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Abstract. In this work, we consider the existence of nonoscillatory solutions of second order nonlinear neutral

differential equations. Our results include as special cases some well-known results for linear and nonlinear equa-

tions. We use the Lebesgue’s dominated convergence theorem and Banach contraction principle to obtain new

sufficient conditions for the existence of nonoscillatory solutions.
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1. INTRODUCTION

Consider a second order nonlinear neutral differential equations of the form:

d
dt

[
(r(t)

(
x(t)+ p(t)x(t− τ)

)′]
+q(t)G

(
x(t−σ)

)
= 0,(1)

where τ > 0, σ ≥ 0; q,r ∈C(R+,R+); p ∈ PC(R+,R) and G ∈C(R,R) is nondecreasing such

that xG(x) > 0 for x 6= 0. The objective of this work is to study existence of positive solutions

for second order nonlinear neutral delay differential equation (1) for any |p(t)|< ∞.
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In [1], Culakova et al. have considered (1) and studied existence of bounded positive solutions

when p ∈C([t0,∞),(−∞,0)). In recent paper [2], Candan have considered

d
dt
[x(t)+P1(t)x(t− τ1)+P2(t)x(t + τ2)]+Q1(t)x(t−σ1)+Q2(t)x(t +σ2) = 0,(2)

and established sufficient conditions for existence of bounded positive solution of (2), for any

P1(t) and P2(t) excluding P1(t) ≡ +1 ≡ P2(t) and P1(t) ≡ −1 ≡ P2(t). In [13], Santra has

consider first-order neutral delay differential equations of the form

d
dt
[x(t)+ p(t)x(t− τ)]+q(t)H

(
x(t−σ)

)
= f (t)(3)

and

d
dt
[x(t)+ p(t)x(t− τ)]+q(t)H

(
x(t−σ)

)
= 0(4)

and studied oscillatory behaviour of the solutions of (3) and (4), under various ranges of p(t).

Also, sufficient conditions are obtained for existence of nonoscillatory solutions of (3). The

motivation of the present work come from the above studies. The methods of the work of

[1] has made unnecessarily complected to study existence of positive solution of such type of

functional differential equations. Unlike the method of [1] an attempt is made here to study

existence of nonoscillatory solutions of (1) for any |p(t)|< ∞.

Oscillation and nonoscillation of functional differential equations have been studied in recent

years. In this direction, we refer the reader to [6]-[10], [19]-[22] and the references cited therein.

The existence of nonoscillatory solution of functional differential equations received much less

attention, which is due mainly to the technical difficulties arising in its analysis.

Let ρ = max{τ,σ}. By a solution of Eq. (1) we mean a function x ∈C([t0−ρ,∞),R), for

some t0 ≥ 0, such that x(t)+ p(t)x(t− τ) is twice continuously differentiable and r(t)(x(t)+

p(t)x(t − τ))′ is continuously differentiable on [t0,∞) and such that Eq. (1) is satisfied for

t ≥ t0. A solution of Eq. (1) is said to be oscillatory if it has arbitrarily large zeros; Otherwise

the solution is called nonoscillatory.
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2. MAIN RESULTS

Theorem 1. Let p ∈C(R+, [0,1)). Assume that G is Lipschitzian on the intervals of the form

[a,b], 0 < a < b < ∞. If ∫
∞

0

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη <+∞,(5)

then (1) has a bounded nonoscillatory solution.

Proof. Let 0≤ p(t)≤ p < 1, t ∈R+ and p > 0. Due to (5), it is possible to find T > ρ such that∫
∞

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη <

1− p
5L

,

where L = max{L1,G(1)} and L1 is the Lipschitz constant of G on
[ 7

10(1− p),1
]

for t ≥ T .

Let Y = BC([T,∞),R) be the space of real valued continuous functions on [T,∞]. Indeed, Y is

a Banach space with respect to supremum norm defined by

‖x‖= sup{|x(t)| : t ≥ T}.

Define

S = {v ∈ Y :
7
10

(1− p)≤ v(t)≤ 1, t ≥ T}.

