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1. Introduction:

A Fixed Point Theorem is a result that says that a function F will have at least one Fixed Point x
for which (F(x) = x), under some conditions on F that can be stated in general terms. These

results are the most generally useful in mathematics.
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Random fixed point theorems for contraction mappings on separable complete metric spaces
have been proved by several authors[8, 9, 10,12-14, 16-19, 26, 30, 31, 33-39]. The stochastic

version of the well-known Schauder’s fixed point theorem was proved by Sehgal and Singh[34].

Study of fixed point results in partially ordered metric spaces is at center of activity in field of
research due to importance of this subject in differential equations. Fixed points of mappings in
partially ordered spaces are of great importance and have been investigated by many researchers
[1-7, 11, 15,20-25, 28, 29, 32]. Recently Bhaskar and Lakshmikantham [5], Nieto and
Rodriguez-Lopez [28], Nieto, Pouso and Rodriguez-Lopez [29], Ranand Reurings [32], and
Agarwal, El-Gebeily, and O’Regan [1] presented some new results for contractions in partially
ordered metric spaces. V. Bhaskar and Lakshmikantham [5] introduced the concept of a coupled
coincidence point of mapping F from X x X into X and a mapping g from X into X and studied

fixed point theorems in partially ordered metric spaces.

Shatanawi [37] extended the results of Bhaskar and Lakshmikantham to partially ordered cone
metric spaces. In [21] V. Lakshmikantham and L. Ciric studied some fixed point theorems for
nonlinear contractions in partially ordered metric spaces. Recently, L. Ciric and
Lakshmikantham [9] studied two coupled random coincidence and coupled random fixed point
theorems for a pair of random mappings F :Qx (X x X)—>Xand g:Q2x X — X under some
contractive conditions. Lakshmikantham and Ciric [21] introduced the concept of g-monotone
mapping and proved some coupled coincidence and coupled common fixed point theorems in

partially ordered complete metric spaces.
The purpose of this article is to prove coupled random coincidence and coupled random
fixed point theorems for a pair of random mappings F:Qx(XxX)— X and g:QxX — X.

Thus we shall prove new results for random mixed monotone mappings, which are extensions of
the corresponding results for deterministic mixed monotone mappings of Ciric and
Lakshmikantham [9].

2. Preliminaries:



178 SMRITI MEHTAY" AND A.D.SINGH?

Definition 1.1 (Bhaskar and Lakshmikantham [5]). Let (X,<)be a partially ordered set and

F: X xX — X . The mapping F is said to has the mixed monotone property if F is monotone
non-decreasing in its first argument and is monotone non-increasing in its second argument, that

is, forany x,ye X .

X% eX; % <X, =>F(x,y)<F(x,y) .. (1)
and
VoY, € X; <y, =>F(xy)=2F(xy,) .. (2)
Definition 1.2 (Bhaskar and Lakshmikantham [5]). An element (x, y) e XxX is called a
coupled fixed point of the mapping F: X xX — X if
F(xy)=x F(y.x)=y.
The concept of the mixed monotone property is generalized in [20].

Definition 1.3 (Lakshmikantham and Ciric [21]). Let (X,s) be a partially ordered set and

F:XxX —>Xand g: X — X . The mapping F is said to has the mixed g-monotone property if

F is monotone g-non-decreasing in its first argument and is monotone g-non-increasing in its

second argument, that is forany x,y e X .

X% eX, g(x)<g(x,) implies F(x,y)<F(x.,y) .. (3)
and

Y Y, € X, 9(y,)<d(y,) implies F(xy,)=F(xy,) ... (4)
Clearly, if g is the identity mapping, then Definition 1.3 reduces to Definition 1.1 .

Definition 1.4 An element (x,y)e X x X is called a coupled coincidence point of a mapping

F: XxX—>Xand g: X > X if

F(xy)=g(x),  F(v.x)=9(y).
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Definition 1.5 Let (X,d) be a separable metric space, (Q,Z) be a measurable space and

F:Qx(XxX)—)X and g:Qx X — X be mapping. We say F and g are commutative if

F(o.(9(@.%).9(a,))) =g (a,F(@(x )))
forall we Q andall x,ye X.

