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1. Introduction

The concept of cone metric spaces was introduced initially by Huang Lang and Zhang-Xian ([3]) which

is the generalization of a metric space. In this space, they have replaced the set of real numbers by real

Banach Space in the definition of metric space.

Very recently, in 2004 the concept of partially ordered metric space which was introduced by Ran and

Reurings ([4] )Guo and Lakshmikantham ([5]) studied the concept of coupled fixed points in partially

ordered metric spaces. Bhaskar and Lakshmikantham ([8]) introduced monotone property in partially

ordered metric spaces and given an application to the existence of periodic boundary value problem.
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Nieto and Lopez ([6] - [7]) rediscovered the partially ordered metric spaces and applied their problems to

periodic boundary value problems.

Recently, Karapinar ([9]) proved coupled fixed point theorems for nonlinear contractions in ordered cone

metric spaces over normal cones without regularity. He considered the continuity of communting mappings

in a whole complete space. Shatanawi ([10]) proved coupled coincidence fixed point theorems in cone

metric spaces over which were not necessarily normal. See also the results of Sabetghadam ([11]), Ding

and Li ([12]), and Aydi, Samet and Vetro([13]).

In this paper we have studied unique common triple fixed point theorem for two maps by using g -

monotone and w - compatible mappings satisfying more general contractive condition in ordered cone

metric spaces over a cone that is only solid(i.e., has a nonempty interior). We furnish example to

demonstrate the validity of the results.

2. Preliminaries

Now here we recall some definition.

Definition 2.1. Let E be a real Banach space with respect to a given norm ‖ . ‖E and let 0E be the

zero vector of E. A non - empty subset P of E is called a cone if the following condition hold:

(1) P is closed, nonempty and P 6= {0E};

(2) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ (ax+ by) ∈ P ;

(3) x ∈ P and −x ∈ P ⇒ x = 0.

Given a cone P ⊂ E a partial ordering ≤P with respect to P is naturally defined by x ≤P y if and only if

y − x ∈ P for x, y ∈ E. We shall write x <P y to indicate that x ≤P y but x 6= y while x� y will stand

for y − x ∈ intP , intP denotes the interior of P .

The cone P is called normal if there is a number K > 0 such that for all x, y ∈ E, 0E ≤P x ≤P y implies

‖ x ‖E≤ K ‖ y ‖E .

In what follows we always suppose that E is a real Banach spaces with cone P satisfying intP 6= ∅(such

cones are called solid).

Definition 2.2. Let X be a nonempty set. Suppose the mapping d : X ×X → P satisfies:

(1) d(x, y) = 0E if and only if x = y;
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(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, y) ≤P d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space. It is obvious that cone

metric spaces generalize metric spaces.

Example 2.3. Let E = R2, P = {(x, y) ∈ E : x, y ≥ 0} ⊂ R2, X = R and d : X ×X → E such that

d(x, y) = (|x− y|, α|x− y|), where α ≤ 0 is a constant. Then (X, d) is a cone metric space.

Definition 2.4. Let (X, d) be a cone metric space. Let {xn} be a sequence in X and x ∈ X.

(a) If for every c ∈ E with 0E �P c there is N ∈ N such that d(xn, x) �P c, for all n ≥ N, then

{xn} is said to be convergent to x. This limit is denoted by limn→∞xn = x or xn → x as n→∞.

(b) If for every c ∈ E with 0E �P c there is N ∈ N such that d(xn, xm) �P c, for all n,m ≥ N,

then {xn} is called a Cauchy sequence in X.

(c) If every Cauchy sequence in X is convergent in X,

Then (X, d) is called a complete cone metric spaces.

Let (X, d) be a cone metric space. Then the following properties are often used(particularly when dealing

with cone metric spaces in which the cone need not be normal):

(P1) If E is a real Banach space with a cone P and if a ≤P ha where a ∈ P and h ∈ [0, 1), then a = 0E ;

(P2) if 0E ≤P u� c for each 0E � c, then u = 0E ;

(P3) if u, v, w ∈ E, u ≤P v and v � w, then u� w;

(P4) if c ∈ intP, 0 ≤P an ∈ E and an → 0E , then there exists k ∈ N such that for all n > k we have

an � c.

Definition 2.5. Let X be nonempty set and F : X × X × X → X, g : X → X. An element

(x, y, z) ∈ X ×X ×X called:

(T1) a tripled fixed point of the F if F (x, y, z) = x, F (y, x, z) = y and F (z, y, x) = z;

(T2) a tripled coincidence point of mappings F and g if F (x, y, z) = g(x), F (y, x, z) = g(y) and

F (z, y, x) = g(z) and in this case (gx, gy, gz) is called a triplet point of coincidence.



160 P. P. MURTHY∗ AND RASHMI

Definition 2.6. Let X be nonempty set. Mappings F : X × X × X → X, g : X → X are called w

- compatible if gF (x, y, z) = F (gx, gy, gz), gF (y, z, x) = F (gy, gz, gx) and gF (z, x, y) = F (gz, gx, gy)

whenever gx = F (x, y, z), gy = F (y, x, z) and g(z) = F (z, y, x).

