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Abstract. By using some elementary results concerning cone metric spaces over Banach algebras and the related

ones about c-sequence on cone metric spaces, some new coincidence point and common fixed point theorems for

two generalized expansive mappings were discussed and obtained on cone metric spaces over Banach algebras

without the assumption of normality and some unique fixed point theorems were given. Also, One of the main

results is supported with a relevant example.

Keywords: Cone metric spaces with Banach algebras; Coincidence point; Common fixed point; expansive condi-

tion.

2010 AMS Subject Classification: 47H10, 47H25, 54E40, 55M20.

1. Introduction

In 2007, cone metric spaces were reviewed by Huang and Zhang, as a generalization of metric

spaces (see [1]). The distance d(x,y) of two elements x and y in a cone metric space X is defined
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to be a vector in an ordered Banach space E, quite different from that which is defined a non-

negative real numbers in general metric space. In 2011, I. Beg, A. Azam and M. Arshad([2])

introduced the concept of topological vector space-valued cone metric spaces, where the ordered

Banach space in the definition of cone metric spaces is replaced by a topological vector space.

Recently, some authors investigated the problems of whether cone metric spaces are equiva-

lent to metric spaces in terms of the existence of fixed points of the mappings and successfully

established the equivalence between some fixed point results in metric spaces and in (topolog-

ical vector space-valued) cone metric spaces, see [3-6]. Actually, they showed that any cone

metric space (X ,d) is equivalent to a usual metric space (X ,d∗), where the real-metric func-

tion d∗ is defined by a nonlinear scalarization function ξe(see [4]) or by a Minkowski function

qe(see[5]). After that, some other interesting generalizations were developed, see. for instance,

[7].

In 2013, Liu and Xu [8] introduced the concept of cone metric spaces over Banach algebras,

replacing a Banach space E by a Banach algebra A as the underlying spaces of cone metric

spaces. And the authors in [8-11] discussed and obtained Banach fixed point theorem, Kannan

type fixed point theorem, Chatterjea type fixed point theorem and ćirić type fixed point theorem

in cone metric spaces over Banach algebras. Especially, the authors in [10] gave an example to

show that fixed point results of mappings in this new space are indeed more different than the

standard results of cone metric spaces presented in literature.

In this paper, we use the elementary results of the c-sequences and the basic properties of cone

metric spaces over Banach algebras to obtain some new unique common fixed point theorems

for two generalized expansive mappings on cone metric spaces over Banach algebras without

the assumption of normality and give some unique fixed point theorems. Finally, we give an

example to support the main result.

2. Preliminaries

Let A always be a Banach algebra. That is, A is a real Banach space in which an operation

of multiplication is defined, subject to the following properties(for all x,y,z ∈A , α ∈ R):

1. (xy)z = x(yz);
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2. x(y+ z) = xy+ xz and (x+ y)z = xz+ yz;

3. α(xy) = (αx)y = x(αy);

4. ‖ xy ‖≤‖ x ‖‖ y ‖ .

In this paper, we shall assume that a Banach algebra has a unit (i.e., a multiplicative identity)

e such that ex = xe = x for all x ∈ A . An element x ∈ A is said to be invertible if there is an

inverse element y∈ A such that xy = yx = e. The inverse of x is denoted by x−1. For more detail,

we refer to [12].

We say that {x1,x2, · · · ,xn} ⊂A commute if xix j = x jxi for all i, j ∈ {1,2, · · · ,n}.

Proposition 2.1.[12] Let A be a Banach algebra with a unit e, and x∈A . If the spectral radius

r(x) of x is less than 1, i.e.,

r(x) = lim
n→∞
‖ xn ‖

1
n = inf

n→∞
‖ xn ‖

1
n < 1.

Then (e− x) is invertible. Actually,

(e− x)−1 =
+∞

∑
i=0

xi.

Remark 2.1. 1) r(x)≤‖ x ‖ for any x ∈A (see [12]).