Let (Q,Z) be a measurable space with X sigma algebra of subsets of Qand let
(X,d) be a metric space. A mapping T :Q — X is called X -measurable if for any open subset

Uof X,T*(U)={w:T(w)eU}eX. Inwhat follows, when we speak of measurability we will

mean X— measurability. A mapping T:QxX — X is called a random operator if for any

xe X, T(.,x) is measurable. A measurable mapping &:Q — X is called a random fixed point

for a random function T:Qx X — X, if f(a))=T(a),§(a))) for every we Q. A measurable

mapping £:Q — X is called a random coincidence of T:QxX — X and g:Qx X — X if
(@ &(@))=T(w,&(w)) foreverywe Q.
Let ¢ denote all functions ¢:[0,%0) —[0,)which satisfy

0] @ 1s continuous and non-decreasing,
(i)  ¢(t)=0ifandonlyif t-0,
(iii)  @(t+s)<e(t)+¢(s),Vvt,se[0,x)

and  denote all functions y :[0,00) —[0,00) which satisfy lim,_ w(t)>0for all r>0 and

lim_,, w(t)=0.
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For example, functions ¢, (t)=kt where k>0,¢2(t):L,¢)3(t):|n(t+1), and

t+1
p()=min{tl ae in ¢ ; y()=kt where k>0,y/2(t):w . and
L,  t=0
t
1 O<t<1 _
ws(t)= L (g areiny.
EL t>1
2

In [20] the following theorem is proved.

Theorem 1.1 (Lakshmikantham and Ciric [21]). Let (X,<) be apartially ordered set and
suppose there is a metric d on X such that (X,d) is a complete metric space. Assume there is a

function

@:[0,4+00) —[0,40) with ¢(t)<t and lim,_,, ¢(r)<t for each t>0 and also suppose

F:XxX — X and g: X — X are such that F has the mixed g-monotone property and

d(F(x y),F(u,v))sqo[d(g(x)’g(u))zd(g(y)’g(v))j

forall x,y,u,ve X for which g(x)<g(u) and g(y)=>g(v).Suppose F(XxX)=g(X),qg is
continuous and commutes with F and also suppose either

(a) F is continuous or

(b) X has the following property:

i.  Ifanon-decreasing sequence {x,} — x, then x, <x forall n,

ii.  Ifanon-decreasing sequence {y,} —y, then y <y, foralln,
If there exists X,,Y, € X such that

9(%)<F (% Y)and g(¥s)=F (Y. %),

then there exist x,y € X such that
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g(x)=F(xy) and g(y)=F(y,x)
That is, F and g have a coupled coincidence.

Theorem 1.2 (Lakshmikantham and Ciric [9]): Let (X,d)be a complete separable metric space,

(©, E) be a measurable space and F:Qx(X — X)— X and g:Qx X — X be mappings such

that

(i) F(®,.),9(w.) are continuous forall weQ,
(i) F(.,v),9(.,x) are measurable for all ve X x X and x e X, respectively,

(i) F:Qx(XxX)—>X and g:QxX — X are such that F has the mixed g-monotone

property and

d (F(a),(X, y)), F(w’(‘*")))
S({d(g(a), x),g(@,u))+d (g (@ y)'G(G"V))]

2
for all x,y,u,ve X for which g(®,x)<g(w,u) and g(w,y)>g(w,v) for all <. Suppose
g(wxX)=X foreach weQ, gis continuous and commutes with F and also suppose either

(a) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {x,} — x, then x, <x forall n,
(i) ifanon-increasing sequence {y,} —y,then y >y foralln.

If there exist measurable mappings &;,7, :€2— X such that
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IA

(a),(é‘o (),7, (a)))) and

g(a), 680("’)) F
F(@,(m(@).&()))foral oeQ,

9(60,770 (a)))

\

then there are measurable mappings ¢,80:Q — X such that

F (¢ ().0(0))) =9 (@£ (o)) 2nd F (@,(0(@).£ () = 0 (60(w))

forall weQ, thatis, F and g have a coupled random coincidence.

