‖ .

From (3.9), we have

(3.10) ‖un−un−1‖ ≤ ‖xn− xn−1‖+
1
d
|rn− rn−1|‖un− xn‖ .

By substituting (3.10) into (3.2), we have

‖xn+1− xn‖ ≤βn

(
2M|αn−αn−1|+

(
1−αn(1−η)

)
‖xn− xn−1‖

)
+2M|βn−βn−1|+(1−βn)‖un−un−1‖

≤βn

(
2M|αn−αn−1|+

(
1−αn(1−η)

)
‖xn− xn−1‖

)
+2M|βn−βn−1|+(1−βn)

(
‖xn− xn−1‖+

1
d
|rn− rn−1|‖un− xn‖

)
=
(
1−βnαn(1−η)

)
‖xn− xn−1‖+2M|αn−αn−1|

+2M|βn−βn−1|+(1−βn)
1
d
|rn− rn−1|‖un− xn‖ .(3.11)

From (3.11), conditions (i),(v) and lemma 2.3, we obtain

(3.12) lim
n→∞
‖xn+1− xn‖= 0.

Step 3: We will show that lim
n→∞
‖un− xn‖ = lim

n→∞
‖PC(I−λA)un− xn‖ = lim

n→∞
‖Sxn− xn‖ = 0.

Since Trn is a firmly nonexpansive mapping, then we obtain

‖z−Trnxn‖2 =‖Trnz−Trnxn‖2

≤〈Trnz−Trnxn,z− xn〉

=
1
2
(
‖Trnxn− z‖2 +‖xn− z‖2−‖Trnxn− xn‖2 ),

which yields

(3.13) ‖un− z‖2 ≤ ‖xn− z‖2−‖un− xn‖2 .
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By nonexpansiveness of PC(I−λA),(3.13) and definition of xn, we have

‖xn+1− z‖2 =
∥∥βn
(
αn f (xn)+(1−αn)Sxn− z

)
+(1−βn)

(
PC(I−λA)un− z

)∥∥2

≤βn
∥∥αn

(
f (xn)− z

)
+(1−αn)(Sxn− z)

∥∥2

+(1−βn)‖PC(I−λA)un− z‖2

≤βnαn ‖ f (xn)− z‖2 +βn(1−αn)‖xn− z‖2 +(1−βn)‖un− z‖2

≤βnαn ‖ f (xn)− z‖2 +βn(1−αn)‖xn− z‖2

+(1−βn)
(
‖xn− z‖2−‖un− xn‖2 )

≤βnαn ‖ f (xn)− z‖2 +‖xn− z‖2− (1−βn)‖un− xn‖2 ,

which implies that

(1−βn)‖un− xn‖2 ≤βnαn ‖ f (xn)− z‖2 +‖xn− z‖2−‖xn+1− z‖2

≤βnαn ‖ f (xn)− z‖2 +
(
‖xn− z‖+‖xn+1− z‖

)
‖xn+1− xn‖ .(3.14)

By (3.12),(3.14), conditions (i) and (ii), we have

(3.15) lim
n→∞
‖un− xn‖= 0.

Put wn = αn f (xn)+(1−αn)Sxn. By definition of xn, we have

‖xn+1− z‖2 =‖βnwn +(1−βn)PC(I−λA)un− z‖2

=
∥∥βn(wn− z)+(1−βn)

(
PC(I−λA)un− z

)∥∥2

≤βn ‖wn− z‖2 +(1−βn)‖PC(I−λA)un− z‖2−βn(1−βn)

×‖wn−PC(I−λA)un‖2



158 KATANYOO THAPTHAS, ATID KANGTUNYAKARN

=βn ‖αn f (xn)+(1−αn)Sxn− z‖2 +(1−βn)‖PC(I−λA)un− z‖2

−βn(1−βn)‖wn−PC(I−λA)un‖2

≤βn
(
αn ‖ f (xn)− z‖2 +(1−αn)‖Sxn− z‖2 )+(1−βn)‖un− z‖2

−βn(1−βn)‖wn−PC(I−λA)un‖2

=βnαn ‖ f (xn)− z‖2 +βn(1−αn)‖xn− z‖2 +(1−βn)‖un− z‖2

−βn(1−βn)‖wn−PC(I−λA)un‖2

≤βnαn ‖ f (xn)− z‖2 +βn(1−αn)‖xn− z‖2 +(1−βn)‖xn− z‖2

−βn(1−βn)‖wn−PC(I−λA)un‖2

=βnαn ‖ f (xn)− z‖2 +(1−βnαn)‖xn− z‖2−βn(1−βn)

