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Abstract. We consider the subclass P(j, A\, o, n) of starlike functions with negative coefficients by using

o0
the differential D™ operator and functions of the form f(z) = z — Y. apz¥ which are analytic in the
k=j+1
open unit disk. We examine the subclass P(j, A, a, n,zp) for which f(z0) = zo or f (20) = 1, zo real. We

determine coefficient inequalities for functions belonging to the class P(j, A\, @, n,20). As special cases, the

results of our paper reduce to Silverman [1].
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1. Introduction and Preliminaries
Let A denote the family of functions f of the form

(1) f(z) =2+ Z an 2"

that are analytic in the open unit disk U := {z:z € C and |z| <1}. A function f € A is said to be

starlike of order a (0 < a < 1) if and only if

o) R {20

5 }>a, (zel).
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We denote by S*(«), the class of all such functions. On the other hand, a function f € A is said to

be convex of order a (0 < ae < 1) if and only if

2f"(z)
f'(z)

Let C (o) denote the class of all those functions which are convex of order a in U.

(3) 3%{1+ }>a, (z eU).

Note that $*(0) = §* and C(0) = C are, respectively, the classes of starlike and convex functions in Y.

Let A (j) denote the class of functions of the form:

(4) fl2)=z+ ) ap® (jeN:={1,23.1})
k

—jt1
which are analytic in the open unit disk U.

Saldgean [3] has introduced the following operator called the S&ligean operator for a function f (z) in

A(@J)

(5) D°f(2) = f ()
(6) D'f(2)=Df(2)=2f () =2+ D ka"
k=j+1
(7) D’f(2) =D (Df(2)) =2f' () + 221" (2) =2+ Y Kap
k=j+1
()
(9) D"f(z)=D (D" 'f(2) = z+ » K'az¥ (neN).
k=j+1

With the help of the differential operator D™, we say that a function f (z) belonging to A (j) is in the

class @ (4, A\, @, n) if and only if

(1= \) 2 (D"f (2)) + Az (D" f (2))

(10) Y AN D () FADA ()

>«

for some o (0 < v < 1) and A (0 < A < 1), and for all z € U.
In [2], M.K.Aouf and H.M.Srivastava, T (j) denoted the subclass of A (j) consisting of functions of the

form:

(11) f(z)=2— iakzk (ar >0; j€N).
k=j+1
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Further, M.K.Aouf and H.M.Srivastava defined the class P (j, A, a, n) by

(12) P(j,)\,a,n)zQ(j,)\,a,n)ﬂT(j).

In [2], for a function f (z) in P (j, A, a,n) ,M.K.Aouf and H.M.Srivastava defined

(13) D°f (2) = [ (2)
(14) D'f(2)=Df(2) =2f (2) =2 — Z kayz*
k=j+1
(15) D’f(z) =D(Df (2)) =21 (2) + 22" (2) =2 = ) Kapz"
k=j+1
(16)
(17) D"f(z)=D (D" 'f(z) = z— Z k™ ay 2" (neNy=NU{0}).
k=j+1
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In [2], M.K.Aouf and H.M.Srivastava obtained coefficients inequalities, distortion theorems, closure

thorems, and some properties involving the modified Hadamard products of several functions belonging

to the class P (j, A\, a,n). They also determined the radii of close-to-convexity for, and considered integral

operators associated with, functions belonging to the class P (j, A\, ,n). Finally, they extended some of

the aforementioned distortion theorems to hold true for certain operators of fractional calculus ( that is,

fractional integral and fractional derivative).

In order that prove our theorem, the following lemma is needed.

Lemma 1.1. [2] Let the function f (z) be defined by (11). Then f (z) € P (4, A, a, n) if only if

(18) i K (k—a) {1+ (k- DM\ap <1—a

k=j+1

(ap>0; jeN;neNy; 0<a<l; zeld; 0<A<1).

