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Abstract: In this paper we obtain some common fixed point results with Menger-Hausdorff metric for occasionally 

weakly compatible mappings in PM space (Menger Space). 
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1. Introduction 

K. Menger [7] introduced the notion of probabilistic metric space, which is a generalization of the 

metric space. The study of this probabilistic metric space was done mainly with the pioneering 

works of Schweizer and Sklar [11, 12]. Generalization of such metric space appears to be well 

adapted for the investigation of physical quantities and many more. It has importance in 

probabilistic functional analysis and nonlinear analysis (see [3], [8], [9]). In 1972, Sehgal and 

Bharucha-Reid [13] initiated the study of contraction maps and obtained a generalization of 

Banach Contraction Principle on a complete Menger space or probabilistic metric space (shortly, 

PM-space) which is an important step in the development of fixed point theory and fixed point 
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theorems in this space. 

Fixed point theorems, involving four self-maps, began with the assumption that all of the maps are 

commuted. Sessa [14] weakened the condition of commutativity to that of pairwise weakly 

commuting. Jungck generalized the notion of weak commutativity to that of pairwise compatible 

[4] and then pairwise weakly compatible maps [5]. Jungck and Rhoades [6] introduced the concept 

of occasionally weakly compatible maps.  

Abbas and Rhoades [1] generalized the concept of weak compatibility in the setting of single and 

multi-valued maps by introducing the notion of occasionally weakly compatible (𝑜𝑤𝑐).Also Abbas 

and Rhoades [2] extended the idea of 𝑜𝑤𝑐 maps to hybrid pairs of single-valued and multi-valued 

maps using a symmetric δ derived from an ordinary symmetric d. 

The aim of this paper is to obtain some common fixed point results for 𝑜𝑤𝑐 maps with Menger-

Hausdorff metric in PM space (Menger space). 

2. Preliminaries 

Definition 2.1[12]A binary operation ∗ ∶ [0,1] [0,1]→[0,1] is a continuous t − norm if ∗

 is satisfying conditions: 

(i) ∗   is commutative and associative; 

(ii) ∗  is continuous; 

(iii) 𝑎 ∗ 1 = 𝑎 for all 𝑎  [0,1]; 

(iv) 𝑎 ∗ 𝑏 𝑐 ∗ 𝑑 whenever ca  and db  and 𝑎, 𝑏, 𝑐, 𝑑[0,1]. 

Definition 2.2 [12] A mapping 𝐹: ℛ → ℛ+ is called a distribution function if it is non decreasing and left 

continuous with   inf {𝐹(𝑡): 𝑡 ∈ ℛ} = 0  and   sup {𝐹(𝑡): 𝑡 ∈ ℛ} = 1 . 

We shall denote by ℑ the set of all distribution functions defined on [−∞, ∞] while 𝐻(𝑡) will always 

denote the specific distribution function defined by 

𝐻(𝑡) = {
0,            𝑖𝑓 𝑡 ≤ 0;
 1,           𝑖𝑓 𝑡 > 1.

 

If X is a non-empty set, ℱ: 𝑋 × 𝑋 → ℑ is called a probabilistic distance on X and the value of ℱ at 

(𝑥, 𝑦) ∈ 𝑋 × 𝑋 is represented by 𝐹𝑥,𝑦 . 
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Definition 2.3[12] A PM-space is an ordered pair (𝑋, ℱ), where X is a nonempty set of elements and ℱ 

is a probabilistic distance satisfying the following conditions for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡, 𝑠 > 0, 

(1) Fx,y(t) = H(t) for all 𝑡 > 0 if and only if 𝑥 = 𝑦, 

(2) Fx,y(t) = Fy,x(t), 

(3)  if Fx,y(t) = 1 & Fy,z(t) = 1, then Fx,z(t + s) = 1. 

The ordered triple (𝑋, ℱ,∗) is called a Menger space if (𝑋, ℱ) is a PM-space ∗ is a t-norm and the 

following inequality holds: 

Fx,y(t + s) ≥ ∗ (Fx,z(t), Fz,y(t)) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑡, 𝑠 > 0. 

Let (𝑋, 𝑑) be a metric space, 𝐶𝐵(𝑋) be the family of all nonempty bounded closed subsets of X and 𝛿 

be the Hausdorff metric induced by d, that is, 

𝛿(𝐴, 𝐵) = max  {𝑠𝑢𝑝𝑥∈𝐴𝑑(𝑥, 𝐵), 𝑠𝑢𝑝𝑦∈𝐵𝑑(𝑦, 𝐴)}, 

for any 𝐴, 𝐵 ∈ 𝐶𝐵(𝑋), where 𝑑(𝑥, 𝐴) = 𝑖𝑛𝑓𝑦∈𝐴𝑑(𝑥, 𝑦). 