We notice that S is a closed and convex subspace of Y . Let Φ : S→ S be such that

(Φx)(t) =


(Φx)(T +ρ), t ∈ [T,T +ρ]

−p(t)x(t− τ)+ 9+p
10 −

∫
∞

t
1

r(η)

[∫
∞

η
q(ζ )G

(
x(ζ −σ)

)
dζ

]
dη , t ≥ T +ρ.

For every x ∈ S, (Φx)(t)≤ 9+p
10 < 1 and

(Φx)(t)≥−p+
9+ p

10
− 1− p

5
=

7
10

(1− p)

implies that Φx ∈ S. Now for x1,x2 ∈ S, we have

|(Φx1)(t)− (Φx2)(t)| ≤ p|x1(t− τ)− x2(t− τ)|

+
∫

∞

t

1
r(η)

[∫
∞

η

q(ζ )|G
(
x1(ζ −σ)

)
−G

(
x2(ζ −σ)

)
|dζ

]
dη ,



72 S. S. SANTRA

that is,

|(Φx1)(t)− (Φx2)(t)| ≤ p‖x1− x2‖+‖x1− x2‖L1

∫
∞

t

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη

≤
(

p+
1− p

5

)
‖x1− x2‖

=
4p+1

5
‖x1− x2‖.

Therefore, ‖Φx1−Φx2‖ ≤ 4p+1
5 ‖x1− x2‖ implies that Φ is a contraction. By using Banach’s

contraction mapping principle, it follows that Φ has a unique fixed point x(t) in
[ 7

10(1− p),1
]
.

This completes the proof of the theorem. �

Theorem 2. Let 1 < p1 ≤ p(t) ≤ p2 < ∞, p2
1 ≥ p2 for t ∈ R+. Let G be Lipschitzian on the

intervals of the form [a,b], 0 < a < b < ∞. If (5) hold, then (1) admits a positive bounded

solution.

Proof. Due to (5), it is possible to find T > ρ such that

∫
∞

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη <

p1−1
3L

,

where L = max{L1,L2} and L1 is the Lipschitz constant of G on [α,β ], L2 = G(β ) with

α =
3λ (p2

1− p2)− p2(p1−1)
3p12 p2

β =
p1−1+3λ

3p1
and λ >

p2(p1−1)
3(p12− p2)

> 0.

Let Y = BC([T,∞),R) be the space of real valued functions defined on [T,∞). Indeed, Y is a

Banach space with respect to supremum norm defined by

||x||= sup{|x(t)| : t ≥ T}.

Define

S = {u ∈ Y : α ≤ u(t)≤ β , t ≥ T} .
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Let Φ : S→ S be such that

(Φx)(t)=


(Φx)(T +ρ), t ∈ [T,T +ρ]

− x(t+τ)
p(t+τ) +

λ

p(t+τ) +
1

p(t+τ)

∫ t+τ

T
1

r(η)

[∫
∞

η
q(ζ )G

(
x(ζ −σ)

)
dζ

]
dη , t ≥ T +ρ.

For every x ∈ S,

(Φx)(t)≤ L
p(t + τ)

∫ t+τ

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη +

λ

p(t + τ)

≤ L
p(t + τ)

∫
∞

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη +

λ

p(t + τ)

≤ 1
p1

[
p1−1

3
+λ

]
= β

and

(Φx)(t)≥− x(t + τ)

p(t + τ)
+

λ

p(t + τ)

>− β

p1
+

λ

p2
= α

implies that Φx ∈ S. Again, for x1,x2 ∈ S

|(Φx1)(t)− (Φx2)(t)| ≤
1

|p(t + τ)|
|x1(t + τ)− x2(t + τ)|

+
L

|p(t + τ)|

∫ t+τ

T

1
r(η)

[∫
∞

η

q(ζ )|x1(ζ −σ)− x2(ζ −σ)|dζ

]
dη ,

that is,

|(Φx1)(t)− (Φx2)(t)| ≤
1
p1
||x1− x2||+

L
p1
||x1− x2||

∫ t+τ

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη

<
1
p1
||x1− x2||

(
1+

p1−1
3

)
implies that

||Φx1−Φx2|| ≤
(

1
p1

+
p1−1
3p1

)
||x1− x2||.