×‖wn−PC(I−λA)un‖2

≤βnαn ‖ f (xn)− z‖2 +‖xn− z‖2−βn(1−βn)‖wn−PC(I−λA)un‖2 .

Which yields

βn(1−βn)‖wn−PC(I−λA)un‖2 ≤βnαn ‖ f (xn)− z‖2 +‖xn− z‖2−‖xn+1− z‖2

≤βnαn ‖ f (xn)− z‖2

+
(
‖xn− z‖+‖xn+1− z‖

)
‖xn+1− xn‖ .(3.16)

By (3.12),(3.16), conditions (i) and (ii), we have

(3.17) lim
n→∞
‖wn−PC(I−λA)un‖= 0.

By the definition of xn, we obtain

xn+1−PC(I−λA)un =βnwn−βnPC(I−λA)un

=βn
(
wn−PC(I−λA)un

)
.(3.18)
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By (3.18), we have

‖xn−PC(I−λA)xn‖=‖xn− xn+1 + xn+1−PC(I−λA)un +PC(I−λA)un−PC(I−λA)xn‖

≤‖xn− xn+1‖+‖xn+1−PC(I−λA)un‖

+‖PC(I−λA)un−PC(I−λA)xn‖

≤‖xn− xn+1‖+βn ‖wn−PC(I−λA)un‖+‖un− xn‖ .

Form (3.12),(3.15) and (3.17), we have

(3.19) lim
n→∞
‖xn−PC(I−λA)xn‖= 0.

Since

‖xn−PC(I−λA)un‖=‖xn−PC(I−λA)xn +PC(I−λA)xn−PC(I−λA)un‖

≤‖xn−PC(I−λA)xn‖+‖PC(I−λA)xn−PC(I−λA)un‖

≤‖xn−PC(I−λA)xn‖+‖xn−un‖ .

From (3.15) and (3.19), we have

(3.20) lim
n→∞
‖xn−PC(I−λA)un‖= 0.

By the definition of xn, we obtain

xn+1− xn =βnαn
(

f (xn)− xn
)
+βn(1−αn)(Sxn− xn)

+(1−βn)
(
PC(I−λA)un− xn

)
.(3.21)

It follows that

βn(1−αn)‖Sxn− xn‖ ≤βnαn ‖ f (xn)− xn‖

+(1−βn)‖PC(I−λA)un− xn‖+‖xn+1− xn‖ .

By (3.12),(3.20), conditions (i) and (ii), we have

(3.22) lim
n→∞
‖Sxn− xn‖= 0.
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Step 4: We will show that limsup
n→∞

〈 f (z)− z,xn− z〉 ≤ 0, where z = PF f (z).

To show this, choose a subsequence {xnk} of {xn} such that

(3.23) limsup
n→∞

〈 f (z)− z,xn− z〉= limsup
k→∞

〈 f (z)− z,xnk− z〉 .

Without loss of generality, we can assume that xnk ⇀ ω as k→ ∞, where ω ∈C.

From (3.15), we obtain unk ⇀ ω as k→ ∞.

Assume that ω /∈V I(C,A). Since V I(C,A) = F
(
PC(I−λA)

)
, we have ω 6= PC(I−λA)ω .

By nonexpansiveness of PC(I−λA),(3.19) and Opial’s condition, we have

liminf
k→∞

‖xnk−ω‖< liminf
k→∞

‖xnk−PC(I−λA)ω‖

= liminf
k→∞

‖xnk−PC(I−λA)xnk +PC(I−λA)xnk−PC(I−λA)ω‖

≤ liminf
k→∞

‖xnk−PC(I−λA)xnk‖

+ liminf
k→∞

‖PC(I−λA)xnk−PC(I−λA)ω‖

≤ liminf
k→∞

‖xnk−ω‖ .