Let  (𝑋, ℱ,∗) be a Menger space and Ω be the family of all nonempty probabilistically bounded  𝜏-

closed subsets of X. For any 𝐴, 𝐵 ∈ Ω, define the distribution functions as follows: 

ℱ̃(𝐴, 𝐵)(𝑡) = 𝐹̃𝐴,𝐵(𝑡) = 𝑠𝑢𝑝𝑠<𝑡 ∗ (𝑖𝑛𝑓𝑥∈𝐴𝑠𝑢𝑝𝑦∈𝐵𝐹𝑥,𝑦(𝑠), 𝑖𝑛𝑓𝑦∈𝐵𝑠𝑢𝑝𝑥∈𝐴𝐹𝑥,𝑦(𝑠)),     𝑠, 𝑡 ∈ ℝ, 

ℱ(𝑥, 𝐴)(𝑡) = 𝐹𝑥,𝐴(𝑡) = 𝑠𝑢𝑝𝑠<𝑡𝑠𝑢𝑝𝑦∈𝐴𝐹𝑥,𝑦(𝑠),      𝑠, 𝑡 ∈ ℝ, 

where ℱ̃ is called the Menger-Hausdorff metric induced by ℱ. 

Lemma 2.4[10] If a Menger space (𝑋, ℱ,∗) satisfies the condition Fx,y(t) = C  for all t > 0 with fixed 

𝑥, 𝑦 ∈ 𝑋. Then we have 𝐶 = 1 and 𝑥 = 𝑦. 

Lemma 2.5[16] Let (𝑋, ℱ,∗) be a Menger space. Then for any 𝐴, 𝐵 ∈ Ω and any 𝑥 ∈ 𝐴, 𝐹𝑥,𝐵(𝑡) ≥

ℱ̃𝐴,𝐵(𝑡) for all 𝑡 ≥ 0. 

Definition 2.6[1] Maps 𝑓: 𝑋 ⟶ 𝑋 and 𝑇: 𝑋 ⟶ 𝐶𝐵(𝑋) are said to be weakly compatible if they commute 

at their coincidence points, that is 𝑓𝑥 ∈ 𝑇𝑥  for some 𝑥 ∈ 𝑋  then 𝑓𝑇𝑥 = 𝑇𝑓𝑥.  

Definition 2.7[1] Maps 𝑓: 𝑋 ⟶ 𝑋 and 𝑇: 𝑋 ⟶ 𝐶𝐵(𝑋) are said to be occasionally weakly compatible 

(𝑜𝑤𝑐) if and only if there exist some point 𝑥 in 𝑋 such that 𝑓𝑥 ∈ 𝑇𝑥 and 𝑓𝑇𝑥 ⊆ 𝑇𝑓𝑥. 
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Example 2.8 Let  (𝑋, ℱ,∗) be a Menger space, where 𝑋 = [0, ∞) and 

Fx,y(t) = {

t

t + |x − y|
,    if t > 0;

0,                       if t = 0.

 

Let 𝐴: 𝑋 → 𝑋 & 𝐵: 𝑋 → 𝐶𝐵(𝑋)  be single valued and set-valued maps defined by  

𝐴(𝑥) = {
0,               𝑖𝑓 𝑥 = 0;

𝑥2,      𝑖𝑓 𝑥 ∈ (0, ∞).
                        𝐵(𝑋) = {

{0},             𝑖𝑓 𝑥 = 0;
{3𝑥},   𝑖𝑓 𝑥 ∈ (0, ∞).

 

Here, 0 and 3 are two coincidence points of A and B. That is  𝐴0 = {0} ∈ 𝐵(0), 𝐴(3) = {9} ∈ 𝐵(3),

𝑏𝑢𝑡  𝐴𝐵(0) = {0} = 𝐵𝐴(0), 𝐴𝐵(3) ≠ 𝐵𝐴(3). Thus A and B are 𝑜𝑤𝑐 but not weakly compatible. 

 

3. Main Results 

Theorem 3.1 Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are  𝑜𝑤𝑐. If   

𝐹̃𝑆𝑥,𝑇𝑦 ≥ min {𝐹𝐴𝑥,𝐵𝑦 .  𝐹𝐴𝑥,𝑆𝑥 , 𝐹𝐴𝑥,𝐵𝑦 .  𝐹𝐵𝑦,𝑇𝑦, 𝐹𝐴𝑥,𝑆𝑥  .  𝐹𝐵𝑦,𝑇𝑦, 𝐹𝐴𝑥,𝑇𝑦, 𝐹𝐵𝑦,𝑆𝑥}             (3.1) 

for all  𝑥, 𝑦 ∈ 𝑋 & 𝑡 > 0. Then 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Proof. Since the pairs {𝐴, 𝑆} & {𝐵, 𝑇} are  𝑜𝑤𝑐, therefore, there exist two elements 𝑢, 𝑣 ∈ 𝑋 such that 