According to Borcut and Berinde [15], we give also the following concepts.

Consider on the product X ×X ×X the following partial order:

for (x, y, z), (u, v, w) ∈ X ×X ×X, (u, v, w) ≤ (x, y, z)⇔ x ≥ u, y ≤ v, z ≥ w.

Definition 2.7. Let (X,≤) be a partially ordered set and F : X ×X ×X → X and g : X → X. The

mapping F is said to have mixed g - monotone property if F is monotone g - non-decreasing in x and z

is monotone g - non-increasing in y that is, for any x, y, z ∈ X

x1, x2 ∈ X, g(x1) ≤ g(x2)⇒ F (x1, y, z) ≤ F (x2, y, z) (2.1)

y1, y2 ∈ X, g(y1) ≤ g(y2)⇒ F (x, y1, z) ≥ F (x, y2, z) (2.2)

z1, z2 ∈ X, g(z1) ≤ g(z2)⇒ F (x, y, z1) ≤ F (x, y, z2) (2.3)

hold.

Definition 2.8. [2] Let X be non - empty set. Then we say that the mappings F : X×X×X → X and

g : X → X are w - compatible if gF (x, y, z) = F (gx, gy, gz), gF (y, z, x) = F (gy, gz, gx) and gF (z, y, x) =

F (gz, gy, gx) whenever g(x) = F (x, y, z), g(y) = F (y, z, x) and g(z) = F (z, y, x).

3. Main results

Theorem 3.1. Let (X, d,�) be an ordered cone metric space over a solid cone P. Let F : X×X×X → X

and g : X → X be mappings such that F has the mixed g - monotone property on X and there exists

three elements x0, y0, z0 ∈ X with gx0 � F (x0, y0, z0), gy0 � F (y0, z0, x0) and gz0 � F (z0, x0, y0).

Suppose further that F , g satisfy

d(F (x, y, z), F (u, v, w)) �p a1d(gx, gu) + a2d(F (x, y, z), gx) + a3d(gy, gv)

+ a4d(F (u, v, w), gu) + a5d(F (x, y, z), gu) + a6d(F (u, v, w), gx) + a7d(gz, gw),

(3.1)

for all (x, y, z), (u, v, w) ∈ X × X × X with (gx � gu, gy � gv and gz � gw), where ai ≥ 0, for

i = 1, 2, ..., 7 and
∑7
i=1 ai < 1. Further suppose

(1) F (X ×X ×X) ⊆ g(X);

(2) g(X) is a complete subspaces of X.

Also, suppose that X has the following properties:
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(i) if a non - decreasing sequence {xn} in X is such that xn → x, then xn � x for all n ∈ N,

(ii) if a non - increasing sequence {yn} in X is such that yn → y, then yn � y for all n ∈ N,

(iii) if a non - decreasing sequence {zn} in X is such that zn → z, then zn � z for all n ∈ N.

Then there exists x, y, z ∈ X such that g(x) = F (x, y, z), g(y) = F (y, z, x) and g(z) = F (z, x, y),

that is, F and g have tripled coincidence point in X.

Proof.

Let x0, y0, z0 ∈ X be such that g(x0) � F (x0, y0, z0), g(y0) � F (y0, z0, x0) and g(z0) � F (z0, x0, y0).

Since F (X ×X ×X) ⊆ g(X), we can define x1, y1, z1 ∈ X such that

g(x1) = F (x0, y0, z0), g(y1) = F (y0, z0, x0) and g(z1) = F (z0, x0, y0).

In the same way, we can choose x2, y2, z2 ∈ X such that g(x2) = F (x1, y1, z1), g(y2) = F (y1, z1, x1) and

g(z2) = F (z1, x1, y1). Continuing like this, we construct three sequences {xn}, {yn} and {zn} in X such

that, for all n ≥ 0, we get

g(xn+1) = F (xn, yn, zn), g(yn+1) = F (yn, zn, xn), g(zn+1) = F (zn, xn, yn). (3.2)

Now we prove that for all n ≥ 0,

g(xn) � g(xn+1), g(yn) � g(yn+1) and g(zn) � g(zn+1). (3.3)

we shall use the mathematical induction. By contraction condition we have

g(x0) � F (x0, y0, z0) = gx1, g(y0) � F (y0, z0, x0) = gy1 and g(z0) � F (z0, x0, y0) = gz1.

i.e., (3.3) holds for n = 0. We assume that (3.3) holds for some n > 0. As F has the mixed g - monotone

property and gxn � gxn+1, gyn � gyn+1 and gzn � gzn+1, from (3.2) and (2.1)− (2.3) we get

gxn+1 = F (xn, yn, zn) � F (xn+1, yn, zn),

gyn+1 = F (yn, zn, xn) � F (yn+1, zn, xn),

and gzn+1 = F (zn, xn, yn) � F (zn+1, xn, yn).

(3.4)

Also for the same reason we have,

gxn+2 = F (xn+1, yn+1, zn+1) � F (xn+1, yn, zn),

gyn+2 = F (yn+1, zn+1, xn+1) � F (yn+1, zn, xn),

and gzn+2 = F (zn+1, xn+1, yn+1) � F (zn+1, xn, yn).