N
In [4], Schild examined the class of polynomials of the form f(z) = z — Y a,z", where a,, > 0 and
n=2

f (%) is univalent in the disk |z| < 1. In [5], Pilat studied the class of univalent polynomials of the from

N
f(z) = a1z — > anz™, where a, > 0 and f(z) = zp > 0. In [1], Silverman dealt with functions of the
n=2

form

(19) f(z)=a1z — Z anz"
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where either

(20) an >0, f(z0) =20 (1 <29 <1; 29#0)
or
(21) an >0, f () =1 (-1<2z<1).

Given a and zg fixed, 8§ («, z0) examined the subclass of functions starlike of order « that satisfy (20),
and S5 (o, z9) examined the subclass of functions starlike of order « that satisfy (21). Also denoted by
Ko(a, z0) and Kj(a, 29) the subclasses of functions convex of order « that satisfy, respectively, (20) and
(21).

In [1], Silverman determined necessary and sufficient conditions for functions to be in these classes.
Silverman found the extreme points for each of these classes. Besides, Silverman gove a necessary and
sufficient condition for a subset B of the real interval (0,1) to have the property that U—% en Sola, z,),
Uzn,EB Koo, zy), U, ep ST(a, 2), UZWEB K1 (o, zy) each forms a convex family. The extreme points of
each of these classes was then determined. Many of the results in [1] reduced to those in [6] in the special
case zg = 0.

In this paper inspired and motivated by this facts, we consider the subclass P(j, A, a,n) of starlike

functions with negative coefficients by using the differential D™ operator and functions of the form

(22) fz)=2- i arz® (ap >0; j €N)
k=j+1

which are analytic in the open unit disk. We examine the subclass P(j, A, a,n,z0) for which f(zg) = 2
or f/(zo) = 1, zg real. The purpose of this paper is to determine coefficient inequalities for functions

belonging to the class P(j, A, &, n,29). As special cases, the results of this paper reduce to Silverman [1].
2. Main results

Theorem 2.1. Let the function f (z) be defined by (11). Then f (2) is P (j, A, o, m, 20) if only if

oo

(23) 3 {k" (];:Z){l—k(k—l))\}—z(’fl ay < 1.

k=j+1

(ag>0; jeN; neNy; 0<a<l1; zel; 0<)A<1;2 €R fixed point).

The result is sharp.
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Proof. Assume that f (z) is P (j, A, a,n, 29) . We find that

e, B

(24) Y=1= sis =1=1- Y =1
20 20 -
k=j+1
(25) Z arzi Tt =
k=j+1
Then, by Lemma 1, we have
(26) Z E'(k—a) {1+ (k-1 Aar <1—a
k=j+1
> k—a

(27) Z {kn<l—a){1+( —1))\}—20 }akgl.

k=j+1
Conversely assume that the inequlatiy (25) holds true. Then we find that

(28) i [k" (T_z){l—i—(k—l))\}—zgl} ap <1

k=j+1

S R (k—a) {1+ (k—DA\ar o

k=j+1 k—1
(29) 1~ o — Z akzy <1
_]+1
o0
(30) Z akzg_l >0.
k=j+1
k—1
Now, we have two case that both Z arzi™' =0 and Z arz, - > 0. Then, we have
k=j+1 k=j+1
(oo} o0 (oo}
(31) Z akzg_l =0 = 1- Z akzg_l =1= 29— Z akzg =20 = f(20) =
k=j+1 k=j+1 k=j+1
and
o0 oo o0
(32) Z arzi >0 = 1- Z arzi Tt > 1= 2 — Z arz > 20 = f(20) # 20
k=j+1 k=j+1 k=j+1

Consequently, f (z) € P (4, A, a,n, 2q) -

201

Corollary 2.2. If weset j =1, A\ =0 and n = 0 in Teorem 1, we immediately obtain. Then we find that

(33) > [lf_z - zg—l} ap <1

and P (1,a,29) = Sg (e, 29). In [1] examined S (a, 2p).
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Corollary 2.3. A special case of Theorem 1 when j =1 ,A =1 and n = 0 yields. Then we find that
= [k(k—a) _
(34) > [1(1 M ap <1
k=j+1

and P (1,1, , z0) = Ko (e, 29). In [1] examined Ky (o, z0).
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