2) In Proposition 2.1, if the condition r(x)< 1 is replaced by the condition ‖ x ‖< 1, then the

conclusion remains true.

A subset P of a Banach algebra A is called a cone if

1. P is nonempty closed and {0,e} ⊂ P, where 0 denotes the null of the Banach algebra A ,

2. α P+β P⊂ P for all non-negative real numbers α.β ;

3. P2 = PP⊂ P;

4. P∩ (−P) = {0}.

For a given cone P⊂A , we can define a partial ordering ≤ with respect to P by x≤ y if and

only if y− x ∈ P. x < y stand for x≤ y and x 6= y. While x� y sill stand for y− x ∈ intP, where

intP denotes the interior of P. A cone P is called solid if intP 6= /0.

The cone P is called normal if there is a number M > 0 such that for all x,y ∈A .

0≤ x≤ y =⇒ ‖ x ‖≤M ‖ y ‖ .

The least positive number satisfying the above is called the normal constant of P.
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Here, we always assume that P is a solid and ≤ is the partial ordering with respect to P.

Definition 2.1.[1, 9-10] Let X be a non-empty set. Suppose that the mapping d : X ×X → A

satisfies

1. 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

2. d(x,y) = d(y,x) for all x,y ∈ X ;

3. d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a cone metric on X and (X ,d) is called a cone metric space(over a Banach

algebra A ).

Remark 2.2. The examples of cone metric spaces(over a Banach algebra A ) can be found in

[8-10].

Definition 2.2.[1, 8] Let (X ,d) be a cone metric space over a Banach algebra A , x ∈ X and

{xn} a sequence in X . Then:

1. {xn} converges to x whenever for each c ∈A with 0� c there is a natural number N such

that d(xn,x)� c for all n≥ N. We denote this by limn→∞ xn = x or xn→ x.

2. {xn} is Cauchy sequence whenever for each c ∈A with 0� c there is a natural number

N such that d(xn,xm)� c for all n,m≥ N.

3. (X ,d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 2.3.[13-14] Let P is a solid cone in a Banach space A . A sequence {un} ⊂ P is

called a c-sequence if for each c� 0 there exists n0 ∈ N such that un� c for all n≥ n0.

Proposition 2.2.[13] Let P is a solid cone in a Banach space A and let {xn} and {yn} be

sequences in P. If {xn} and {yn} are c-sequences and α,β > 0, then {α xn + β yn} is a c-

sequence.

Proposition 2.3.[13] Let P is a solid cone in a Banach algebra A and {xn} a sequence in P.

Then the following conditions are equivalent:

(1) {xn} is a c-sequence;

(2) for each c� 0there exists n0 ∈ N such that xn < c for all n≥ n0;

(3) for each c� 0there exists n1 ∈ N such that xn ≤ c for all n≥ n1.
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Proposition 2.4.[10] Let P is a solid cone in a Banach algebra A and {un} a sequence in P.

Suppose that k ∈ P is an arbitrarily given vector and {un} is a c-sequence in P. Then {kun} is

a c-sequence.

Proposition 2.5.[10] Let A be a Banach algebra with a unit e, P a cone in A and ≤ be the

semi-order generated by the cone P. The following assertions hold true:

(i) For any x,y ∈A , a ∈ P with x≤ y, ax≤ ay;

(ii) For any sequences {xn},{yn} ⊂ A with xn→ x and yn→ y as n→ ∞, where x,y ∈ A ,

we have xnyn→ xy as n→ ∞.

Proposition 2.6.[10] Let A be a Banach algebra with a unit e, P a cone in A and ≤ be the

semi-order generated by the cone P. Let λ ∈ P. If the spectral radius r(λ ) of λ is less than 1,

then the following assertions hold true:

(i) Suppose that x is invertible and that x−1 > 0 implies x > 0, then for any integer n≥ 1, we

have λ n ≤ λ ≤ e.

(ii) For any u > 0, we have u� λ u, i.e., λ u−u /∈ P.