(3.5)

Then from (3.4) and (3.5) we obtain

g(xn+1) � g(xn+2), g(yn+1) � g(yn+2) and g(zn+2) � g(zn+2).

Thus by mathematical induction, we conclude that (3.3) holds for all n ≥ 0.
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On using condition (3.1) we have

d(gxn, gxn+1) = d(F (xn−1, yn−1, zn−1), F (xn, yn, zn))

≤P a1d(gxn−1, gxn) + a2d(F (xn−1, yn−1, zn−1), gxn−1)) + a3d(gyn−1, gyn)

+ a4d(F (xn, yn, zn), gxn)) + a5d(F (xn−1, yn−1, zn−1), gxn))

+ a6d(F (xn, yn, zn), gxn−1)) + a7d(gzn−1, gzn)

= a1d(gxn−1, gxn) + a2d(gxn, gxn−1) + a3d(gyn−1, gyn) + a4d(gxn+1, gxn)

+ a5d(gxn, gxn) + a6d(gxn+1, gxn−1) + a7d(gzn−1, gzn)

≤P a1d(gxn−1, gxn) + a2d(gxn, gxn−1) + a3d(gyn−1, gyn) + a4d(gxn+1, gxn)

+ a6[d(gxn+1, gxn) + d(gxn, gxn−1)] + a7d(gzn−1, gzn).

= (a1 + a2 + a6)d(gxn−1, gxn) + (a4 + a6)d(gxn, gxn+1) + a3d(gyn−1, gyn)

+ a7d(gzn−1, gzn)

which implies that

(1− a4 − a6)d(gxn, gxn+1) ≤P (a1 + a2 + a6)d(gxn−1, gxn) + a3d(gyn−1, gyn)

+ a7d(gzn−1, gzn)
(3.6)

Similarly,

d(gyn, gyn+1) = d(F (yn−1, zn−1, xn−1, F (yn, zn, xn))

≤P a1d(gyn−1, gyn) + a2d(F (yn−1, zn−1, xn−1, gyn−1)) + a3d(gzn−1, gzn)

+ a4d(F (yn, zn, xn, gyn)) + a5d(F (yn−1, zn−1, xn−1, gyn))

+ a6d(F (yn, zn, xn, gyn−1)) + a7d(gxn−1, gxn)

= a1d(gyn−1, gyn) + a2d(gyn, gyn−1) + a3d(gzn−1, gzn) + a4d(gyn+1, gyn)

+ a5d(gyn, gyn) + a6d(gyn+1, gyn−1) + a7d(gxn−1, gxn)

≤P a1d(gyn−1, gyn) + a2d(gyn, gyn−1) + a3d(gzn−1, gzn) + a4d(gyn+1, gyn)

+ a6[d(gyn+1, gyn) + d(gyn, gyn−1)] + a7d(gxn−1, gxn).

= (a1 + a2 + a6)d(gyn−1, gyn) + (a4 + a6)d(gyn, gyn+1) + a3d(gzn−1, gzn)

+ a7d(gxn−1, gxn)
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which implies that

(1− a4 − a6)d(gyn, gyn+1) ≤P (a1 + a2 + a6)d(gyn−1, gyn) + a3d(gzn−1, gzn)

+ a7d(gxn−1, gxn)
(3.7)

Also,

d(gzn, gzn+1) = d(F (zn−1, xn−1, yn−1), F (zn, xn, yn))

≤P a1d(gzn−1, gzn) + a2d(F (zn−1, xn−1, yn−1, gzn−1)) + a3d(gxn−1, gxn)

+ a4d(F (zn, xn, yn, gzn)) + a5d(F (zn−1, xn−1, yn−1, gzn))

+ a6d(F (zn, xn, yn, gzn−1)) + a7d(gyn−1, gyn)

= a1d(gzn−1, gzn) + a2d(gzn, gzn−1) + a3d(gxn−1, gxn) + a4d(gzn+1, gzn)

+ a5d(gzn, gzn) + a6d(gzn+1, gzn−1) + a7d(gyn−1, gyn)

≤P a1d(gzn−1, gzn) + a2d(gzn, gzn−1) + a3d(gxn−1, gxn) + a4d(gzn+1, gzn)

+ a6[d(gzn+1, gzn) + d(gzn, gzn−1)] + a7d(gyn−1, gyn)

= (a1 + a2)d(gzn−1, gzn) + a3d(gxn−1, gxn) + a4d(gzn+1, gzn)

a6[d(gzn+1, gzn) + d(gzn, gzn−1)] + a7d(gyn−1, gyn)

= (a1 + a2 + a6)d(gzn−1, gzn) + (a4 + a6)d(gzn+1, gzn) + a3d(gxn−1, gxn)

+ a7d(gyn−1, gyn)

which implies that

(1− a4 − a6)d(gzn, gzn+1) ≤P (a1 + a2 + a6)d(gzn−1, gzn) + a3d(gxn−1, gxn) + a7d(gyn−1, gyn) (3.8)

Adding (3.6), (3.7) and (3.8) we obtain that

(1− a4 − a6)[d(gxn, gxn+1) + d(gyn, gyn+1) + d(gzn, gzn+1)]