This is a contradiction. Then we have

(3.24) ω ∈V I(C,A).

Next, we will show that ω ∈
⋂N

i=1 F(Ti).

By Lemma 2.10, we have F(S) =
⋂N

i=1 F(Ti). Assume that ω 6= Sω . Using Opial’s condition,

(3.22), we obtain

liminf
k→∞

‖xnk−ω‖< liminf
k→∞

‖xnk−Sω‖

= liminf
k→∞

‖xnk−Sxnk +Sxnk−Sω‖

≤ liminf
k→∞

‖xnk−Sxnk‖+ liminf
k→∞

‖Sxnk−Sω‖

≤ liminf
k→∞

‖xnk−ω‖ .

This is a contradiction. Then we have

(3.25) ω ∈ F(S) =
N⋂

i=1

F(Ti).



MODIFICATION OF VISCOSITY METHOD FOR STRICTLY PSEUDO-CONTRACTIVE MAPPING 161

Next, we will show that ω ∈
⋂N

i=1 EP(Fi).

Since
N

∑
i=1

aiFi(un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C and

N

∑
i=1

aiFi satisfies condition (A1)-(A4),

we obtain

1
rn
〈y−un,un− xn〉 ≥

N

∑
i=1

aiFi(y,un),∀y ∈C.

In particular, it follows that

(3.26)
〈

y−unk ,
unk− xnk

rnk

〉
≥

N

∑
i=1

aiFi(y,unk),∀y ∈C.

From (3.15),(3.26) and (A4), we have

(3.27)
N

∑
i=1

aiFi(y,ω)≤ 0,∀y ∈C.

Put yt := ty+(1− t)ω , for all t ∈ (0,1], we have yt ∈ C. By using (A1),(A4) and (3.27), we

have

0 =
N

∑
i=1

aiFi(yt ,yt)

=
N

∑
i=1

aiFi
(
yt , ty+(1− t)ω

)
≤t

N

∑
i=1

aiFi(yt ,y)+(1− t)
N

∑
i=1

aiFi(yt ,ω)

≤t
N

∑
i=1

aiFi(yt ,y).

It implies that

(3.28) 0≤
N

∑
i=1

aiFi
(
ty+(1− t)ω,y

)
,

for all t ∈ (0,1] and y ∈C.

From (3.28), taking t→ 0+ and using (A3), we can conclude that

0≤ lim
t→0+

( N

∑
i=1

aiFi
(
ty+(1− t)ω,y

))
≤

N

∑
i=1

aiFi(ω,y),∀y ∈C.
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Therefore, ω ∈ EP
( N

∑
i=1

aiFi

)
. By Lemma 2.6, we obtain EP

( N

∑
i=1

aiFi

)
=

N⋂
i=1

EP(Fi). It follows

that

(3.29) ω ∈
N⋂

i=1

EP(Fi).

From (3.24),(3.25) and (3.29), we can deduce that ω ∈F .

Since xnk ⇀ ω ∈F and Lemma 2.1, we can conclude that

limsup
n→∞

〈 f (z)− z,xn− z〉= limsup
k→∞

〈 f (z)− z,xnk− z〉

=〈 f (z)− z,ω− z〉

≤0,(3.30)

where z = PF f (z).

Step 5: Finally, we will show that the sequence {xn} converges strongly to z = PF f (z).