(iii) If λ ≥ 0, then (e−λ )−1 ≥ 0.

Proposition 2.7.[10] Let (X ,d) be a complete cone metric space over a Banach algebra A and

P a solid cone in Banach algebra A. If a sequence {xn} in X converges to x ∈ X, then

(i) {d(xn,x)} is a c-sequence.

(ii) For any p ∈ N, {d(xn,xn+p)} is a c-sequence.

Lemma 2.1.[15] If E is a real Banach space with a cone P and if a ≤ λ a with a ∈ P and

0≤ λ < 1, then a = 0.

Lemma 2.2.[16] If E is a real Banach space with a cone P and if 0≤ u� c for all 0� c, then

u = 0.

Lemma 2.3.[16] If E is a real Banach space with a solid cone P and if ‖ xn ‖→ 0 as n→ ∞,

then for any 0� c, there exists N ∈ N such that xn� c for any n > N.

Lemma 2.4.[10] If A is a Banach algebra and k ∈A with r(k)< 1, then ‖ kn ‖→ 0 as n→∞.
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Lemma 2.5.[10] Let A be a Banach algebra and x,y ∈ A . If x and y commute, then the

following hold:

(i) r(xy)≤ r(x)r(y);

(ii) r(x+ y)≤ r(x)+ r(y);

(iii) | r(x)− r(y) |≤ r(x− y).

Lemma 2.6.[10] Let A be a Banach algebra and {xn} a sequence in A . Suppose that {xn}

converge to x ∈A and that xn and x commute for all n, then r(xn)→ r(x) as n→ ∞.

Lemma 2.7.[17-18] Let P be a solid cone in a Banach algebra A and {α,β ,γ} ⊂ A with

r(γ)< 1. If {α,β ,γ} commute, then

r
(
(e− γ)−1(α +β )

)
≤ r(α +β )

1− r(γ)
≤ r(α)+ r(β )

1− r(γ)
.

Lemma 2.8.[17-18] (Cauchy Principle) Let (X ,d) be a cone metric space over a Banach alge-

bra A , P a solid cone in A and k ∈ P with r(k)< 1. If a sequence {xn} ⊂ X satisfies that

d(xn+1,xn+2)≤ kd(xn,xn+1),∀n = 0,1,2, · · · .

Then {xn} is a Cauchy sequence.

Lemma 2.9.[9] Let (X ,d) be a cone metric space over a Banach algebra A , P a solid cone in

A and {xn} ⊂ X a sequence. If {xn} is convergent, then the limits of {xn} is unique.

Definition 2.4.[19] Two mappings f ,g : X → X are weakly compatible if, for every x ∈ X,

f gx = g f x holds whenever f x = gx.

Definition 2.5.[19] Let f ,g : X → X be two mappings. If w = f x = gx for some x,w ∈ X, then

x is called a coincidence point of f and g, and w is a point of coincidence of f and g.

Lemma 2.10.[19] If f ,g : X → X be weakly compatible and have a unique point of coincidence

w = f x = gx, then w is the unique common fixed point of f and g.

In 1982, Wang, Li and Gao[20] introduce the following concepts:



UNIQUE COMMON FIXED POINTS 373

Let (X ,d) be a real metric space, f : X → X a mapping. If there exists a > 1 such that

d( f x, f y)≥ ad(x,y), ∀ x,y ∈ X .

Then f is called I-expansive mapping.

They also proved that any onto I-expansive mapping on complete real metric space has a

unique fixed point.

Obviously,

d( f x, f y)≥ ad(x,y) ⇐⇒ bd( f x, f y)≥ d(x,y),

where a > 1 and 0 < b < 1 are two constant real numbers.

In this paper, by generalizing the concepts of I-expansive mappings, we will obtain the exis-

tence theorems of unique common fixed points for two mappings satisfying generalized expan-

sive conditions on a cone metric space (X ,d) over a Banach algebra A and give some unique

fixed point theorems.