≤P (a1 + a2 + a6)[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)]

+a3[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)]

+a7[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)]

= (a1 + a2 + a3 + a6 + a7[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)

(3.9)

Now stating from d(gxn+1, gxn) = d(F (xn, yn, zn), F (xn−1, yn−1, zn−1)) and using that g(xn−1) � g(xn),

g(yn−1) � g(yn) and g(zn−1) � g(zn),
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we get that

d(gxn+1, gxn) = d(F (xn, yn, zn, F (xn−1, yn−1, zn−1))

≤P a1d(gxn, gxn−1) + a2d(F (xn, yn, zn, gxn)) + a3d(gyn, gyn−1)

+ a4d(F (xn−1, yn−1, zn−1, gxn)) + a5d(F (xn, yn, zn, gxn−1))

+ a6d(F (xn−1, yn−1, zn−1, gxn)) + a7d(gzn, gzn−1)

= a1d(gxn, gxn−1) + a2d(gxn+1, gxn) + a3d(gyn, gyn−1) + a4d(gxn, gxn−1)

+ a5d(gxn+1, gxn−1) + a6d(gxn, gxn)) + a7d(gzn, gzn−1)

= a1d(gxn, gxn−1) + a2d(gxn+1, gxn) + a3d(gyn, gyn−1) + a4d(gxn, gxn−1)

+ a5[d(gxn+1, gxn) + d(gxn, gxn−1)] + a7d(gzn, gzn−1)

d(gxn+1, gxn) = (a1 + a4 + a5)d(gxn, gxn−1) + (a2 + a5)d(gxn+1, gxn) + a3d(gyn, gyn−1)

+ a7d(gzn, gzn−1)
(3.10)

Similarly,

d(gyn+1, gyn) = d(F (yn, zn, xn, F (yn−1, zn−1, xn−1))

≤P (a1 + a4 + a5)d(gyn, gyn−1) + (a2 + a5)d(gyn+1, gyn)

+ a3d(gzn, gzn−1) + a7d(gxn, gxn−1)

(3.11)

d(gzn+1, gzn) ≤P (a1 + a4 + a5)d(gzn, gzn−1) + (a2 + a5)d(gzn+1, gzn)

+ a3d(gxn, gxn−1) + a7d(gyn, gyn−1)
(3.12)

Adding (3.10), (3.11) and (3.12) we obtain that

(1− a2 − a5)[d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn)]

≤P (a1 + a4 + a5)[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]

+a3[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]

+a7[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]

= (a1 + a3 + a4 + a5 + a7)[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]

(3.13)

Now adding (3.9) and (3.13) we get

≤P (
2a1 + a2 + 2a3 + a4 + a5 + a6 + 2a7

2− a2 − a4 − a5 − a6
)[d(gxn, gxn−1) + d(gyn, gyn−1) + d(gzn, gzn−1)]
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with 0 ≤ λ < 1. where λ = 2a1+a2+2a3+a4+a5+a6+2a7
2−a2−a4−a5−a6

Since
∑7
i=1 ai < 1. using relation (3.13) n - times, we obtain

d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn) ≤P λ[d(gxn−1, gxn) + d(gyn−1, gyn) + d(gzn−1, gzn)]

≤P λ2[d(gxn−2, gxn−1) + d(gyn−2, gyn−1) + d(gzn−2, gzn−1)]

...

≤P λn[d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)].

Then d(gxn+1, gxn) + d(gyn+1, gyn) + d(gzn+1, gzn)→ 0E as n→∞.

Thus d(gxn+1, gxn) = d(gyn+1, gyn) = d(gzn+1, gzn)→ 0E as n→∞.

Next we show that {gxn}, {gyn}and{gzn} are Cauchy sequences. For any m > n ≥ 1, repeated use of

triangle inequality gives

d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm) ≤P d(gxn, gxn+1) + d(gxn+1, gxn+2) + · · ·+ d(gxm−1, gxm)

+ d(gyn, gyn+1) + d(gyn+1, gyn+2) + · · ·+ d(gym−1, gym)

+ d(gzn, gzn+1) + d(gzn+1, gzn+2) + · · ·+ d(gzm−1, gzm)

≤P [λn + λn+1 + · · ·+ λm−1][d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)]

≤P
λn

1− λ
[d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)]

→ 0E as n→∞.

from (P4) it follows that for 0E � c, and large n : λn

1−λ [d(gx0, gx1) + d(gy0, gy1) + d(gz0, gz1)]� c, thus

according to (P3),

[d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)]� c.

Since,

d(gxn, gxm) �P [d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)],

d(gyn, gym) �P [d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)],

and

d(gzn, gzm) �P [d(gxn, gxm) + d(gyn, gym) + d(gzn, gzm)]

then by (P3), d(gxn, gxm) � c, d(gyn, gym) � c and d(gzn, gzm) � c. for n large enough and hence

{gxn}, {gyn} and {gzn} are Cauchy sequences in g(X). By completeness of g(X) there exists gx, gy, gz ∈

g(X) such that gxn → gx, gyn → gy and gzn → gz as n→∞.

