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Abstract: In this paper, we explore the existence and uniqueness of positive solutions for the following nonlinear 

fourth order ordinary differential equation  

 ( ) ( )( )  (4) , , , ,u t f t u t t a b=    

with the following arbitrary two-point boundary conditions: 

 ( ) ( ) ( ) ( ) 0,u a u b u a u b = = = =   

where, ,a b are two arbitrary constants satisfying 0, 1b a b = − and    )  )( ), 0, , 0, .f C a b     Here we 

also demonstrate that under certain assumptions the above boundary value problem exist a unique symmetric positive 

solution. The analysis of this paper is based on a fixed point theorem in partially ordered metric spaces due to Amini-

Harandi and Emami. The results of this paper generalize the results of several authors in literature. Finally, we provide 

some illustrative examples to support our analytic proof.  
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1. Introduction 

It is well known that the fixed point technique is the most important technique for checking the 

existence and uniqueness of solutions for nonlinear boundary value problems. In the last few 

decades, two-point, three-point and four-point boundary value problems for fourth order nonlinear 

ordinary differential equations has extensively been studied by using various techniques, see for 

instance [1-17] and references therein. But there are only a small number of works about the 

existence and uniqueness of solutions for the nonlinear boundary value problem (for short BVP) 

with arbitrary point boundary conditions, see for instance [18] and references therein. From this 

context, in this paper we establish the criteria for the existence and uniqueness of symmetric 

positive solution to the following nonlinear fourth order arbitrary two-point boundary value 

problem by applying a fixed point theorem in partially ordered metric space due to Amini-Harandi 

and Emami [19]: 

 ( ) ( )( )  (4) , , , ,u t f t u t t a b=                                 (1.1) 

 ( ) ( ) ( ) ( ) 0,u a u b u a u b = = = =                                 (1.2) 

where, ,a b are two arbitrary constants satisfying 0, 1b a b = − and    )  )( ), 0, , 0, .f C a b     

By the above considered BVP it is possible to describe the bending of an elastic beam clamped at 

both arbitrarily chosen endpoints. Further physical interpretation of that elastic beam equation can 

be found in the work of Zill and Cullen [20, pp. 237-243]. 

Recently, Caballero et al.[5] and Zhai et al.[6] studied the following fourth order particular two-

point boundary value problems by applying a fixed point theorem in partially ordered metric space 

due to Amini-Harandi and Emami [19] and a fixed point theorem of general  - concave operators 

[6]  respectively: 

  
( ) ( )( )  

( ) ( ) ( ) ( )

(4) , , 0, 1

0 1 0 1 0.

u t f t u t t

u u u u

 = 


 = = = =

                            (1.3)  

where,    )  ): 0,1 0, 0,f   →  is continuous. 

In this paper, we generalize the works of Caballero et al.[5] and Zhai et al.[6] in case of 
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arbitrariness of boundary points. The rest of this paper is furnished as follows: 

In Section 2, we provide some basic concepts, a lemma and a fixed point theorem due to Amini-

Harandi and Emami [19]. In Section 3, we state and prove our main results, which provide us the 

techniques to check the existence and uniqueness of symmetric positive solutions of fourth order 

arbitrary two-point BVPs under some certain assumptions. In Section 4, we give some examples 

which help us to illustrate our main results. Finally, we give a conclusion. 

 

2. Preliminary Notes 

In this section we provide some basic concepts and a fixed point theorem due to Amini-Harandi 

and Emami [19], which are essential to establish our main results. 

Definition 2.1 [6]. Let ( ), .B  be a real Banach space and K   be a nonempty closed convex 

subset of B . Then we say that K is a cone on B if it is satisfies the following properties: 

(i) r K    for , 0;r K     (ii) ,r r K−    implies r =  , where    denotes the null 

element of B . 

Definition 2.2 [6]. Let  ,C a b denote the Banach space of continuous functions on  ,a b with 

uniform norm ( )  sup , , , 0, 1a t bp p t p C a b b a b =   = − . Then the function  ,p C a b is 

said to be symmetric if ( ) ( )  1 , ,p t p t t a b= −  .  

Definition 2.3. A solution ( )u t of the BVP defined by (1.1) and (1.2) is said to be symmetric 

solution if ( )u t is a symmetric function, i.e., ( ) ( )  1 , , .u t u t for all t a b= −   

Definition 2.4. A solution ( )u t of the BVP defined by (1.1) and (1.2) is said to be positive solution 

if ( ) 0u t   ( )for all , .t a b  

 

Now we state a fixed point theorem due to Amini-Harandi and Emami [19]. 