3. Unique common fixed points for expansive mappings

Theorem 3.1. Let (X ,d) be a cone metric space over a Banach algebra A and S,T : X → X

two mappings satisfying SX ⊂ T X and P a solid cone in A . Suppose that for each x,y ∈ X with

x 6= y,

αd(T x,Ty)+βd(Sx,Ty)+ γd(Sy,T x)≥ d(Sx,Sy), (3.1)

where {α,β ,γ} ⊂ P commutes and satisfies r(α)+ r(β )+ r(γ) < 1. If T X or SX is complete,

then S,T have a unique point of coincidence. Furthermore, if S and T are weakly compatible,

then S,T have a unique common fixed point.

Proof. Take an x0 ∈ X . Using SX ⊂ T X , we obtain sequence {xn} and {yn} in X satisfying

yn = Sxn = T xn+1,∀n = 0,1,2, · · · . (3.2)

If there exists n such that xn = xn+1, then yn = Sxn = T xn, hence yn is the point of coincidence

of S and T . So we can assume that xn 6= xn+1,∀n = 0,1,2, · · · .

Suppose that r(γ)≤ r(β ), then r(α)+2r(γ)< 1.
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For any fixed n = 0,1,2, · · · , by (3.1),

αd(T xn+1,T xn+2)+βd(Sxn+1,T xn+2)+ γd(Sxn+2,T xn+1)≥ d(Sxn+1,Sxn+2),

using (3.2), we have

αd(yn,yn+1)+ γd(yn+2,yn)≥ d(yn+1,yn+2),

hence

αd(yn,yn+1)+ γ[d(yn+2,yn+1)+d(yn+1,yn)]≥ d(yn+1,yn+2).

Therefore

(e− γ)d(yn+1,yn+2)≤ (α + γ)d(yn,yn+1).

Since (e−γ) is invertible and (e−γ)−1≥ 0 by Proposition 2.1 and Proposition 2.6, we obtain

d(yn+1,yn+2)≤ (e− γ)−1(α + γ)d(yn,yn+1).

Since r((e− γ)−1(α + γ)) ≤ r(α)+r(γ)
1−r(γ) < 1 by Lemma 2.7, {yn} is a Cauchy sequence by

Lemma 2.8. Similarly, {yn} is also Cauchy for the case r(β )≤ r(γ).

Since T X or SX is complete and yn ∈ SX ⊂ T X ,∀n, there exist z,x∈ X such that yn→ z = T x

as n→ ∞.

For xn+1 and x, using (3.1), we obtain

αd(T xn+1,T x)+βd(Sxn+1,T x)+ γd(Sx,T xn+1)≥ d(Sxn+1,Sx),

that is,

αd(yn,T x)+βd(yn+1,T x)+ γd(Sx,yn)≥ d(yn+1,Sx),

hence

αd(yn,T x)+βd(yn+1,T x)+ γ[d(Sx,yn+1)+d(yn,yn+1)]≥ d(yn+1,Sx),

so

d(yn+1,Sx)≤ (e− γ)−1[αd(yn,T x)+βd(yn+1,T x)+ γd(yn,yn+1)].

Since (e−γ)−1[αd(yn,T x)+βd(yn+1,T x)+γd(yn,yn+1)] is a c-sequence by Proposition 2.2

and Proposition 2.4 and Proposition 2.7, so d(yn+1,Sx) is also a c-sequence, hence {yn} → Sx

as n→ ∞. Therefore z = T x = Sx by Lemma 2.9.
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If z1 is also a point of coincidence of S and T , then there exists x1 ∈ X such that z1 = Sx1 =

T x1. For x and x1, using (3.1), we have

αd(T x,T x1)+βd(Sx,T x1)+ γd(Sx1,T x)≥ d(Sx,Sx1),

that is,

d(z,z1)≤ (α +β + γ)d(z,z1),

hence

d(z,z1)≤ (α +β + γ)nd(z,z1),∀n.