By nonexpansive of S and PC(I−λA), we have

‖xn+1− z‖2 =
∥∥βn
(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λA)un− z

∥∥2

=
∥∥βnαn

(
f (xn)− z

)
+βn(1−αn)(Sxn− z)+(1−βn)

(
PC(I−λA)un− z

)∥∥2

≤
∥∥βn(1−αn)(Sxn− z)+(1−βn)

(
PC(I−λA)un− z

)∥∥2

+2βnαn〈 f (xn)− z,xn+1− z〉

≤
(
βn(1−αn)‖Sxn− z‖+(1−βn)‖PC(I−λA)un− z‖

)2

+2βnαn〈 f (xn)− z,xn+1− z〉
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≤
(
(1−βnαn)‖xn− z‖

)2
+2βnαn〈 f (xn)− f (z),xn+1− z〉

+2βnαn〈 f (z)− z,xn+1− z〉

≤
(
(1−βnαn)‖xn− z‖

)2
+2βnαn ‖ f (xn)− f (z)‖‖xn+1− z‖

+2βnαn〈 f (z)− z,xn+1− z〉

≤(1−βnαn)‖xn− z‖2 +2βnαnη ‖xn− z‖‖xn+1− z‖

+2βnαn〈 f (z)− z,xn+1− z〉

≤(1−βnαn)‖xn− z‖2 +βnαnη ‖xn− z‖2 +βnαnη ‖xn+1− z‖2

+2βnαn〈 f (z)− z,xn+1− z〉.

Which implies that

‖xn+1− z‖2 ≤1−βnαnη−βnαn +2βnαnη

1−βnαnη
‖xn− z‖2

+
2βnαn

1−βnαnη
〈 f (z)− z,xn+1− z〉

=

(
1− βnαn

1−βnαnη

)
‖xn− z‖2 +

2βnαnη

1−βnαnη
‖xn− z‖2

+
2βnαn

1−βnαnη
〈 f (z)− z,xn+1− z〉

=

(
1− βnαn

1−βnαnη

)
‖xn− z‖2 +

βnαn

1−βnαnη

(
2η ‖xn− z‖2

+2〈 f (z)− z,xn+1− z〉
)
.

Applying the conditions (ii),(3.30) and Lemma 2.3, we have the sequence {xn} converges

strongly to z = PF f (z). From (3.15), we obtain {un} converges strongly to z = PF f (z). This

completes the proof. �

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F :

C×C→ R be a bifunction with satisfy A1)−A4), Ti : C→C be κi-strictly pseudo-contractive

mapping, for all i = 1,2, ...,N and let A : C → H be α-inverse strongly monotone mapping

with F = EP(F)∩
⋂N

i=1 F(Ti)∩V I(C,A) 6= /0. Let S be S-mapping generated by T1,T2, ...,TN

and α1,α2, ...,αN , where α j = (α
j

1 ,α
j

2 ,α
j

3)∈ I× I× I, I = [0,1] with α
j

1 +α
j

2 +α
j

3 = 1 and κ <



164 KATANYOO THAPTHAS, ATID KANGTUNYAKARN

α
j

1 ,α
j

3 < 1, for all i = 1,2, ...,N−1,κ < αN
1 ≤ 1,κ ≤ αN

3 < 1,κ ≤ α
j

2 < 1, for all j = 1,2, ...,N,

where κ = max{κi : i = 1,2, ...,N}. Let the sequence {xn} generated by x1 ∈C and

(3.31)


F(un,y)+

1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C,

xn+1 = βn
(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λA)un,∀n≥ 1,

where {βn},{αn} ⊆ [0,1] and λ ∈ (0,2α). Suppose the following conditions hold:

(i)
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,

(ii) 0 < a≤ βn,rn ≤ b < 1, for all n≥ 1,

(iii) f : C→C be η-contraction,

(iv)
∞

∑
n=1
|αn+1−αn|< ∞,

∞

∑
n=1
|βn+1−βn|< ∞,

∞

∑
n=1
|rn+1− rn|< ∞.

Then {xn} converges strongly to z = PF f (z).