3. Main Results:
The following theorem is our main result.

Theorem 2.1 Let (X,d) be a complete separable metric space, (€2,%)be a measurable space

and F:Qx(XxX)—)X and g:Qx X — X be mapping s such that

(i) F(®,-), 9(w,-) are continuous for all w € Q,
(i) F(-V),g(-x) are measurable for all v e X x X and x € X respectively,

(iii)  F:Qx(XxX)—> X and g:QxX — X are such that F has the mixed g-monotone

property and

#(d(F (o, (x¥)).F (@(u))
g

s%q)(d(g(a),x),g(a),u))m(

(@y).9(@v)) (5)

_V,[d (9(%).9(ou))+d(g(, y),g(w,V))]

2
for all x,y,u,ve X for which g(®,x)<g(w,u) and g(w,y)=g(w,v) for all @eQ. Suppose
g (a)x X ) = X foreach weQ, g is continuous and commutes with F and also suppose either

@) F is continuous or

(b) X has the following property:
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(i) if a non-decreasing sequence {x,} — x, then x, <x forall n, .....(6)

(i) if a non-increasing sequence {yn} —y, then y >y foralln, (7

If there exist measurable mappings &;,7, : €2 — X such that
g (a), & (a))) <F (w,(§0 ()17, (a)))) and

9(@m,(w)) F(a),(no(w),§0 (a)))) forall weQ,

then there are measurable mappings &,0:Q — X such that

F(0,(£(0),0(0)))=g(0.£(@))and F(0,(0(0),£(0)))=g(0.0(w))
forall weQ, thatis, F and g have a coupled random coincidence.

Proof: Let ®={,:Q— X} be a family of measurable mappings. Define a function
h:Qx X — R" as follows:
h(w,x)=d(x,g(e,x)).

Since x — g(w,x)is continuous for all weQ, we conclude that h(w,-)is continuous for all
weQ . Also, since ®— g(w,x) is measurable for all xe X , we conclude that h(- x) is
measurable for all @ e Q (see Wagner [38], p. 868). Thus, h(a), x) is the Caratheordory function.
Therefore, if £:Q— X is a measurable mapping, then @ — h(w,£(w)) is also measurable (see
[32]). Also, for each £e®© the function 7:Q— X defined by 7(w)=g(w,&(w)) is
measurable, that is, 7€ ® .

Now we shall construct two sequences of measurable mappings {& }and {7,}in ©, and two

sequences {g(a,&, (o))} and {g(@.n,(®))} in X as follows. Let &,7,€© be such that

9(@ & (w))< F(w,(§0 (@)1, (a)))) and g(w,7,(w))= F(a),(no (a))fo(a)))) for all weQ).

Since F (m,(§0 (@), 7, (a)))) e X =g(wx X), by a sort of Filippov measurable implicit function
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theorem [4, 15, 18, 26] there is & € © such that g (@, & (@)) = F (@,(& (@), 7, (@))). Similarly,

as F (a),(no (0),& (a)))) eg(oxX) there is m(w)e® such that
g(w,nl(w)):F(w,(no(w),§0 (a)))) Now F(a),(fl(a)),nl(a)))) and F(a),(nl(co),fl(a))))are
well defined. Again from F( ) F( (a))))eg(a)xx), there are
&,1,€0 such that g(a) & (o ) ( ((f (a)),nl(a)))) and

g(a),nz(a))):F(a),(nl(a)),fl(a)))). Continuing this process we can construct sequences

{& (@)} and {5, (@)} in X such that

§(@é0a(@))=F(@(& (@) m (@) and
d(@. 17,1 (@) =F(e,(1,(0),& (@) for all n>0. e(8)
We shall prove that
9(@.& () <g(w.é&,, (@) froall n=0 n(9)
and
(@7, ()2 9(@7,,(w)) froal n=0 .....(10)
The proof will be given by the mathematical induction. Let n=0. By assumption we have
9(@.5 (@) <F(a,(&(@).m(@))) and g(@.m, ()= F (o, (1 ()& («))).
since g(@. (0))=F (,(& (@) 7 (0))) and g(0,7,(0)) = F (@, (), & () we have
9(@.& (@) =9(@ & (@) and g (w7, () 2 g (@11, (@)