Since {gxn} and {gzn} is nondecreasing and {gyn} is non-increasing, using the conditions (i), (ii) and (iii),

we have gxn � gx, gyn � gy and gzn � gz for all n ≥ 0. If gxn = gx, gyn = gy and gzn = gz
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for some n ≥ 0, then gx = gxn � gxn+1 � gx = gxn, gy � gyn+1 � gyn = gy and gz = gzn �

gzn+1 � gz = gzn which implies that gx = gxn = F (xn, yn, zn), gy = gyn = F (yn, zn, xn), and gz =

gzn = F (zn, xn, yn), that is, (xn, yn, zn) is a triplet coincidence point of F and g. Then, we suppose that

(gxn, gyn, gzn) 6= (gx, gy, gz) for all n ≥ 0.

Now we prove that F (x, y, z) = gx, F (y, z, x) = gy and F (z, x, y) = gz. For this, consider

d(F (x, y, z), gx) ≤P d(F (x, y, z), gxn+1) + d(gxn+1, gx)

= d(F (x, y, z), F (xn, yn, zn)) + d(gxn+1, gx)

≤P a1d(gx, gxn) + a2d(F (x, y, z), gx) + a3d(gy, gyn) + a4d(F (xn, yn, zn), gxn)

+ a5d(F (x, y, z), gxn) + a6d(F (xn, yn, zn), gx) + a7d(gz, gzn) + d(gxn+1, gx)

= a1d(gx, gxn) + a2d(F (x, y, z), gx) + a3d(gy, gyn) + a4d(F (gxn+1, gxn)

+ a5d(F (x, y, z), gxn) + a6d(gxn+1, gx) + a6d(gxn, gx) + a7d(gz, gzn)

+ d(gxn+1, gxn) + d(gxn, gx)

(1− a2 − a5)d(F (x, y, z), gx) ≤P (1 + a1 + a5 + a6)d(gx, gxn) + (1 + a4 + a6)d(gxn+1, gxn)

a3d(gy, gyn) + a7d(gz, gzn)

Which further implies that

d(F (x, y, z), gx) ≤P
1 + a1 + a5 + a6

(1− a2 − a5)
d(gx, gxn) +

a3
(1− a2 − a5)

d(gy, gyn)

+
1 + a4 + a6

(1− a2 − a5)
d(gxn+1, gxn) +

a7
(1− a2 − a5)

d(gz, gzn)

Since gxn → gx, gyn → gy and gzn → gz, then for 0E � c there exists N ∈ N such that

d(gx, gxn)� (1+a1+a5+a6)c
(1−a2−a5) , d(gy, gyn)� (a3)c

(1−a2−a5) , d(gxn+1, gxn)� (1+a4+a6)c
(1−a2−a5) and

d(gz, gzn)� (a7)c
(1−a2−a5) , for all n ≥ N. Thus,

d(F (x, y, z), gx) � c. Now according to (P2) it follows that d(F (x, y, z), gx) = 0E , and F (x, y, z) = gx.

Similarly, we can get F (y, z, x) = gy and F (z, x, y) = gz. Hence (gx, gy, gz) is tripled coincidence

point of mappings F and g.

This completes the proof.

Theorem 3.2. In addition to the hypotheses of Theorem 3.1, Suppose that for every (x, y, z), (x∗, y∗, z∗) ∈

X ×X ×X there exists (u, v, w) ∈ X ×X ×X such that (F (u, v, w), F (v, w, u), F (w, u, v)) is compara-

ble to (F (x, y, z), F (y, z, x), F (z, x, y)) and (F (x∗, y∗, z∗), F (y∗, z∗, x∗), (z∗, x∗, y∗)). Then F and g have

a unique triple common fixed point, that is, there exists a unique (u, v, w) ∈ X × X × X such that

u = g(u) = F (u, v, w), g(v) = F (v, w, u) and g(w) = F (w, u, v), provided F and g are w - com-

patible.
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Proof.

From Theorem 3.1, the set of tripled coincidence points of F and g is non - empty. Suppose (x, y, z)

and (x∗, y∗, z∗) are tripled coincidence points of F, that is gx = F (x, y, z), g(y) = F (y, z, x), g(z) =

F (z, x, y), g(x∗) = F (x∗, y∗, z∗), g(y∗) = F (y∗, z∗, x∗) and g(z∗) = F (z∗, x∗, y∗). We will prove that

g(x) = g(x∗), g(y) = g(y∗) and g(z) = g(z∗).

By assumption, there exists (u, v, w) ∈ X × X × X such that (F (u, v, w), F (v, w, u), F (w, u, v)) is

comparable to (F (x, y, z), F (y, z, x), F (z, x, y)) and (F (x∗, y∗, z∗), F (y∗, z∗, x∗), (z∗, x∗, y∗)). Put u0 =

u, v0 = v, w0 = w and choose u1, v1, w1 ∈ X so that gu1 = F (u0, v0, w0), gv1 = F (v0, w0, u0) and

gw1 = F (w0, u0, v0). Then, similarly as in the proof of Theorem 3.1, we can inductively define sequences

{gun}, {gvn} and {gwn} with

gun+1 = F (un, vn, wn), gvn+1 = F (vn, wn, un) and gwn+1 = F (wn, un, vn) ∀ n.