𝐴𝑢 ∈ 𝑆𝑢, 𝐴𝑆𝑢 ⊆ 𝑆𝐴𝑢  and 𝐵𝑣 ∈ 𝑇𝑣, 𝐵𝑇𝑣 ⊆ 𝑇𝐵𝑣. As 𝐴𝑢 ∈ 𝑆𝑢 so 𝐴𝐴𝑢 ⊂ 𝐴𝑆𝑢 ⊂ 𝑆𝐴𝑢, 𝐵𝑣 ∈

𝑇𝑣 𝑠𝑜 𝐵𝐵𝑣 ⊂ 𝐵𝑇𝑣 ⊂ 𝑇𝐵𝑣 

First we prove that 𝐴𝑢 = 𝐵𝑣. 

We have 𝐹𝐴2𝑢,𝐵2𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 .  

Suppose that 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 < 1. Then by (3.1) 

Put 𝑥 = 𝐴𝑢, 𝑦 = 𝐵𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 ≥ min {𝐹𝐴2𝑢,𝐵2𝑣 .  𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 , 𝐹𝐴𝐴𝑢,𝐵𝐵𝑣  .  𝐹𝐵𝐵𝑣,𝑇𝐵𝑣 , 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 .  𝐹𝐵𝐵𝑣,𝑇𝐵𝑣 , 𝐹𝐴𝐴𝑢,𝑇𝐵𝑣 , 𝐹𝐵𝐵𝑣,𝑆𝐴𝑢} 

      ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , 1, 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣} 

      =  𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , a contradiction.  

Hence 𝐴𝑢 = 𝐵𝑣.  

Also,               𝐹𝐴2𝑢,𝐴𝑢 = 𝐹𝐴2𝑢,𝐵𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝑣   

Now we claim that 𝐴2𝑢 = 𝐴𝑢. If not, then 𝐹̃𝑆𝐴𝑢,𝑇𝑣 < 1. 

Considering (3.1) for 𝐴𝑢 = 𝑥, 𝑦 = 𝑣 
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𝐹̃𝑆𝐴𝑢,𝑇𝑣 ≥ min {𝐹𝐴2𝑢,𝐵𝑣  .  𝐹𝐴𝐴𝑢,𝑆𝐴𝑢, 𝐹𝐴𝐴𝑢,𝐵𝑣  .  𝐹𝐵𝑣,𝑇𝑣 , 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 .  𝐹𝐵𝑣,𝑇𝑣 , 𝐹𝐴𝐴𝑢,𝑇𝑣 , 𝐹𝐵𝑣,𝑆𝐴𝑢} 

      ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝑣 , 𝐹̃𝑆𝐴𝑢,𝑇𝑣 , 1, 𝐹̃𝑆𝐴𝑢,𝑇𝑣, 𝐹̃𝑆𝐴𝑢,𝑇𝑣} 

      = 𝐹̃𝑆𝐴𝑢,𝑇𝑣  , which is again a contradiction and hence 𝐴2𝑢 = 𝐴𝑢. 

Similarly, we can get 𝐵2𝑣 = 𝐵𝑣. If  𝐴𝑢 = 𝐵𝑣 = 𝑧 then 𝐴𝑧 = 𝑧 = 𝐵𝑧,   𝑧 ∈ 𝑆𝑧  &  𝑧 ∈ 𝑇𝑧. 

Therefore z is the common fixed point of  𝐴, 𝐵, 𝑆 & 𝑇 . Now suppose that 𝐴, 𝐵, 𝑆 & 𝑇 have another 

common fixed point 𝑧′ ≠ 𝑧. Then  𝐹𝑧,𝑧′ = 𝐹𝐴𝑧,𝐵𝑧′ ≥ 𝐹̃𝑆𝑧,𝑇𝑧′ . 

Assume that 𝐹̃𝑆𝑧,𝑇𝑧′ < 1. Then by (3.1) for 𝑥 = 𝑧  &  𝑦 = 𝑧′. 

𝐹̃𝑆𝑧,𝑇𝑦 ≥ min {𝐹𝐴𝑧,𝐵𝑧′  .  𝐹𝐴𝑧,𝑆𝑧, 𝐹𝐴𝑧,𝐵𝑧′  .  𝐹𝐵𝑧′,𝑇𝑧′ , 𝐹𝐴𝑧,𝑆𝑧 .  𝐹𝐵𝑧′,𝑇𝑧′ , 𝐹𝐴𝑧,𝑇𝑧′ , 𝐹𝐵𝑧′,𝑆𝑧}    

     ≥ min {𝐹𝐴𝑧,𝐵𝑧′ , 𝐹𝐴𝑧,𝐵𝑧′ , 1, 𝐹𝐴𝑧,𝐵𝑧′ , 𝐹𝐴𝑧,𝐵𝑧′}           

     = 𝐹𝐴𝑧,𝐵𝑧′  , a contradiction. 