LetM denote the class of all functions of type  )  ): , ,a a b  → satisfying the condition 
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 ( )nt b →  implies  , (setof naturalnumbers).nt a n→                 (2.1) 

Theorem 2.1 [19]. Let ( ),P   be a partially ordered set and suppose that there exists a metric  

in P  such that ( ),P   is a complete metric space. Let :A P P→  be a non-decreasing mapping 

such that there exists an element 0p P with 0 0p Ap . Suppose that there exists  M such that  

 ( ) ( )( ) ( ), , , , ,Ap Aq p q p q for any p q Pwith p q       .               (2.2) 

Assume that either A  is continuous or P  is such that  

    nif p is a non-decreasing sequence in , .n nPsuchthat p p then p p for all n→     (2.3) 

Besides, suppose that  

     , , .foreach p q P thereexists r Pwhichiscomparableto pand q                 (2.4) 

Then A  has a unique fixed point. 

Remark 2.1. In this paper, we will work with a subset of the Banach space  ,C a b  , where 

0 and 1b a b = − . This space will be considered with the standard metric 

 ( ) ( ) ( ), sup .a t bp q p t q t  = −                          (2.5) 

It can also be equipped with a partial order given by 

   ( ) ( )  , , , , , .p q C a b p q p t q t for t a b                          (2.6) 

According to the work of Nieto and Rodriguez-Lopez [21], it is easy to prove that  ( ), ,C a b   

with the above mentioned metric satisfies the condition defined by (2.3) of Theorem 2.1. 

Furthermore, for  , , ,p q C a b  the function ( )  max , , ,p q C a b  and  ( ), ,C a b    satisfies the 

condition defined by (2.4) of Theorem 2.1. 

Lemma 2.1. Assume that 0and 1b a b = −  . ff ( )    , ,forall ,h t C a b t a b   , then the unique 

solution of following nonlinear fourth order arbitrary two-point BVP  

 
( ) ( )  

( ) ( ) ( ) ( )

(4) , , , 0, 1

0.

u t h t t a b b a b

u a u b u a u b

 =   = −


 = = = =

                  (2.7) 
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is ( ) ( ) ( )  , , , ,
b

a
u t G t s h s ds t a b=    

where, ( ),G t s is the Green’s function of homogeneous fourth order arbitrary two-point BVP 

 
( )  

( ) ( ) ( ) ( )

(4) 0, , , 0, 1 ,

0,

u t t a b b a b

u a u b u a u b

 =   = −


 = = = =

                             (2.8) 

i.e.,

  
( )

( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

3 3 2 2 2 2 3 2 2 3 3 3

3 2 3 2 2 3 2 2 3

3 2 2 3

3 2 2 2

2

2 2 3 2 2

3 3 2 3 2

3

,

3 6 3 2

6 3 4 6

3
;

3 6

3 4 6

2 3 6 3
1

6

G t s

s a a b s a b s a b a b a b

s ab s a a b ab s a b a b ab
t

a b a b

s a b s a ab b
t

s a b ab b a b

t s s a b sab b ab

b a

 − + − + +
 
  − + + + + +
  +
  − +  


 − + + + +
 +
 − + + +  


 + − + + + −
 

=
− ( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

3 3 2 2 2 2 3 2 2 3 3 3

3 2 3 2 2 3 2 2 3

3 2 2 3

3 2 2 2

2

2 2 3 2 2

3 3 2 3 2

,

3 6 3 2

6 3 4 6

3
;

3 6

3 4 6

2 3 6 3

a t s b

t a a b t a b t a b a b a b

t ab t a a b ab t a b a b ab
s

a b a b
a s

t a b t a ab b
s

t a b ab b a b

s t t a b tab b ab

  

 − + − + +
 
  − + + + + +
  +
  − +  


 − + + + +
 +
 − + + +  


 + − + + + −
 

.t b




















  






      

(2.9) 

Proof. To prove this lemma it is sufficient to show that the corresponding homogeneous 

differential equation of the BVP (2.8) exist a Green’s function ( ),G t s  defined by (2.9).  

The general solution of the differential equation of BVP (2.8) is 

 ( ) 2 3, where , , , arearbitraryconstants.u t A Bt Ct Dt A B C D= + + +              (2.10) 

Using the boundary conditions of BVP (2.8) in (2.10), we easily obtained that 

0,A B C D= = = =  and which ensure that the trivial solution of the BVP (2.8) is ( ) 0u t =  . 

Therefore, the BVP (2.8) exists a unique Green’s function and which is as follows: 
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( )
2 3

1 2 3 4

2 3

1 2 3 4

; ,
,

; .