Further, set x0 = x, y0 = y, z0 = z, x∗0 = x∗, y∗0 = y∗ and z∗0 = z∗ and in a similar way, define the

sequence {gxn}, {gyn}, {gzn} and {gx∗n}, {y∗n}, {z∗n}. Then it is easy to show that

gxn → F (x, y, z), gyn → F (y, z, x) and gzn → F (z, x, y)

and

gx∗n → F (x∗, y∗, z∗), gy∗n → F (y∗, z∗, x∗) and gz∗n → F (z∗, x∗, y∗)

as n→∞. Since (gx, gy, gz) = (F (x, y, z), F (y, z, x), F (z, x, y)) = (gx1, gy1, gz1)

and(F (u, v, w), F (v, w, u), F (w, u, v)) = (gu1, gv1, gw1) are comparable, then gx � gu1, gy � gv1 and gz �

gw1. It is easy to show that, similarly, (gx, gy, gz) and (gun, gvn, gwn) are comparable for all n ≥ 1,
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that is, gx � gun, gy � gvn and gz � gwn, or vice versa. Thus from (3.1), we have

d(gx, gun+1) = d(F (x, y, z), F (un, vn, wn))

≤P a1d(gx, gun) + a2d(F (x, y, z, gx)) + a3d(gy, gvn)

+ a4d(F (un, vn, wn, gun)) + a5d(F (x, y, z, gun))

+ a6d(F (un, vn, wn, gx)) + a7d(gz, gwn)

= a1d(gx, gun) + a2d(gx, gx) + a3d(gy, gvn) + a4d(gun+1, gun)

+ a5d(gx, gun) + a6d(gun+1, gx) + a7d(gz, gwn).

= a1d(gx1, gun) + a3d(gy, gvn) + a4[d(gun+1, gx)

+ d(gx, gxn)] + a6d(gun+1, gx) + a7d(gz, gwn).

= (a1 + a4 + a5)d(gx, gun) + a3d(gy, gvn) + (a4 + a6)d(gun+1, gx)

+ a7d(gz, gwn).

which implies that

(1− a4 − a6)d(gx, gun+1) ≤P (a1 + a4 + a5)d(gx, gun) + a3d(gy, gvn) + a7d(gz, gwn). (3.14)

Similarly,

(1− a4 − a6)d(gy, gvn+1) ≤P (a1 + a4 + a5)d(gy, gvn) + a3d(gz, gwn) + a7d(gx, gun). (3.15)

(1− a4 − a6)d(gz, gwn+1) ≤P (a1 + a4 + a5)d(gz, gwn) + a3d(gx, gun) + a7d(gy, gvn). (3.16)

Adding up (3.14), (3.15) and (3.16) we obtain that

(1− a4 − a6)[d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)]

≤P (a1 + a4 + a5)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

+a3[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

+a7[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

= (a1 + a3 + a4 + a5 + a7)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

(3.17)
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Now stating from d(gun+1, gx) = d(F (un, vn, wn), F (x, y, z)) we get that

d(gun+1, gx) = d(F (un, vn, wn, F (x, y, z))

≤P a1d(gun, gx) + a2d(F (un, vn, wn, gun)) + a3d(gvn, gy)

+ a4d(F (x, y, z, gx)) + a5d(F (un, vn, wn, gx))

+ a6d(F (x, y, z, gun)) + a7d(gvn, gz)

= a1d(gun, gx) + a2d(gun+1, gun) + a3d(gvn, gy) + a4d(gx, gx)

+ a5d(gun+1, gx) + a6d(gx, gun)) + a7d(gvn, gz)

= a1d(gun, gx) + a2[d(gun+1, gx) + d(gx, gun)] + a3d(gvn, gy)

+ a4d(gx, gx) + a5d(gun+1, gx) + a6d(gx, gun)) + a7d(gvn, gz)

(1− a2 − a5)d(gun+1, gx) = (a1 + a2 + a6)d(gx, gun) + a3d(gvn, gy) + a7d(gvn, gz) (3.18)

Similarly,

(1− a2 − a5)d(gvn+1, gy) = (a1 + a2 + a6)d(gy, gvn) + a3d(gwn, gz) + a7d(gun, gx) (3.19)

(1− a2 − a5)d(gwn+1, gz) = (a1 + a2 + a6)d(gz, gwn) + a3d(gun, gx) + a7d(gwn, gy) (3.20)

Adding (3.18), (3.19) and (3.20) we obtain that

(1− a2 − a5)[d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)]

≤P (a1 + a2 + a6)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)] + a3[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

+a7[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

= (a1 + a2 + a3 + a6 + a7)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

(3.21)

Now adding (3.17)and(3.21) we get

≤P (
2a1 + a2 + 2a3 + a4 + a5 + a6 + 2a7

2− a2 − a4 − a5 − a6
)[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

(3.22)

with 0 ≤ λ < 1. Where λ = 2a1+a2+2a3+a4+a5+a6+2a7
2−a2−a4−a5−a6 .