Hence 𝑧 = 𝑧′. Thus, 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Example 3.1.1 Let 𝑋 = [0,4] with the metric 𝑑 defined by 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| and for each  𝑡 ∈ [0,1], 

define   

M(x, y, t) = {

t

t + |x − y|
,    if t > 0;

0,                       if t = 0

 

for all 𝑥, 𝑦 ∈ 𝑋. Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐 defined by  

S(x) = {
{2},               if 0 ≤ x ≤ 2;
{0},               if 2 ≤ x ≤ 4.

                        A(X) = {
x,             if 0 ≤ x ≤ 2;
3,             if 2 ≤ x ≤ 4.

 

T(x) = {
{2},               if 0 ≤ x ≤ 2;
{4},               if 2 ≤ x ≤ 4.

                        B(X) = {
2,             if 0 ≤ x ≤ 2;
x

4
,            if 2 ≤ x ≤ 4.

 

Clearly all the conditions of the above theorem are satisfied. That is, 

𝐴(2) = {2} ∈ 𝑆(2) and 𝑆𝐴(2) = {2} = 𝐴𝑆(2), 

𝐵(2) = {2} ∈ 𝑇(2) and 𝑇𝐵(2) = {2} = 𝐵𝑇(2), 

So, A and S as well as B and T are 𝑜𝑤𝑐 maps. Also 2 is the unique common fixed point of A, B, S and T. 

On the other hand, it is clear to see that the maps are discontinuous at 2. 

Further, we have 

                          𝑆(𝑋) = {0,2} is not a subset of 𝐵(𝑋) = (
1

2
, 1] ∪ {2} 
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   and 

                         𝑇(𝑋) = {2,4} is not a subset of 𝐴(𝑋) = [0, 2] ∪ {3}, 

which generalizes our result. 

Theorem 3.2 Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐. If   

𝐹̃𝑆𝑥,𝑇𝑦 ≥ min {𝐹𝐴𝑥,𝐵𝑦 , 𝐹𝐴𝑥,𝑆𝑥 ,   𝐹𝐵𝑦,𝑇𝑦, 𝐹𝐴𝑥,𝑇𝑦, 𝐹𝐵𝑦,𝑆𝑥}             (3.2) 

for all  𝑥, 𝑦 ∈ 𝑋 & 𝑡 > 0. Then 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Proof. Since the pairs {𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐, therefore, there exist two elements 𝑢, 𝑣 ∈ 𝑋 such that 

𝐴𝑢 ∈ 𝑆𝑢, 𝐴𝑆𝑢 ⊆ 𝑆𝐴𝑢  and 𝐵𝑣 ∈ 𝑇𝑣, 𝐵𝑇𝑣 ⊆ 𝑇𝐵𝑣. As 𝐴𝑢 ∈ 𝑆𝑢 so 𝐴𝐴𝑢 ⊂ 𝐴𝑆𝑢 ⊂ 𝑆𝐴𝑢, 𝐵𝑣 ∈

𝑇𝑣 𝑠𝑜 𝐵𝐵𝑣 ⊂ 𝐵𝑇𝑣 ⊂ 𝑇𝐵𝑣 

First we prove that 𝐴𝑢 = 𝐵𝑣. 

We have 𝐹𝐴2𝑢,𝐵2𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 .  

Suppose that 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 < 1. Then by (3.2) 

Put 𝑥 = 𝐴𝑢, 𝑦 = 𝐵𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 ≥ min {𝐹𝐴2𝑢,𝐵2𝑣  , 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 , 𝐹𝐵𝐵𝑣,𝑇𝐵𝑣 , 𝐹𝐴𝐴𝑢,𝑇𝐵𝑣 , 𝐹𝐵𝐵𝑣,𝑆𝐴𝑢} 

                ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , 1, 1, 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣} 

                =  𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , a contradiction.  

Hence 𝐴𝑢 = 𝐵𝑣.  

Also,               𝐹𝐴2𝑢,𝐴𝑢 = 𝐹𝐴2𝑢,𝐵𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝑣   

Now we claim that 𝐴2𝑢 = 𝐴𝑢. If not, then 𝐹̃𝑆𝐴𝑢,𝑇𝑣 < 1. 

Considering (3.2) for 𝐴𝑢 = 𝑥, 𝑦 = 𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝑣 ≥ min {𝐹𝐴2𝑢,𝐵𝑣  , 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 ,     𝐹𝐵𝑣,𝑇𝑣 , 𝐹𝐴𝐴𝑢,𝑇𝑣  , 𝐹𝐵𝑣,𝑆𝐴𝑢} 

                   ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝑣 , 1, 1, 𝐹̃𝑆𝐴𝑢,𝑇𝑣, 𝐹̃𝑆𝐴𝑢,𝑇𝑣} 

                   = 𝐹̃𝑆𝐴𝑢,𝑇𝑣  , which is again a contradiction and hence 𝐴2𝑢 = 𝐴𝑢. 