Since
(

1
p1
+ p1−1

3p1

)
< 1, then Φ is a contraction mapping of S into S. We notice that S is a closed

convex subset of Y and hence we apply Banach’s fixed point to S. So, we conclude that Φ has a
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unique fixed point on [α,β ]. It is easy to verify that

x(t) =


(Φx)(T +ρ), t ∈ [T,T +ρ]

− x(t+τ)
p(t+τ) +

λ

p(t+τ) +
1

p(t+τ)

∫ t+τ

T
1

r(η)

[∫
∞

η
q(ζ )G

(
x(ζ −σ)

)
dζ

]
dη , t ≥ T +ρ.

is a positive bounded solution of (1) on [α,β ]. The the proof of the theorem is complete. �

Theorem 3. Let −1 <−p≤ p(t)≤ 0, p > 0 for t ∈ R+. Assume that

R(t) =
∫ t

0

ds
r(s)

and lim
t→∞

R(t) = +∞(6)

∫
∞

0
q(η)G

(
εR(η−σ)

)
dη <+∞ f or every ε > 0(7)

hold, then (1) has a unbounded positive solution.

Proof. Due to (7), we can find ε > 0 such that

∫
∞

T
q(η)G

(
εR(η−σ)

)
dη ≤ ε

3
.

Let’s consider

M = {x : x ∈C([T −ρ,+∞),R),x(t) = 0 f or t ∈ [T −ρ,T ] and

ε

3
[R(t)−R(T )]≤ x(t)≤ ε[R(t)−R(T )] }

and define Φ : M→C([T −ρ,+∞),R) such that

(Φx)(t) =


0, t ∈ [T −ρ,T )

−p(t)x(t− τ)+
∫ t

T
1

r(η) [
ε

3 +
∫

∞

η
q(ζ )G

(
x(ζ −σ)

)
dζ ]dη , t ≥ T.

For every x ∈M,

(Φx)(t)≥
∫ t

T

1
r(η)

[
ε

3
+
∫

∞

η

q(ζ )G
(
x(ζ −σ)

)
dζ

]
dη

≥ ε

3

∫ t

T

dη

r(η)
=

ε

3
[R(t)−R(T )],
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and x(t)≤ εR(t) and definition of the set M implies that

(Φx)(t)≤−p(t)x(t− τ)+
2ε

3

∫ t

T

dη

r(η)

≤ pε[R(t− τ)−R(T )]+
2ε

3
[R(t)−R(T )]

≤ pε[R(t)−R(T )]+
2ε

3
[R(t)−R(T )]

=

(
p+

2
3

)
ε[R(t)−R(T )]

≤ ε[R(t)−R(T )]

implies that Φx ∈M. Define vn : [T −ρ,+∞)→ R by the recursive formula

vn(t) = (Φvn−1)(t), n≥ 1,

with the initial condition

v0(t) =


0, t ∈ [T −ρ,T )

ε

3 [R(t)−R(T )], t ≥ T.

Inductively it is easy to verify that

ε

3
[R(t)−R(T )]≤ vn−1(t)≤ vn(t)≤ ε[R(t)−R(T )].

for t ≥ T . Therefore for t ≥ T −ρ , limn→∞ vn(t) exists. Let limn→∞ vn(t) = v(t) for t ≥ T −ρ .

By the Lebesgue’s dominated convergence theorem v ∈ M and (Φv)(t) = v(t), where v(t) is

a solution of (1) on [T − ρ,∞) such that v(t) > 0. We may note that limt→∞
z(t)
R(t) =

ε

3 , where

z(t) = x(t)+ p(t)x(t− τ). Thus the proof is complete. �

Theorem 4. Let p ∈C(R+,(−1,0]). Assume that (5) hold, then (1) admits a bounded positive

solutions.