Since
∑7
i=1 ai < 1. using relation (3.22) n - times, we obtain
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≤P λ[d(gx, gun) + d(gy, gvn) + d(gz, gwn)]

≤P λ2[d(gx, gun−1) + d(gy, gvn−1) + d(gz, gwn−1)]

...

≤P λn[d(gx, gu0) + d(gy, gv0) + d(gz, gw0)].

Then [d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)]→ 0E as n→∞.

Thus d(gx, gun+1) = d(gy, gvn+1) = d(gz, gwn+1)→ 0E as n→∞. Since 0 ≤ λ < 1.

Hence [d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)] � c for each c ∈ intP and large n. Since 0E ≤P

d(gx, gun+1) ≤P [d(gx, gun+1) + d(gy, gvn+1) + d(gz, gwn+1)], it follows by (P3) that d(gun+1, gx) � c,

for n large enough and so {gun} → gx when n→∞. Similarly, {gvn+1} → gy and {gwn+1} → gz. By

the same procedure one can show that {gu∗n+1} → gx∗, {gv∗n+1} → gy∗ and {gw∗n+1} → gz∗. By the

uniqueness of the limit, it follows that gx = gx∗, gy = gy∗ and gz = gz∗. as n→∞. Hence (gx, gy, gz)

is the unique tripled point of coincidence of F and g.

Now we show that F and g have a unique common tripled fixed point. For this, let gx = u. Then we

have u = gx = F (x, y, z). By w - compatibility of F and g, we have

gu = g(gx) = g(F (x, y, z)) = F (gx, gy, gz) = F (u, v, w),

gv = g(gy) = g(F (y, z, x)) = F (gy, gz, gx) = F (v, w, u),

and

gw = g(gz) = g(F (z, x, y)) = F (gz, gy, gx) = F (w, u, v).

Hence the triple (u, v, w) is also triple coincidence point of F and g. Thus we have

gu = gx, gv = gy and gw = gz.

Therefore

u = gu = F (u, v, w), v = gv = F (v, w, u) and w = F (w, u, v).

Thus (u, v, w) is common triple fixed point of F and g.
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To prove the uniqueness, let (u∗, v∗, w∗) be any common triple fixed point of F and g.

Then u∗ = gu = F (u∗, v∗, w∗), v∗ = gv∗ = F (v∗, w∗, u∗) and w∗ = F (w∗, u∗, v∗).

Since the (u∗, v∗, w∗) is a triple coincidence point of F and g.

We have

gu∗ = gx, gv∗ = gy and gw∗ = gz.

Thus

u∗ = gu∗ = gx = u, v∗ = gv∗ = gy = v and w∗ = gw∗ = gz = w.

Hence the common triple fixed point is unique.

This completes the proof.

Corollary 3.3. Let (X, d,�) be an ordered cone metric space over a solid cone P. Let F : X×X×X → X

and g : X → X be mappings such that F has the mixed g - monotone property on X and there exists

three elements x0, y0, z0 ∈ X with gx0 � F (x0, y0, z0), gy0 � F (y0, z0, y0) and gz0 � F (z0, y0, x0).

Suppose further that F , g satisfy that

d(F (x, y, z), F (u, v, w)) ≤p αd(gx, gu) + βd(gy, gv) + γd(gz, gw) + δd(F (x, y, z), gu),

for all (x, y, z), (u, v, w) ∈ X with (gx � gu, gy � gv and gz � gw), where α, β, γ, δ ≥ 0 and

α+ β + γ + δ < 1. Further suppose

(1) F (X ×X ×X) ⊆ g(X);

(2) g(X) is a complete subspaces of X.

Also, suppose that X has the following properties:

(i) if a non - decreasing sequence {xn} in X is such that xn → x, then xn � x for all n ∈ N,

(ii) if a non - increasing sequence {yn} in X is such that yn → y, then yn � y for all n ∈ N,

(iii) if a non - decreasing sequence {zn} in X is such that zn → z, then zn � z for all n ∈ N,

Then there exists x, y, z ∈ X such that g(x) = F (x, y, z), g(y) = F (y, x, z) and g(z) = F (z, y, x),

that is, F and g have tripled coincidence point in X. Similarly corollary can be stated as a consequence

of Previous theorem.

Putting g = iX (the identity map) in previous theorem we get the following corollary.
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Corollary 3.4. Let (X, d,�) be complete ordered cone metric space over a solid cone P. Let

F : X ×X ×X → X be a mappings having the mixed monotone property on X and there exists three

elements x0, y0, z0 ∈ X with x0 � F (x0, y0, z0), y0 � F (y0, z0, y0) and z0 � F (z0, y0, x0). Suppose further

that F , g satisfy

d(F (x, y, z), F (u, v, w)) ≤p a1d(x, u) + a2d(F (x, y, z), x) + a3d(y, v)

+ a4d(F (u, v, w), u) + a5d(F (x, y, z), u) + a6d(F (u, v, w), x) + a7d(z, w),

(3.23)

for all (x, y, z), (u, v, w) ∈ X with (x � u, y � v and z � w), where ai ≥ 0, for i = 1, 2, ..., 7 and∑7
i=1 ai < 1. Also suppose that X has the following properties:

(i) if a non - decreasing sequence {xn} in X is such that xn → x, then xn � x for all n ∈ N,

(ii) if a non - increasing sequence {yn} in X is such that yn → y, then yn � y for all n ∈ N,

(iii) if a non - decreasing sequence {zn} in X is such that zn → z, then zn � z for all n ∈ N,

Then there exists x, y, z ∈ X such that x = F (x, y, z), y = F (y, x, z) and z = F (z, y, x), that is, F

and g have tripled coincidence point in X.