Proof. Take F = Fi,∀i = 1,2, ...,N. By Theorem 3.1, we obtain the desired conclusion. �

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Ti : C→

C be κi-strictly pseudo-contractive mapping, for all i = 1,2, ...,N and let A : C → H be α-

inverse strongly monotone mapping with F = EP(F)∩
⋂N

i=1 F(Ti)∩V I(C,A) 6= /0. Let S be S-

mapping generated by T1,T2, ...,TN and α1,α2, ...,αN , where α j = (α
j

1 ,α
j

2 ,α
j

3) ∈ I× I× I, I =

[0,1] with α
j

1 +α
j

2 +α
j

3 = 1 and κ < α
j

1 ,α
j

3 < 1, for all i = 1,2, ...,N− 1,κ < αN
1 ≤ 1,κ ≤

αN
3 < 1,κ ≤ α

j
2 < 1, for all j = 1,2, ...,N, where κ = max{κi : i = 1,2, ...,N}. Let the sequence

{xn} generated by x1 ∈C and

(3.32) xn+1 = βn
(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λA)xn,∀n≥ 1,

where {βn},{αn} ⊆ [0,1] and λ ∈ (0,2α). Suppose the following conditions hold:

(i)
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,

(ii) 0 < a≤ βn,rn ≤ b < 1, for all n≥ 1,

(iii) f : C→C be η-contraction,
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(iv)
∞

∑
n=1
|αn+1−αn|< ∞,

∞

∑
n=1
|βn+1−βn|< ∞,

∞

∑
n=1
|rn+1− rn|< ∞.

Then {xn} converges strongly to z = PF f (z).

Proof. Put Fi = 0,∀i = 1,2, ...,N. Then we have un = PCxn = xn,∀n ∈N. Therefore the conclu-

sion of Corollary 3.3 can be obtained by Theorem 3.1. �

4. Application

In this section, we apply our main theorem to prove strong convergence theorems involving

optimization problem.

Let us recall the standard constrained convex optimization problem as follows:

(4.1) find x? ∈C such that g(x?) = min
x∈C

g(x),

where g : C→ R is a convex, Frechet differentiable function, C is closed-convex subset of H.

The set of all solutions of (4.1) is denoted by Ωg.

The following lemmas is important to prove Theorem 4.2.

Lemma 4.1. ([23]) (Optimality condition) A necessary condition of optimality for a point x? ∈C

to be a solution of the minimization problem (4.1) is that x? solves the variational inequality

(4.2) 〈∇g(x?),x− x?〉 ≥ 0, ∀x ∈C.

Equivalently, x? ∈C solves the fixed point equation

x? = PC
(
x?−λ∇g(x?)

)
,

for every constant λ > 0. if, in addition, g is convex, then the optimality condition (4.2) is also

sufficient.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. For every

i = 1,2, ...,N, let Fi : C×C→R be bifunction with satisfy A1)−A4), g : C→R be a real value

convex function with gradient ∇g is 1
L -inverse strongly monotone and continuous function for
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all L≥ 0. Assume that F =
⋂N

i=1 EP(Fi)∩
⋂N

i=1 F(Ti)∩Ωg 6= /0. Let S be S-mapping generated

by T1,T2, ...,TN and α1,α2, ...,αN , where α j = (α
j

1 ,α
j

2 ,α
j

3) ∈ I× I× I, I = [0,1] with α
j

1 +α
j

2 +

α
j

3 = 1 and κ < α
j

1 ,α
j

3 < 1, for all i = 1,2, ...,N− 1,κ < αN
1 ≤ 1,κ ≤ αN

3 < 1,κ ≤ α
j

2 < 1,

for all j = 1,2, ...,N, where κ = max{κi : i = 1,2, ...,N}. Let the sequence {xn} generated by

x1 ∈C and

(4.3)


N

∑
i=1

aiFi(un,y)+
1
rn
〈y−un,un− xn〉 ≥ 0,∀y ∈C,

xn+1 = βn
(
αn f (xn)+(1−αn)Sxn

)
+(1−βn)PC(I−λ∇g)un,∀n≥ 1,

where {βn},{αn} ⊆ [0,1] and λ ∈ (0, 2
L). Suppose the following conditions hold:

(i)
∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0,

(ii) 0 < a≤ βn,rn ≤ b < 1, for all n≥ 1,

(iii) f : C→C be η-contraction,

(iv)
N

∑
n=1

ai = 1, where ai > 0, for all i = 1,2, ...,N,

(v)
∞

∑
n=1
|αn+1−αn|< ∞,

∞

∑
n=1
|βn+1−βn|< ∞,

∞

∑
n=1
|rn+1− rn|< ∞.