Using r(α +β + γ) ≤ r(α)+ r(β )+ r(γ) < 1, we have ‖ (α +β + γ)n ‖→ 0 as n→ ∞ by

Lemma 2.4, hence {(α + β + γ)nd(z,z1)} is a c-sequence, so d(z,z1) = 0, i.e., z = z1. This

means that z is the unique point of coincidence of S and T . If S and T are weakly compatible,

then z is the unique common fixed point of S and T by Lemma 2.10.

Using Theorem 3.1, we can obtain the following fixed point theorems:

Theorem 3.2. Let (X ,d) be a cone metric space over a Banach algebra A and T : X → X a

mapping and let P is a solid cone in A . Suppose that for each x,y ∈ X ,x 6= y,

αd(T x,Ty)+βd(T 2x,Ty)+ γd(T 2y,T x)≥ d(T 2x,T 2y),

where {α,β ,γ} ⊂ P commutes and satisfies r(α)+ r(β )+ r(γ)< 1. If T X is complete, then T

has a unique fixed point.

Proof. Let T 2 = S, then S and T are weakly compatible, hence S,T satisfy all conditions of

Theorem 3.1, so T has a unique fixed point by Theorem 3.1.

Theorem 3.3. Let (X ,d) be a cone metric space over a Banach algebra A and T : X → X a

mapping satisfying T X = T 2X and let P is a solid cone in A . Suppose that for each x,y ∈

X ,x 6= y,

αd(T 2x,T 2y)+βd(T x,T 2y)+ γd(Ty,T 2x)≥ d(T x,Ty),

where {α,β ,γ} ⊂ P commutes and satisfies r(α)+ r(β )+ r(γ)< 1. If T X is complete, then T

has a unique fixed point.
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Proof. Let F = T 2 and G = T , then there exists x ∈ X such that Fx = Gx by Theorem 3.1, i.e.,

T (T x) = T x, hence T x is the fixed point of T . The uniqueness of fixed point of T is obvious.

Theorem 3.4. Let (X ,d) be a complete cone metric space over a Banach algebra A and T :

X → X a onto mapping and let P is a solid cone in A . Suppose that for each x,y ∈ X ,x 6= y,

αd(T x,Ty)+βd(x,Ty)+ γd(y,T x)≥ d(x,y),

where {α,β ,γ} ⊂ P commutes and satisfies r(α)+ r(β )+ r(γ)< 1. Then T has a unique fixed

point.

Proof. Let S = 1X in Theorem 3.1, then the conclusion follows from Theorem 3.1.

Theorem 3.5. Let (X ,d) be a cone metric space over a Banach algebra A and S : X → X a

mapping and let P is a solid cone in A . Suppose that for each x,y ∈ X ,x 6= y,

αd(x,y)+βd(Sx,y)+ γd(Sy,x)≥ d(Sx,Sy),

where {α,β ,γ} ⊂ P commutes and satisfies r(α)+ r(β )+ r(γ) < 1. If SX is complete, then S

has a unique point.

Proof. Let T = 1X in Theorem 3.1, then the conclusion follows from Theorem 3.1.

Remark 3.1. If β = γ = 0, then Theorem 3.4 is a new version and generalization of a fixed

point theorem for a I-expansive mapping in [20] on cone metric space over Banach algebras; If

α = 0,β = γ , then Theorem 3.4 is the expansive version of Chatterjea type fixed point theorem.

If α = 0,β = γ , then Theorem 3.5 reduce to Theorem 3.2 in [10], i.e., it is the version of

Chatterjea type fixed point theorem on cone metric space over Banach algebras. Hence Theorem

3.1-Theorem 3.5 generalize and improve many known fixed point and common fixed point

theorems.

Example 3.1. Let A =C1
R[0,1] and define a norm on A by ‖ x ‖= ‖ x ‖

∞
+‖ x′ ‖

∞
for x ∈A .