Therefore, (9) and (10) hold for n=0 .
Suppose now that (9) and (10) hold for some fixed n>0 . Then, since
9(@.& ()< g(w.é&,, (@) and (@73, (®))<g(@n,,(w)), and as F is monotone g-non-

decreasing in its first argument, from (3) and (8),

F (0/(&(0) 7 (@)= F (0 (@), (w)
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F (a), (17 (@), &, (a)))) <F (a), (1, ()., (a)))) ..... (11)
Similarly, from (4) and (8), as g(@.7,,(®))<d(w,7,(®)) and g(w,& (0))<g(@.&,.,(w)),
F(@.(601(@) 7701 ())) 2 F (@.(6,.2 (@), 72, (@)));

F (a)’ (77n+1 (@).&, (a)))) 2F (a)7 (77n+1 (@), (@) ) """ (12)
Now from (11), (12), and (8) we get

)
)

g (a), E (a))) <g (a), E (a))) ..... (13)
and
9(@n,,(®)29(0n,(0) L (14)
Thus, by the mathematical induction we conclude that (9) and (10) hold for all n>0.
Denote
5 =d (g (., (@), 9(@,&,, (a))))+ d (g (@,17,(@)).9(@.7,., (a)))) ..... (15)

Since from (9) and (10) we have g(®¢,(0)<g(wé (w)) and

9 (@71,4(@))> 8 (7, (), then from (8) and! (5) e get
#(d(9(.£,(0)).9(@4())))
~4(d(F(0(61(0) 712 ()). F (@1(& (@)1, (@)

< %co(d (9(0.5.4(0)).9(@.5 (@) +d(9(@7,:(@)). 9 (07, (@))))

(d(9(@81(2)). 9(,& ()))+d(9 (1,1 (@), 9 (@1, ())))

- | (16)

Similarly, from (8) and (5), as g(@.7,(w))<g(@.7,,(®)) and g(,& (@) 2 g(@.& (@),
#(d(9(@1.1()) 9 (@1, (0)))
~0{d(F (0. (0).£,(0)) F (0.(12() 12 (@)

1

So(d(9(@n4(0).9(0n, () +d(9(.4,4(0)).9(0.4, ()

<
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| (9(@71(@)). 9 (@7, (w)));d B(@és(@)s(@a(@)) (17)

By adding (16) and (17),

#(d(9(0.4(0)).9(@.51(0)))+4(d (9 (0 71,1(@)). 9 (071, (2))))

<9(9(9(4.1(). 9(014 ())) +d (9 (@71,1(0)). 8 (1, ()
(d(9(@.&4(@)).9(@.& (@) +d(9(@.7,4()). g (@.7,(2))))

2y e 28)

By property (iii) of ¢, we have

¢[d (g (a), f (0)))1 g (a), Snit (a))))+ d (g (a)v Tha (a))), g (a), Un (a))))]

< ¢<d (g (a), & (a))), g (a), E (a))))) +¢(d (g (a), Mo (a))), g (a), . (a))))) ..... (19)
From (18) and (19) we have

80 (9(0.8,(0)), 950 (@) +d (9 (074 (), 8 (017, ()]
< o[0(0(060.(0).9(0:6(0)))+ 8 (8 017, (0)). 0 (007, ()]
4(9(0.£,4()).9(0.&,()))+d (9 (07,4 ()), g (@7, ()))

< ZW 2 ..... (20)

which implies

¢(d (9(0.&, (). 9(@.&.4(0)))+d(9 (@7 (@), 9 (.7, (a’))))
<4(0(8(05 (@), 8(0 (@) 8 (07, ()). (01, ()

Using the fact that ¢ is non decreasing, we get

d (g (a), £ (a))), g (60, St (a)))) +d (9 (a), Tha (a))), 9 (a), T (a))))
<d(9(0.£4(0)).9(0.&,(0))+d (9 (@7, (), g (@17, ()))

Therefore 6, <06, ,
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It follows that {6 } is the monotone decreasing sequence of positive reals. Therefore, there is

n

some J = 0such that

lims, =lim| d(g(@,£,(0)), 9(@.&,.1()))+d (9 (27,1 (@), 9 (@7, ())) | =5

nN—oo

We show that & =0. Suppose, to the contrary, that & >0. Then, taking the limit in (20) when