Then {xn} converges strongly to z = PF f (z).

Proof. The conclusion of Theorem 4.2 can be obtained from Theorem 3.1 and Lemma 4.1. �

5. Example and Numerical Results

In this section, two examples are given to support Theorem 3.1 and Theorem 4.2, repectively.

Example 5.1. Let R be the set of real numbers and let the mapping A : R→ R defined by

Ax = 2x
3 ,∀x ∈ R. For all i = 1,2, ...,N, let the mapping Ti : R→ R defined by

Tix = 6i
6i+1x, ∀x ∈ R

and let Fi : R×R→ R defined by

Fi(x,y) = i(−7x2 + xy+6y2),∀x,y ∈ R.

Furthermore, let ai =
6
7i +

1
N7N , for every i = 1,2, ...,N. Then we have
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N

∑
i=1

aiFi(x,y) =
N

∑
i=1

( 6
7i +

1
N7N

)
i(−7x2 + xy+6y2) = E(−7x2 + xy+6y2),

where E =
N

∑
i=1

( 6
7i +

1
N7N

)
i, it is easy to check that ∑

N
i=1 aiFi satisfies all the conditions of

Theorem 3.1. By the definition of Fi, we have

0≤
N

∑
i=1

aiFi(un,y)+
1
rn
〈y−un,un− xn〉

=E(−7x2 + xy+6y2)+
1
rn
(y−un)(un− xn)

=E(−7x2 + xy+6y2)+
1
rn
(yun− yxn−u2

n−unxn)

⇔

0≤Ern(−7x2 + xy+6y2)+(yun− yxn−u2
n−unxn)

=6Erny2 +Eunrny−7Eu2
nrn + yun− yxn−u2

n−unxn

=6Erny2 +(un− xn +Eunrn)y+(−7Eu2
nrn−u2

n−unxn).

Let G(y) = 6Erny2+
(
un(1+Ern)−xn

)
y−7Eu2

nrn−u2
n−unxn. G(y) is a quadratic function of

y with coefficient a = 6Ern, b = un(1+Ern)−xn and c =−7Eu2
nrn−u2

n−unxn. Determine the

discriminant ∆ of G as follows:

∆ =b2−4ac

=
(
un(1+Ern)− xn

)2−4(6Ern)(−7Eu2
nrn−u2

n−unxn)

=u2
n(1+Ern)

2−2unxn(1+Ern)+ x2
n +168E2u2

nr2
n +24Eu2

nrn−24Eunxnrn

=u2
n +2Eu2

nrn +E2u2
nr2

n−2unxn−2Eunxnrn + x2
n +168E2u2

nr2
n +24Eu2

nrn

−24Eunxnrn

=u2
n +26Eu2

nrn +169E2u2
nr2

n−2unxn−26Eunxnrn + x2
n

=(un +13Eunrn)
2−2xn(un +13Eunrn)+ x2

n

=(un +13Eunrn− xn)
2.
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We know that G(y)≥ 0,∀y ∈ R. If it has at most one solution in R, then ∆≤ 0, so we obtain

(5.1) un =
xn

1+13∑
N
i=1

(
6
7i +

1
N7N

)
irn

, f or all n ∈ N.

For every j = 1,2, ...,N, let α
j

1 = 1
2 j , α

j
2 = 3 j−1

16 j , α
j

3 = 13 j−7
16 j . Then α j =

(
1
2 j ,

3 j−1
16 j ,

13 j−7
16 j

)
,

for all j = 1,2, ...,N. Let S-mapping generated by T1,T2, ...,TN and α1,α2, ...,αN . From the

definition Ti, A and Fi, we have

{0}=
N⋂

i=1

EP(Fi)∩
N⋂

i=1

F(Ti)∩V I(C,A).

Put αn =
1

3n , βn =
4n+2
17n , rn =

n
2n+1 , f (x) = 3x

5 and λ = 1, ∀n ∈ N. From (5.1) we rewrite (3.1)

as follows:

xn+1 =
(4n+2

17n

)( 1
3n

f (xn)+
(

1− 1
3n

)
Sxn

)
+
(

1− 4n+2
17n

)
(I−A)

xn

1+13
N

∑
i=1

( 6
7i +

1
N7N

)
irn

,∀n≥ 1.(5.2)

It is clear that the sequence {αn}, {βn} and {rn} satisfy all the conditions of Theorem 3.1. From

Theorem 3.1, we can conclude that the sequence {xn} and {un} converges strongly to 0.