Similarly, we can get 𝐵2𝑣 = 𝐵𝑣. If  𝐴𝑢 = 𝐵𝑣 = 𝑧 then 𝐴𝑧 = 𝑧 = 𝐵𝑧,   𝑧 ∈ 𝑆𝑧  &  𝑧 ∈ 𝑇𝑧. 

Therefore z is the common fixed point of  𝐴, 𝐵, 𝑆 & 𝑇 . Now suppose that 𝐴, 𝐵, 𝑆 & 𝑇 have another 

common fixed point 𝑧′ ≠ 𝑧. Then  𝐹𝑧,𝑧′ = 𝐹𝐴𝑧,𝐵𝑧′ ≥ 𝐹̃𝑆𝑧,𝑇𝑧′ . 
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Assume that 𝐹̃𝑆𝑧,𝑇𝑧′ < 1. Then by (3.2) for 𝑥 = 𝑧  &  𝑦 = 𝑧′. 

𝐹̃𝑆𝑧,𝑇𝑦 ≥ min {𝐹𝐴𝑧,𝐵𝑧′  , 𝐹𝐴𝑧,𝑆𝑧 , 𝐹𝐵𝑧′,𝑇𝑧′ , 𝐹𝐴𝑧,𝑇𝑧′ , 𝐹𝐵𝑧′,𝑆𝑧}    

     ≥ min {𝐹𝐴𝑧,𝐵𝑧′ , 1, 1, 𝐹𝐴𝑧,𝐵𝑧′ , 𝐹𝐴𝑧,𝐵𝑧′}           

     = 𝐹𝐴𝑧,𝐵𝑧′  , a contradiction. 

Hence 𝑧 = 𝑧′. Thus, 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Theorem 3.3 Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐. If   

𝐹̃𝑆𝑥,𝑇𝑦 ≥ min {𝐹𝐴𝑥,𝐵𝑦 , 𝐹𝐴𝑥,𝑆𝑥 ,   𝐹𝐵𝑦,𝑇𝑦,
𝐹𝐴𝑥,𝑇𝑦+ 𝐹𝐵𝑦,𝑆𝑥

2
}             (3.3) 

for all  𝑥, 𝑦 ∈ 𝑋 & 𝑡 > 0. Then 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Proof. Since the pairs {𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐, therefore, there exist two elements 𝑢, 𝑣 ∈ 𝑋 such that 

𝐴𝑢 ∈ 𝑆𝑢, 𝐴𝑆𝑢 ⊆ 𝑆𝐴𝑢  and 𝐵𝑣 ∈ 𝑇𝑣, 𝐵𝑇𝑣 ⊆ 𝑇𝐵𝑣. As 𝐴𝑢 ∈ 𝑆𝑢 so 𝐴𝐴𝑢 ⊂ 𝐴𝑆𝑢 ⊂ 𝑆𝐴𝑢, 𝐵𝑣 ∈

𝑇𝑣 𝑠𝑜 𝐵𝐵𝑣 ⊂ 𝐵𝑇𝑣 ⊂ 𝑇𝐵𝑣 

First we prove that 𝐴𝑢 = 𝐵𝑣. 

We have 𝐹𝐴2𝑢,𝐵2𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 .  

Suppose that 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 < 1. Then by (3.3) 

Put 𝑥 = 𝐴𝑢, 𝑦 = 𝐵𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 ≥ min {𝐹𝐴2𝑢,𝐵2𝑣  , 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 , 𝐹𝐵𝐵𝑣,𝑇𝐵𝑣 ,
𝐹𝐴𝐴𝑢,𝑇𝐵𝑣 +   𝐹𝐵𝐵𝑣,𝑆𝐴𝑢

2
} 

                 ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , 1, 1, 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣} 

                 =  𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , a contradiction.  

Hence 𝐴𝑢 = 𝐵𝑣.  

Also,               𝐹𝐴2𝑢,𝐴𝑢 = 𝐹𝐴2𝑢,𝐵𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝑣   

Now we claim that 𝐴2𝑢 = 𝐴𝑢. If not, then 𝐹̃𝑆𝐴𝑢,𝑇𝑣 < 1. 