If we put a2 = a4 = a5 = a6 = 0 and a1 = j, a3 = k and a7 = l in contractive condition (3.1) then we

get the result of Rao and Kishor([2]).

Corollary 3.5. Let (X,�, d) be a partially ordered cone metric space and let T : X ×X ×X → X and

f : X → X be a mappings satisfying

(i) d(T (x, y, z), T (u, v, w)) ≤ jd(x, u) + kd(y, v) + ld(z, w), for all (x, y, z), (u, v, w) ∈ X with (fx �

fu, fy � fv, fz � fw) and j, k, l ∈ [0, 1) with j + k + l < 1,

(ii) T (X ×X ×X) ⊆ f(X) and f(X) is complete subspaces of X,

(iii) T has the mixed f - monotone property,

(a) if a non - decreasing sequence {xn} → x, then xn ≤ x for all n,

(b) if a non - increasing sequence {yn} → y, then yn ≤ y for all n,

(c) if a non - decreasing sequence {zn} → z, then zn ≤ z for all n.

Then there exists x0, y0, z0 ∈ X such that fx0 � T (x0, y0, z0), fy0 � T (y0, x0, z0) and

fz0 = T (z0, y0, x0), than T and f have tripled coincidence point in X.

Example 3.6. Let X = [0, 1] be taken with the standard order and with the cone metric given by

d(x, y) = (| x − y |, α | x − y |) for fixed α > 0.(Here E = R2 and P = {(x, y) ∈ E : x, y ≥

0} is a solid cone.) Consider the mappings F : X ×X ×X → X and g : X → X given by



TRIPLED COMMON FIXED POINT 173

F (x, y, z) =


1
3 (x2 − y2 − z2), if x > y > z

0 if otherwise;

and gx = x2,

and the contractive condition taken with a1 = a3 = 1
8 , a2 = a4 = 1

4 and a5 = a6 = a7 = 0. We will

check that this condition is satisfied for all x, y, z, u, v, w ∈ X with (x � u, y � v and z � w). The

other conditions of Theorems are obviously satisfied. Consider the following possibilities.

Case1. x > y > z and u > v > w. (and hence u ≥ x > y ≥ v > w ≥ z). Then

d(F (x, y, z), F (u, v, w)) = d( 1
3 (x2 − y2 − z2), 13 (u2 − v2 − w2)) = (L,αL)

where

L =
1

3
(u2 − x2 + v2 − y2 + z2 − w2),

and

1
8d(gx, gu) + 1

4d(F (x, y, z), gx) + 1
8d(gy, gv) + 1

4d(F (u, v, w), gu) = (D,αD),

where D = 1
8 (u2 − x2) + 1

12 (2x2 + y2 + z2)) + 1
8 (y2 − v2) + 1

12 (2u2 + v2 + w2)) clearly L ≤ D, Hence

contraction condition (3.1) holds true.

Case2. x > y > z and u > w > v (and hence u ≥ x > y ≥ w > v ≥ z). Then

d(F (x, y, z), F (u, v, w)) = d( 1
3 (x2 − y2 − z2), 0) = (L,αL)

where

L =
1

3
(x2 − y2 − z2),

and

1
8d(gx, gu) + 1

4d(F (x, y, z), gx) + 1
8d(gy, gv) + 1

4d(0, gu) = (D,αD),

where

D =
1

8
(u2 − x2) +

1

12
(2x2 + y2 + z2)) +

1

8
(y2 − v2) +

1

4
u2

clearly L ≤ D, Hence contraction condition (3.1) holds true.

Case3. x > y > z and any other combination between u, v, w other than u > v > w. Then

d(F (x, y, z), F (u, v, w)) = d( 1
3 (x2 − y2 − z2), 0) = (L,αL)

where

L =
1

3
(x2 − y2 − z2),

and

1
8d(gx, gu) + 1

4d(F (x, y, z), gx) + 1
8d(gy, gv) + 1

4d(0, gu) = (D,αD),

where

D =
1

8
(u2 − x2) +

1

12
(2x2 + y2 + z2)) +

1

8
(y2 − v2) +

1

4
u2
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clearly L ≤ D, Hence contraction condition (3.1) holds true.

Case4. u > v > w and any other combination between x, y, z other than x > y > z. This case is treated

analogously to the previous one.

Case5. Any other combination between x, y, z other than x > y > z and also in between u, v, w other

than u > v > w. Then

d(F (x, y, z), F (u, v, w)) = d(0, 0) = 0E and the contractive condition is trivially satisfied.

Thus all the condition of Theorem 3.1 and 3.2 are satisfied. The mapping F and g have a unique common

tripled fixed point (0, 0).
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