Define multiplication in A as just pointwise multiplication. Then A is a real Banach algebra

with unit e = 1. The set P = {x ∈A : x≥ 0} is not normal cone(see[10, 21]).

Let X = {1,2,3} and define d : X×X →A by

d(1,2)(t)= d(2,1)(t)= et ,d(1,3)(t)= d(3,1)(t)= 3et ,d(2,3)(t)= d(3,2)(t)= 2et ,d(x,x)(t)= 0.
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Then (X ,d) is a complete cone metric space over a Banach algebra A without normality.

Define two mappings S,T : X → X by

S1 = S2 = 2,S3 = 1,T 1 = 1,T 2 = 2,T 3 = 3.

And let α,β ,γ ∈ P as follows

α(t) =
1
5

t +
1
5
, β (t) =

1
10

t +
1
5
, γ(t) =

1
20

t +
1
5
, ∀ t ∈ [0,1].

It is easy to prove that r(α) = 2
5 , r(β ) = 3

10 , r(γ) = 5
20 , hence

r(α +β + γ)≤ r(α)+ r(β )+ r(γ) =
19
20

< 1.

And for any t ∈ [0,1],

[α d(T 1,T 3)+β d(S1,T 3)+ γ d(S3,T 1)](t)

= [α d(1,3)+β d(2,3)+ γ d(1,1)](t)

=
[
3
(1

5
t +

1
5
)
+2
( 1

10
t +

1
5
)]

et

≥ et

= d(S1,S3)(t)

and

[α d(T 2,T 3)+β d(S2,T 3)+ γ d(S3,T 2)](t)

= [α d(2,3)+β d(2,3)+ γ d(1,2)](t)

=
[
2
(1

5
t +

1
5
)
+2
(1

5
t +

1
5
)
+
( 1

20
t +

1
5
)
]et

≥ et

= d(S2,S3)(t).

Hence S and T have a unique common fixed point 2 by Theorem 3.1.

Next, we give the second unique common fixed point theorem for two mappings satisfying

another generalized expansive condition on cone metric spaces over Banach algebras.
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Theorem 3.6. Let (X ,d) be a complete cone metric space over a Banach algebra A , P is a

solid cone in A and S,T : X→ X two surjective mappings. Suppose that for any x,y∈ X ,x 6= y,

αd(Sx,Ty)+βd(x,Ty)+ γd(y,Sx)≥ d(x,y), (3.3)

where {α,β ,γ} ⊂ P commutes and satisfies r(α)+2max{r(β ),r(γ)} < 1. Then S,T have an

unique common fixed point.

Proof. Taking an element x0 ∈ X and using the surjective conditions of S and T , we can con-

struct a sequence {xn} satisfying

x2n = Sx2n+1, x2n+1 = T x2n+2,n = 0,1,2, · · · . (3.4)

If there is a n ∈ N such that x2n = x2n+1, then by (3.3),

αd(Sx2n+1,T x2n+2)+βd(x2n+1,T x2n+2)+ γd(x2n+2,Sx2n+1)≥ d(x2n+1,x2n+2),

using (3.4) and d(x2n,x2n+1) = 0, we obtain

γd(x2n,x2n+2)≥ d(x2n+1,x2n+2),

hence

γ[d(x2n,x2n+1)+d(x2n+1,x2n+2)]≥ d(x2n+1,x2n+2),

that is,

γd(x2n+1,x2n+2)≥ d(x2n+1,x2n+2),

therefore

(e− γ)d(x2n+1,x2n+2)≤ 0.

Hence d(x2n+1,x2n+2) = 0 by Proposition 2.6, i.e., x2n+1 = x2n+2.