Considering (3.3) for 𝐴𝑢 = 𝑥, 𝑦 = 𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝑣 ≥ min {𝐹𝐴2𝑢,𝐵𝑣  , 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 , 𝐹𝐵𝑣,𝑇𝑣 ,
𝐹𝐴𝐴𝑢,𝑇𝑣 +   𝐹𝐵𝑣,𝑆𝐴𝑢

2
} 

                   ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝑣 , 1, 1,   𝐹̃𝑆𝐴𝑢,𝑇𝑣} 

                   = 𝐹̃𝑆𝐴𝑢,𝑇𝑣  , which is again a contradiction and hence 𝐴2𝑢 = 𝐴𝑢. 
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Similarly, we can get 𝐵2𝑣 = 𝐵𝑣. If  𝐴𝑢 = 𝐵𝑣 = 𝑧 then 𝐴𝑧 = 𝑧 = 𝐵𝑧,   𝑧 ∈ 𝑆𝑧  &  𝑧 ∈ 𝑇𝑧. 

Therefore z is the common fixed point of  𝐴, 𝐵, 𝑆 & 𝑇 . Now suppose that 𝐴, 𝐵, 𝑆 & 𝑇 have another 

common fixed point 𝑧′ ≠ 𝑧. Then  𝐹𝑧,𝑧′ = 𝐹𝐴𝑧,𝐵𝑧′ ≥ 𝐹̃𝑆𝑧,𝑇𝑧′ . 

Assume that 𝐹̃𝑆𝑧,𝑇𝑧′ < 1. Then by (3.3) for 𝑥 = 𝑧  &  𝑦 = 𝑧′. 

𝐹̃𝑆𝑧,𝑇𝑦 ≥ min {𝐹𝐴𝑧,𝐵𝑧′ , 𝐹𝐴𝑧,𝑆𝑧 , 𝐹𝐵𝑧′,𝑇𝑧′ ,
𝐹

𝐴𝑧,𝑇𝑧′  + 𝐹
𝐵𝑧′,𝑆𝑧

2
}    

      ≥ min {𝐹𝐴𝑧,𝐵𝑧′ , 1, 1, 𝐹𝐴𝑧,𝐵𝑧′}           

      = 𝐹𝐴𝑧,𝐵𝑧′  , a contradiction. 

Hence 𝑧 = 𝑧′. Thus, 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Theorem 3.4 Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐. If   

𝐹̃𝑆𝑥,𝑇𝑦 ≥ min {𝐹𝐴𝑥,𝐵𝑦 ,
𝐹𝐴𝑥,𝑆𝑥+  𝐹𝐵𝑦,𝑇𝑦

2
,

𝐹𝐴𝑥,𝑇𝑦+  𝐹𝐵𝑦,𝑆𝑥

2
}             (3.4) 

for all  𝑥, 𝑦 ∈ 𝑋 & 𝑡 > 0. Then 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Proof. Clearly the result immediately follows. 

Theorem 3.5 Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐. If   

𝐹̃𝑆𝑥,𝑇𝑦 ≥ min {𝐹𝐴𝑥,𝐵𝑦, 𝐹𝐵𝑦,𝑆𝑥 [
1+𝐹𝐴𝑥,𝑆𝑥

1+𝐹𝐵𝑦,𝑇𝑦
] , 𝐹𝐴𝑥,𝑇𝑦 [

1+𝐹𝐵𝑦,𝑇𝑦

1+𝐹𝐴𝑥,𝑆𝑥
]}             (3.5) 

for all  𝑥, 𝑦 ∈ 𝑋 & 𝑡 > 0. Then 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Proof. Since the pairs {𝐴, 𝑆} & {𝐵, 𝑇} are 𝑜𝑤𝑐, therefore, there exist two elements 𝑢, 𝑣 ∈ 𝑋 such that 

𝐴𝑢 ∈ 𝑆𝑢, 𝐴𝑆𝑢 ⊆ 𝑆𝐴𝑢  and 𝐵𝑣 ∈ 𝑇𝑣, 𝐵𝑇𝑣 ⊆ 𝑇𝐵𝑣. As 𝐴𝑢 ∈ 𝑆𝑢 so 𝐴𝐴𝑢 ⊂ 𝐴𝑆𝑢 ⊂ 𝑆𝐴𝑢, 𝐵𝑣 ∈

𝑇𝑣 𝑠𝑜 𝐵𝐵𝑣 ⊂ 𝐵𝑇𝑣 ⊂ 𝑇𝐵𝑣 

First we prove that 𝐴𝑢 = 𝐵𝑣. 

We have 𝐹𝐴2𝑢,𝐵2𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 .  

Suppose that 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 < 1. Then by (3.5) 

Put 𝑥 = 𝐴𝑢, 𝑦 = 𝐵𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 ≥ min {𝐹𝐴𝐴𝑢,𝐵𝐵𝑣 , 𝐹𝐵𝐵𝑣,𝑆𝐴𝑢 [
1 + 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢

1 + 𝐹𝐵𝐵𝑣,𝑇𝐵𝑣
] , 𝐹𝐴𝐴𝑢,𝑇𝐵𝑣 [

1 + 𝐹𝐵𝐵𝑣,𝑇𝐵𝑣

1 + 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢
]} 

        ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 ,   𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣} 
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                   =  𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , a contradiction.  