Table 1 shows that values of sequences {xn} and {un}, where x1 = −5 and x1 = 5 and n =

N = 14.
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x1 =−5 x1 = 5

n un xn un xn

1 -0.825688 -5.000000 0.825688 5.000000

2 -0.241546 -1.706927 0.241546 1.706927

3 -0.070026 -0.525198 0.070026 0.525198

4 -0.019977 -0.154636 0.019977 0.154636

5 -0.005630 -0.044447 0.005630 0.044447
...

...
...

...
...

8 -0.000120 -0.000980 0.000120 0.000980
...

...
...

...
...

11 -0.000002 -0.000020 0.000002 0.000020

12 -0.000001 -0.000006 0.000001 0.000006

13 -0.000000 -0.000002 0.000000 0.000002

14 -0.000000 -0.000000 0.000000 0.000000

TABLE 1. The values of {un} and {xn} where n = 14.

(A) x1 =−5 (B) x1 = 5

FIGURE 1. The convergence comparison of the sequences {xn} and {un} with

different initial values x1.

Example 5.2. In this example, we consider the same mappings and parameters as in Example

5.1 except the following mapping g : R→ R be defined by gx = 2x2 +1. It is clear that

{0}=
N⋂

i=1

EP(Fi)∩
N⋂

i=1

F(Ti)∩Ωg.
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Put λ = 1
8 . From (5.1), we rewrite (4.3) as follows:

xn+1 =
(4n+2

17n

)( 1
3n

f (xn)+
(

1− 1
3n

)
Sxn

)
+
(

1− 4n+2
17n

)
(I− 1

8
∇g)

xn

1+13
N

∑
i=1

( 6
7i +

1
N7N

)
irn

,∀n≥ 1.(5.3)

It is clear that the sequence {αn}, {βn} and {rn} satisfy all the conditions of Theorem 4.2. From

Theorem 4.2, we can conclude that the sequence {xn} and {un} converges strongly to 0.

Table 2 shows that values of sequences {xn} and {un}, where x1 = −5 and x1 = 5 and n =

N = 14.

x1 =−5 x1 = 5

n un xn un xn

1 -0.825688 -5.000000 0.825688 5.000000

2 -0.254147 -1.795972 0.254147 1.795972

3 -0.077666 -0.582496 0.077666 0.582496

4 -0.023370 -0.180898 0.023370 0.180898

5 -0.006949 -0.054859 0.006949 0.054859
...

...
...

...
...

8 -0.000175 -0.001422 0.000175 0.001422
...

...
...

...
...

11 -0.000004 -0.000035 0.000004 0.000035

12 -0.000001 -0.000010 0.000001 0.000010

13 -0.000000 -0.000003 0.000000 0.000003

14 -0.000000 -0.000001 0.000000 0.000001

TABLE 2. The values of {un} and {xn} where n = 14.
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(A) x1 =−5 (B) x1 = 5

FIGURE 2. The convergence comparison of the sequences {xn} and {un} with

different initial values x1.

Conclusion

(1) Table 1 and Figure 1 show that {xn} and {un} converges to 0, where {0}∈
⋂N

i=1 EP(Fi)∩⋂N
i=1 F(Ti)∩V I(C,A). The convergence of {xn} and {un} of Example 5.1 can be guar-

anteed by Theorem 3.1.

(2) Table 2 and Figure 2 show that {xn} and {un} converges to 0, where {0}∈
⋂N

i=1 EP(Fi)∩⋂N
i=1 F(Ti)∩Ωg. The convergence of {xn} and {un} of Example 5.2 can be guaranteed

by Theorem 4.2.

(3) From these Example, we obtain that the sequence {xn} in Example 5.1 converges faster

than the sequence {xn} in Example 5.2.
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