Proof. Let −1 <−p≤ p(t)≤ 0, p > 0 for t ∈ R+. Due to (5),

G(ε)
∫

∞

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη ≤ ε

3
, T ≥ ρ,

where ε > 0 is a constant. Consider

M = {x ∈C([T −σ ,+∞),R) : x(t) =
ε

3
, t ∈ [T −ρ,T ];

ε

3
≤ x(t)≤ ε, f or t ≥ T}
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and let Φ : M→M be defined by

(Φx)(t) =


ε

3 , t−ρ ≤ t ≤ T

−p(t)x(t− τ)+ ε

3 +
∫ t

T
1

r(η)

[∫
∞

η
q(ζ )G

(
x(ζ −σ)

)
dζ

]
dη , t ≥ T.

For every x ∈M, (Φx)(t)≥ ε

3 and

(Φx)(t)≤ pε +
ε

3
+G(ε)

∫ t

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη

≤ pε +
ε

3
+

ε

3
=

(
p+

2
3

)
ε ≤ ε

implies that Φx ∈ M. The rest of the proof follows from Theorem 3. Thus the theorem is

proved. �

Theorem 5. Let −∞ <−p1 ≤ p(t)≤−p2 <−1 for t ∈ R+, where p1, p2 > 0 such that 3p2 >

p1. Assume that (5) hold. Furthermore assume that G is Lipschitzian on the interval of the form

[a,b], 0 < a < b < ∞. Then equation (1) admits a positive bounded solution.

Proof. Due to (5). it is possible to find T > ρ such that∫
∞

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη <

p2−1
3L

,

where L = max{L1,G(1)} and L1 is the Lipschitz constant of G on (α,1), α = (p2−1)(3p2−p1)
3p1 p2

.

Let Y = BC([T,∞),R) be the space of real valued continuous functions defined on [T,∞). In-

deed, Y is a Banach space with the supremum norm defined by

||x||= sup{|x(t)| : t ≥ T}.

Define

S = {v ∈ Y : α ≤ v(t)≤ 1, t ≥ T} .

and we may note that S is a closed and convex subspace of Y . Let Ψ : S→ S be such that

(Ψx)(t)=


(Ψx)(T +ρ), t ∈ [T,T +ρ]

− x(t+τ)
p(t+τ) −

p2−1
p(t+τ) +

1
p(t+τ)

∫ t+τ

T
1

r(η)

[∫
∞

η
q(ζ )G

(
x(ζ −σ)

)
dζ

]
dη , t ≥ T +ρ.
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For every x ∈ S,

(Ψx)(t)≤− x(t + τ)

p(t + τ)
− p2−1

p(t + τ)

≤ 1
p2

+
p2−1

p2
= 1

and

(Ψx)(t)≥− p2−1
p(t + τ)

+
1

p(t + τ)

∫ t+τ

T

1
r(η)

[∫
∞

η

q(ζ )G
(
x(ζ −σ)

)
dζ

]
dη

≥ p2−1
p1

+
G(1)

p(t + τ)

∫ t+τ

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη

≥ p2−1
p1
− G(1)

p2

∫
∞

T

1
r(η)

[∫
∞

η

q(ζ )dζ

]
dη

≥ p2−1
p1
− p2−1

3p2
= α

implies that Ψx ∈ S. Now for x1,x2 ∈ S, we have

|(Ψx1)(t)− (Ψx2)(t)| ≤
1

|p(t + τ)|
|x1(t + τ)− x2(t + τ)|

+
L

|p(t + τ)|

∫ t+τ

T

1
r(η)

[∫
∞

η

q(ζ )|x1(ζ −σ)− x2(ζ −σ)|dζ

]
dη ,

that is,

|(Ψx1)(t)− (Φx2)(t)| ≤
1
p2
||x1− x2||+

p2−1
3p2

||x1− x2||

= µ||x1− x2||

implies that

||Ψx1−Ψx2|| ≤ µ||x1− x2||,

where µ = 1
p2

(
1+ p2−1

3

)
< 1. Therefore, Ψ is a contraction. Hence by Banach’s contraction

mapping principle, Ψ has a unique fixed point x ∈ S. It is easy to see that limt→∞ x(t) 6= 0. This

completes the proof of the theorem. �
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