Hence 𝐴𝑢 = 𝐵𝑣.  

Also,               𝐹𝐴2𝑢,𝐴𝑢 = 𝐹𝐴2𝑢,𝐵𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝑣   

Now we claim that 𝐴2𝑢 = 𝐴𝑢. If not, then 𝐹̃𝑆𝐴𝑢,𝑇𝑣 < 1. 

Considering (3.5) for 𝐴𝑢 = 𝑥, 𝑦 = 𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝑣 ≥ min {𝐹𝐴𝐴𝑢,𝐵𝑣 , 𝐹𝐵𝑣,𝑆𝐴𝑢 [
1 + 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢

1 + 𝐹𝐵𝑣,𝑇𝑣
] , 𝐹𝐴𝐴𝑢,𝑇𝑣 [

1 + 𝐹𝐵𝑣,𝑇𝑣

1 + 𝐹𝐴𝐴𝑢,𝑆𝐴𝑢
]} 

                  ≥ min {𝐹̃𝑆𝐴𝑢,𝑇𝑣 , 𝐹̃𝑆𝐴𝑢,𝑇𝑣 , 𝐹̃𝑆𝐴𝑢,𝑇𝑣} 

                  = 𝐹̃𝑆𝐴𝑢,𝑇𝑣  , which is again a contradiction and hence 𝐴2𝑢 = 𝐴𝑢. 

Similarly, we can get 𝐵2𝑣 = 𝐵𝑣. If  𝐴𝑢 = 𝐵𝑣 = 𝑧 then 𝐴𝑧 = 𝑧 = 𝐵𝑧,   𝑧 ∈ 𝑆𝑧  &  𝑧 ∈ 𝑇𝑧. 

Therefore z is the common fixed point of  𝐴, 𝐵, 𝑆 & 𝑇 . Now suppose that 𝐴, 𝐵, 𝑆 & 𝑇 have another 

common fixed point 𝑧′ ≠ 𝑧. Then  𝐹𝑧,𝑧′ = 𝐹𝐴𝑧,𝐵𝑧′ ≥ 𝐹̃𝑆𝑧,𝑇𝑧′ . 

Assume that 𝐹̃𝑆𝑧,𝑇𝑧′ < 1. Then by (3.5) for 𝑥 = 𝑧  &  𝑦 = 𝑧′. 

𝐹̃𝑆𝑧,𝑇𝑧′ ≥ min {𝐹𝐴𝑧,𝐵𝑧′ , 𝐹𝐵𝑧′,𝑆𝑧 [
1 + 𝐹𝐴𝑧,𝑆𝑧

1 + 𝐹𝐵𝑧′,𝑇𝑧′
] , 𝐹𝐴𝑥,𝑇𝑧′ [

1 + 𝐹𝐵𝑧′,𝑇𝑧′

1 + 𝐹𝐴𝑧,𝑆𝑧
]} 

      ≥ min {𝐹𝐴𝑧,𝐵𝑧′ , 𝐹𝐴𝑧,𝐵𝑧′ , 𝐹𝐴𝑧,𝐵𝑧′}           

      = 𝐹𝐴𝑧,𝐵𝑧′  , a contradiction. 

Hence 𝑧 = 𝑧′. Thus, 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Theorem 3.6 Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are  𝑜𝑤𝑐. If  

𝐹̃𝑆𝑥,𝑇𝑦 ≥
{𝐹𝐴𝑥,𝐵𝑦+  𝐹𝐴𝑥,𝐵𝑦 .𝐹𝐴𝑥,𝑆𝑥+ 𝐹𝐵𝑦,𝑇𝑦 .𝐹𝐵𝑦,𝑆𝑥}

3
             (3.6) 

for all  𝑥, 𝑦 ∈ 𝑋 & 𝑡 > 0. Then 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

Proof. Clearly the result immediately follows. 

Theorem 3.7 Let (𝑋, ℱ,∗) be a menger space. Let  𝐴, 𝐵 ∶ 𝑋 → 𝑋 and 𝑆, 𝑇: 𝑋 → Ω such that the pairs 

{𝐴, 𝑆} & {𝐵, 𝑇} are  𝑜𝑤𝑐. If   

𝐹̃𝑆𝑥,𝑇𝑦 ≥ 𝛼 𝐹𝐴𝑥,𝐵𝑦 + (1 − 𝛼)
[  𝐹𝐴𝑥,𝑆𝑥 .  𝐹𝐵𝑦,𝑆𝑥+𝐹𝐴𝑥,𝑇𝑦 .  𝐹𝐵𝑦,𝑇𝑦]