If there is a n ∈ N such that x2n+1 = x2n+2, then by (3.3),

αd(Sx2n+3,T x2n+2)+βd(x2n+3,T x2n+2)+ γd(x2n+2,Sx2n+3)≥ d(x2n+3,x2n+2)

using (3.4) and d(x2n+1,x2n+2) = 0, we obtain

βd(x2n+3,x2n+1)≥ d(x2n+3,x2n+2),
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hence

β [d(x2n+1,x2n+2)+d(x2n+2,x2n+3)]≥ d(x2n+1,x2n+2),

that is ,

βd(x2n+2,x2n+3)≥ d(x2n+2,x2n+3),

therefore

(e−β )d(x2n+2,x2n+3)≤ 0.

Hence d(x2n+2,x2n+3) = 0 by Proposition 2.6, i.e, x2n+2 = x2n+3.

Therefore, we have the following fact: If there is a n0 ∈ N such that xn0 = xn0+1, then xn =

xn+1 for all n≥ n0. In this case, {xn} must be a Cauchy sequence. So from now on, we assume

that xn 6= xn+1,∀n = 0,1,2, · · · .

For any fixed n ∈ N, by (3.3),

αd(Sx2n+1,T x2n+2)+βd(x2n+1,T x2n+2)+ γd(x2n+2,Sx2n+1)≥ d(x2n+1,x2n+2),

that is,

αd(x2n,x2n+1)+ γd(x2n+2,x2n)≥ d(x2n+1,x2n+2),

hence

αd(x2n,x2n+1)+ γ[d(x2n,x2n+1)+d(x2n+1,x2n+2)]≥ d(x2n+1,x2n+2),

that is,

(e− γ)d(x2n+1,x2n+2)≤ (α + γ)d(x2n,x2n+1).

Using r(γ)< 1, we obtain

d(x2n+1,x2n+2)≤ (e− γ)−1(α + γ)d(x2n,x2n+1). (3.5)

Similarly, we obtain

d(x2n+2,x2n+3)≤ (e−β )−1(α +β )d(x2n+1,x2n+2). (3.6)

Let K1 = (e− γ)−1(α + γ), K2 = (e− β )−1(α + β ) and K = K1K2. Since {α,β ,γ} com-

mute and (e−β )−1 = ∑
∞
i=0 β i and (e− γ)−1 = ∑

∞
i=0 γ i, hence {α,β ,γ,K1,K2} also commute.
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Therefore by Lemma 2.5 and Lemma 3.1,

r(K)≤ r(K1)r(K2)≤
r(α)+ r(γ)

1− r(γ)
r(α)+ r(β )

1− r(β )
< 1.

Using mathematical induction and (3.5)-(3.6), we can obtain

d(x2n+1,x2n+2)≤ K1 d(x2n,x2n+1)≤ K1K2d(x2n−1,x2n)≤ ·· · ≤ KnK1d(x0,x1) (3.7)

and

d(x2n+2,x2n+3)≤ K2d(x2n+1,x2n+2)≤ Kn+1d(x0,x1). (3.8)

So for any p,q ∈ N with p < q,

d(x2p+1,x2q+1)≤
2q

∑
i=2p+1

d(xi,xi+1)≤
(
K1

q−1

∑
i=p

Ki+
q

∑
i=p+1

Ki)d(x0,x1)≤ (e−K)−1K p(K1 +K)d(x0,x1).

(3.9)

Similarly,

d(x2p,x2q+1)≤
2q

∑
i=2p

d(xi,xi+1)≤
( q

∑
i=p

Ki+K1

q−1

∑
i=p

Ki)d(x0,x1)≤ (e−K)−1K p(e+K1)d(x0,x1);

(3.10)

d(x2p,x2q)≤
2q−1

∑
i=2p

d(xi,xi+1)≤
(q−1

∑
i=p

Ki +K1

q−1

∑
i=p

Ki)d(x0,x1)≤ (e−K)−1K p(e+K1)d(x0,x1);

(3.11)

d(x2p+1,x2q)≤
2q−1

∑
i=2p+1

d(xi,xi+1)≤
(
K1

q−1

∑
i=p

Ki+
q−1

∑
i=p+1

Ki)d(x0,x1)≤ (e−K)−1K p(K1 +K)d(x0,x1).