0, — d+ and have in mind that we assume that Itimw(t)>0 for all r>0and ¢ in continuous,

we have

n—oo

a contradiction. Thus, 6 =0,
that is

d (g (@.¢,(@)).9(@.&,., (a)))) +d (g (@.77,.1(@)), 9(0,7, (a)))) =0 .. (21)
Now we prove that {g(a) §n(co))} and {g(a) nn(a)))} are Cauchy sequences. Suppose, to the
contrary, that at least one of {g(,¢, ())} or {g(e.n,(e))} is not a Cauchy sequence. Then

there exist an >0 and two subsequences of positive integers {I(k)},{m(k)}, m(k)>1(k)=k

with
ro=d (g (a)’ é:I(k) (a))), 9 (a)’ Cng(|<) (a))))

+d(g(a),77|(k)(a))),g(a),nm(k)(a))))Zg for ke{1,2..}. .. (22)

We may also assume

d (g (a), n (a))), g (a), Sih 1 (a)))) +d (g (a), . (a))), g (a), Mo 1 (a)))) <e .(23)

by choosing m(k)to be the smallest number exceeding (k) for which (18) holds. Such m(k)

for which (23) holds exists, because ¢, — 0. From (22), (23) and by the triangle inequality,
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Taking the limit as k — o we get

limr, =¢+. (24)

k—»0

By (22) and the triangle inequality,

r=d (9 (0) Sitk) (a’)> g (a’ Sm) (a))))+ d (g (0) k) (‘0)) g (a’ (i) (a’)))

+[d (9 (60, Sm) (a))), 9 (a), Sk} (co))) +d (9 (a), Tln(k) (a))), 9 (0)’ My (a)))ﬂ
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+d (9 (C‘L Si(k)1 (a))), g (“)’ Sm(k)+1 (a))))
+d (g (a), My (a))), 9 (‘0’ Min()1 (a))))

Hence,

e <64y Oy +d (g (a), Sk (‘0))’ 9 (a), Skt (a)))) +d (g (5’)' Th(kya (a))), 9 (a), () (a)))) """ (25)

Using the property of ¢, we have
#(r)= ¢[5( K ) +d (g (a) Sy (@ )) 9 (a) S (k)+l(a))))+d (9 (a)"7|(k)+1 (a))), g (a), nm(k)+l(a)))):|
< ¢ +¢d (d (g (a) Sk a) a) S (a)))))
+¢( (g( ’77|(k)+1(a’))’g(wlnm(k)+1(w)))) ----- (26)

Since from (9) and (10) we conclude that

g (0)7 Si(k) (0))) <g (a), (k) (a))) and g (a), ) (a))) =9 (a)’ (i) (a))) ’

from (5) and (8),

¢(d (g (0), 5|(k)+l (a)))’ g (w’ gm(k)ﬂ (a)))))

¢(d (9(@ 72 (@)), 8 (@774 (“’))))
_ ¢(d (F (a) (g (@) &g (60)))’ F (“’ (0 (“’)’5'(@))))
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<

N~

w(d (9 (@9 (@), (@11, (“’)))+ d (g (@& (@) 9(@4 (‘"))))
l//[d (9 (0)1 (k) (a))), 9 (‘0, ") (a))))+ d (g (a), Sm) (a))), 9 (a), Sl (a))))}

2

1 k
:§¢(rk)_‘/'(r§j ..... (28)
Inserting (26) and (28) in (25) we obtain
rk
#(r)< ¢(5n(k) +§m(k)>+¢(rk)— 2yx[5j

Letting k — oo we get, by 17(a) and (20),

#(e) < ¢(0)+¢(g)—2my/(%kj = ¢(z)-2lim w[%) <p(e) .. (29)

a contradiction. Therefore, our supposition (22) was wrong. Thus, we proved that {g (a) & (a)))}
and {g(@,7,())} are Cauchy sequences in X.
Since X is complete and g(wxX)=X , there exist ¢,,6,€® such that

lim, ., 9(o,% (0))=9(o.¢(w)) and lim_,, g(w,7,(®))=9(.6,(»)). Since g(w,&, (o))

and g(a),HO(a))) are measurable, then the functions ¢ (w) and () , defined by

¢ (w)=9(»,¢,(w)) and 6(w)=g(w,6,(w)), are measurable. Thus

limg(0.& (@) =¢(0) and lmg(om,(@)=0(e) . (30)
From (30) and continuity of g,

limg (a), g (a), & (a)))) =g (a), ((a))) and Lm g (a), g (a), m, (a)))) =g (a), G(a))) ..... (31)

n—oo

Form (8) and commutativity of F and g,
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(oo, o). 5(om (o)
=0 (a) F (60 (ezn (@)1, (60)))) =g (a) g (a) E (a)))) ..... (32)