2
             (3.7) 

for all  𝑥, 𝑦 ∈ 𝑋, 𝛼 > 0 & 𝑡 > 0. Then 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 
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Proof. Since the pairs {𝐴, 𝑆} & {𝐵, 𝑇} are  𝑜𝑤𝑐, therefore, there exist two elements 𝑢, 𝑣 ∈ 𝑋 such that 

𝐴𝑢 ∈ 𝑆𝑢, 𝐴𝑆𝑢 ⊆ 𝑆𝐴𝑢  and 𝐵𝑣 ∈ 𝑇𝑣, 𝐵𝑇𝑣 ⊆ 𝑇𝐵𝑣. As 𝐴𝑢 ∈ 𝑆𝑢 so 𝐴𝐴𝑢 ⊂ 𝐴𝑆𝑢 ⊂ 𝑆𝐴𝑢, 𝐵𝑣 ∈

𝑇𝑣 𝑠𝑜 𝐵𝐵𝑣 ⊂ 𝐵𝑇𝑣 ⊂ 𝑇𝐵𝑣 

First we prove that 𝐴𝑢 = 𝐵𝑣. 

We have 𝐹𝐴2𝑢,𝐵2𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 .  

Suppose that 𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 < 1. Then by (3.7) 

Put 𝑥 = 𝐴𝑢, 𝑦 = 𝐵𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 ≥ 𝛼 𝐹𝐴𝐴𝑢,𝐵𝐵𝑣 + (1 − 𝛼)
[  𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 .  𝐹𝐵𝐵𝑣,𝑆𝐴𝑢 + 𝐹𝐴𝐴𝑢,𝑇𝐵𝑣  .  𝐹𝐵𝐵𝑣,𝑇𝐵𝑣]

2
 

       ≥ 𝛼𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 + (1 − 𝛼)𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 

       =  𝐹̃𝑆𝐴𝑢,𝑇𝐵𝑣 , a contradiction.  

Hence 𝐴𝑢 = 𝐵𝑣.  

Also,               𝐹𝐴2𝑢,𝐴𝑢 = 𝐹𝐴2𝑢,𝐵𝑣 ≥ 𝐹̃𝑆𝐴𝑢,𝑇𝑣   

Now we claim that 𝐴2𝑢 = 𝐴𝑢. If not, then 𝐹̃𝑆𝐴𝑢,𝑇𝑣 < 1. 

Considering (3.7) for 𝐴𝑢 = 𝑥, 𝑦 = 𝑣 

𝐹̃𝑆𝐴𝑢,𝑇𝑣 ≥ 𝛼 𝐹𝐴𝐴𝑢,𝐵𝑣 + (1 − 𝛼)
[  𝐹𝐴𝐴𝑢,𝑆𝐴𝑢 .  𝐹𝐵𝑣,𝑆𝐴𝑢 + 𝐹𝐴𝐴𝑢,𝑇𝑣  .  𝐹𝐵𝑣,𝑇𝑣]

2
 

       = 𝐹̃𝑆𝐴𝑢,𝑇𝑣  , which is again a contradiction and hence 𝐴2𝑢 = 𝐴𝑢. 

Similarly, we can get 𝐵2𝑣 = 𝐵𝑣. If  𝐴𝑢 = 𝐵𝑣 = 𝑧 then 𝐴𝑧 = 𝑧 = 𝐵𝑧,   𝑧 ∈ 𝑆𝑧  &  𝑧 ∈ 𝑇𝑧. 

Therefore z is the common fixed point of  𝐴, 𝐵, 𝑆 & 𝑇 . Now suppose that 𝐴, 𝐵, 𝑆 & 𝑇 have another 

common fixed point 𝑧′ ≠ 𝑧. Then  𝐹𝑧,𝑧′ = 𝐹𝐴𝑧,𝐵𝑧′ ≥ 𝐹̃𝑆𝑧,𝑇𝑧′ . 

Assume that 𝐹̃𝑆𝑧,𝑇𝑧′ < 1. Then by (3.7) for 𝑥 = 𝑧  &  𝑦 = 𝑧′. 

𝐹̃𝑆𝑧,𝑇𝑧′ ≥ 𝛼 𝐹𝐴𝑧,𝐵𝑧′ + (1 − 𝛼)
[  𝐹𝐴𝑧,𝑆𝑧 .  𝐹

𝐵𝑧′,𝑆𝑧
+𝐹

𝐴𝑧,𝑇𝑧′  .  𝐹
𝐵𝑧′,𝑇𝑧′]

2
              

      = 𝐹𝐴𝑧,𝐵𝑧′  , a contradiction. 

Hence 𝑧 = 𝑧′. Thus, 𝐴, 𝐵, 𝑆 & 𝑇 have a unique common fixed point. 

 

4. Conclusion: 

In this paper, we define various results in Menger space for occasionally weakly compatible 
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mappings. Our theorems extend and unify the existing results in the recent literature. Example is 

constructed to support our result.  
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