(3.12)

Since r(K)< 1, ‖ Kn ‖→ 0 as n→ ∞ by Lemma 2.4, hence

‖ (e−K)−1K p(K1 +K)d(x0,x1) ‖→ 0 as p→ ∞ (3.13)

and

‖ (e−K)−1K p(e+K1)d(x0,x1) ‖→ 0 as p→ ∞. (3.14)

Therefore by Lemma 2.3, for any 0� c there exists N such that

(e−K)−1K p(K1 +K)d(x0,x1)� c, ∀ p > N (3.15)

and

(e−K)−1K p(e+K1)d(x0,x1)� c, ∀ p > N. (3.16)
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Combining (3.9)-(3.12) and (3.15)-(3.16), we can show that there is a n0 ∈ N such that

d(xm,xn)� c for all n > m > n0. Hence {xn} is a Cauchy sequence.

Since X is complete, there is z ∈ X such that xn → z as n→ ∞. And since S and T are

surjective, there exist x,y ∈ X such that z = T x = Sy.

For x2n+1 and x, we have

αd(Sx2n+1,T x)+βd(x2n+1,T x)+ γd(x,Sx2n+1)≥ d(x2n+1,x)

that is,

αd(x2n,T x)+βd(x2n+1,T x)+ γd(x,x2n)≥ d(x2n+1,x)

hence

αd(x2n,T x)+βd(x2n+1,T x)+ γ[d(x2n,x2n+1)+d(x2n+1,x)]≥ d(x2n+1,x)

which implies that

(e− γ)d(x2n+1,x)≤ αd(x2n,T x)+βd(x2n+1,T x)+ γd(x2n,x2n+1). (3.17)

Since r(γ)< 1 implies (e− γ)−1 ≥ 0, we obtain

d(x2n+1,x)≤ (e− γ)−1
αd(x2n,T x)+(e− γ)−1

βd(x2n+1,T x)+(e− γ)−1
γd(x2n,x2n+1).

(3.18)

Since xn→ T x as n→ ∞ and {xn} is Cauchy, the right-hand side of (3.18) is a c-sequence

by Proposition 2.2 and Proposition 2.4 and Proposition 2.7, hence for each c� 0 there exists N

such that

(e− γ)−1
αd(x2n,T x)+(e− γ)−1

βd(x2n+1,T x)+(e− γ)−1
γd(x2n,x2n+1)� c, ∀n > N.

(3.19)

Combining (3.18), we have for each c� 0 there exists N such that

d(x2n+1,x)� c, ∀n > N, (3.20)

hence x2n+1→ x as n→ ∞. But x2n+1→ z as n→ ∞, hence z = x by Lemma 2.10. Similarly,

we can obtain z = y. Therefore z = T z = Sz, that is, z is a common fixed point of S and T .
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If z1 is also a common fixed point of S and T , i.e., z1 = Sz1 = T z1, then by (3.3),

αd(Sz,T z1)+βd(z,T z1)+ γd(z1,Sz)≥ d(z,z1)

hence

d(z,z1)≤ (α +β + γ)d(z,z1).

Since r(α +β + γ) ≤ r(α)+ r(β )+ r(γ) ≤ r(α)+ 2max{r(β ),r(γ)} < 1, so z = z1 by the

proof process in Theorem 3.1. Hence z is the unique common fixed point of S and T .

Remark 3.2. Using Theorem 3.6, we can give many fixed point theorems, but we omit those

here.

Conflict of Interests

The authors declare that there is no conflict of interests.

REFERENCES

[1] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal.

Appl. 332(2007), 1468-1476.

[2] I. Beg, A. Azam and M. Arshad, Common fixed points for mapps on Topological vector space valued cone

metric spaces, Int. J. Math. Math. Sci. 2009 (2009), Article ID 560264.
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TVS-cone metric spaces, Fixed Point Theory Appl. 2011(2011), Article ID 29.
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