Flo(a(@m(@).9(0.& ()
=g (0), F (0), (77n (0),&, (a))))) =g (a), g (a), Mo (a)))) ..... (33)

We now show that if the assumption a) or b) holds, then

9(0.¢(0))=F(,(¢(2).0(w))) and g(@,0(w))=F(a,(0(e).¢ ()
Suppose at first that the assumption (a) holds. Then from (31), (32) and (33), and continuity of F

we get

Thus, we proved that
F (a),(é’(a)),ﬁ(a)))) =g (a),g”(a))) and F (a),(é?(a)),é’(a)))) =g (a),é’(a))),
that is, (g“(co)&(a))) e X x X is a coupled random coincidence of F and g.

Suppose now that (b) holds. Since from (9), {g(a)gn(a)))} IS non-decreasing, and as

g(@.& (@) > g(@.¢ (@), from (6) we have g(@,& (@))<g(w,6(w)) for all n. Also, as
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from (10), {g(a) 7, (a)))} is non-increasing and g(@,7, (@))— g(®,0(w)), from (7) we have

g (a) n, (a))) >g (a)e(a))) for all n. Thus by the triangle inequality, (32) and (5) we get

Therefore
#(d(9(.¢ (@)).F (0.6 (2).0(w))))
<9(d(9(@£(0)).9(@.8,4())) +4(d (F(@.9(0.5,(0)). 9 (01 (0))). F (¢ (0).0(0))))

<4(d(9(0¢ (0)).0(0.9(0:5,5(0)))
+29(d(9(0.0(05,(0))). 0(0.¢ () +d (9 (0.9 (@7, (0))). 0 (0.0())))
| dleles(@4 @) g(0c @) +d{s(o.0(@m (@) o(0()

2

Letting n — oo, from (30) and the property of 74 we get

#(d(9(¢ (@), F(@(¢ (@),0(0))))=0.
Thus d(g(@.¢ (), F(@,(¢(@).0())))=0
Hence F (a),(g(a)),ﬁ(a)))) =g (a),g“(a)))

Similarly one can show that F(w,(0(@).¢(@)))=0(®,0()) . Thus we proved that

(g(a))é(w)) e X x X is a random coupled coincidence point of F and g.
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Corollary 2.2: Let (X,d) be a complete separable metric space, (Q,Z) be a measurable space

and F:Qx(X xX ) — X has the mixed monotone property and such that

(i) F (,-) is continuous for all w e Q.

(i) F(-v) is measurable forall ve X x X,

(iii)  There exists a y €y such that F satisfies the following condition:

d(g(@.x),g(w,u))+d(g(o,y).9(V))

d(F (@ (xy)),F (@ (V)< 2

d(g(@.x).g(@.u))+d(g(ey).g(@v))

—y S (34)

forall x,y,u,ve X for which g(w,x)<g(w,u)and g(w,v)<g(m,y) forall weQ,
Assume that F and g satisfies the following conditions.

(i) F(®,),9(w,-) are continuous for all w e Q.

(i) F(-V),g(-v) are measurable for allve X x X and x € X, respectively,

(iii)  F(oxX)cX foreach weQ,

(iv) g iscontinuous and commutes with F and also suppose either.

@) F is continuous or

(b) X has the following property:

(i) if a non-decreasing sequence {x,} —x, then x, <xforalln, ... (35)

(i) ifanon-increasing sequence {y,} —vy, then y<y, foralln. .. (36)

If there exist measurable mappings &;,7, : 2 — X such that

IA

F (a),(fo (w),7, (a)))) and
F(@.(m(@).&(@))) forall weQ,

& (@)
o ()

\

then there are measurable mappings ¢,80:Q — X such that

F (a),(é’(a)),ﬁ(a)))) =¢(w) and F (a), (0((0),4’((0))) =0(w)
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for all weQ, thatis, F has a random coupled fixed point.

Proof: In Theorem 2.1 taking ¢(t)=t, we get Corollary 2.1
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