A A t A t A t a t s b
G t s

B B t B t B t a s t b

 + + +   
= 

+ + +   
             (2.11)  

Now, by the properties of Green’s function for the BVP (2.8) and with its boundary conditions we 

obtained the following equations: 

 2 3 2 3

1 2 3 4 1 2 3 4 ,B B s B s B s A A s A s A s+ + + = + + +               (2.12) 

 2 2

2 3 4 2 3 42 3 2 3 ,B B s B s A A s A s+ + = + +                        (2.13)

 3 4 3 42 6 2 6 ,B B s A A s+ = +                             (2.14)

 4 46 6 ,B A=                                    (2.15)

 2 3

1 2 3 4 0,A A a A a A a+ + + =                           (2.16)

 2 3

1 2 3 4 0,B B b B b B b+ + + =                            (2.17)

 2

2 3 42 3 0,A A a A a+ + =                         (2.18)

 2

2 3 42 3 0.B B b B b+ + =                         (2.19) After 

solving the equations (2.12) to (2.19), we yield the following values, 

( )
( ) ( )3 3 2 2 2 2 3 2 2 3 3 3

1 3

1
3 6 3 2 ,

6
A s a a b s a b s a b a b a b

b a
 = − + − + +
 −

  

( )
( ) ( ) ( )3 2 3 2 2 3 2 2 3 3 2 2 3

2 3

1
6 3 4 6 3 3 ,

6
A s ab s a a b ab s a b a b ab a b a b

b a
 = − + + + + + − +
 −

 

( )
( ) ( ) ( )3 2 2 2 2 2 3 2 2

3 3

1
3 6 3 4 6 ,

6
A s a b s a ab b s a b ab b a b

b a
 = − + + + + − + + +
 −

 

( )
( ) ( )3 2 3 2

4 3

1
2 3 6 3 ,

6
A s s a b sab b ab

b a
 = − + + + −
 −

 

( )
( ) ( )3 3 2 2 2 2 3 2 2 3 3 3

1 3

1
3 6 3 2 ,

6
B s b ab s a b s a b a b a b

b a
 = − + − + +
 −

 

( )
( ) ( ) ( )3 2 2 2 3 3 2 2 3 3 2 2 3

2 3

1
6 3 4 6 3 3

6
B s ab s a b ab b s a b a b ab a b a b

b a
 = − + + + + + − +
 −
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( )
( ) ( ) ( )3 2 2 2 3 2 2 2 2

3 3

1
3 6 3 4 6 ,

6
B s a b s a ab b s a a b ab a b

b a
 = − + + + + − + + +
 −

 

and  

 

Now, putting the values of 1 2 3 4 1 2 3 4, , , , , , ,andA A A A B B B B  in (2.11), we get our desired unique 

Green’s function ( ),G t s , which confirm that  

( ) ( ) ( ), ,
b

a
u t G t s h s ds=   

is the unique solution of the BVP (2.7). 

This completes the proof.                   ∎ 

Remark 2.2. By Lemma 2.1, we can convert the BVP defined by (1.1) and (1.2) as the following 

integral equation 

 ( ) ( ) ( )( )  , , , for all , ,
b

a
u t G t s f s u s ds t a b=               (2.20)  

where ( ),G t s is the Green’s function given by (2.9). It is also noted that, the Green’s function 

( ),G t s have the following properties:  

(I) ( ),G t s is continuous on    , , ,a b a b   

(II) ( ) ( ) ( ) ( )  , , , , 0,forall , ,G a s G b s G a s G b s s a b = = = =  and  

(III) ( )  , 0, forall , , .G t s t s a b   

Obviously,    , ,u a b a b  is a solution of the BVP (1.1) and (1.2), if and only if it is a solution 

of the integral equation (2.20). Furthermore, if we consider a cone K  on  ,C a b  and define an 

integral operator :A K K→ by  

( ) ( ) ( )( ), , , for all ,
b

a
Au t G t s f s u s ds u K=                  (2.21) 

then it is easy to see that the BVP (1.1) and (1.2) has a solution ( )u u t=  if and only if u is a fixed 

point of the operator A defined by (2.21). 

( )
( ) ( )3 2 3 2

4 3

1
2 3 6 3 .

6
B s s a b sab a a b

b a
 = − + + + −
 −
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3. Main results 

In this section, we state and prove our main results, which analytically prove the existence and 

uniqueness of symmetric positive solutions of our BVP defined by (1.1) and (1.2). 

Theorem 3.1. Let E  be the class of all non-decreasing functions  )  ): , ,a a  →   satisfying 

(i) for any ( )0, ,w w w  and (ii) ( )
( )w

w
w


 = M . ff the boundary value problem defined by 

(1.1) and (1.2) satisfy the following assumptions: 

( )1A     )  ): , 0, 0,f a b   →   is continuous, where a and b  are two arbitrary constants    

         satisfying 0, 1 ,b a b = −  

( )2A  ( )( ),f t u t is non-decreasing with respect to the second variable for each  ,t a b , 

( )3A  suppose that there exists 

( )( )
1

,
sup ,

b

a t b
a

a
G t s ds



 

 


such that for  ), ,p q a    

         ,with p q  

 ( ) ( )( ) ( ), , ,f t q f t p q p with −  − E ,                        (3.1) 

where, ( ),G t s is the Green’s function defined as Lemma2.1,  

then the boundary value problem defined by (1.1) and (1.2) has a unique non-negative solution. 

Proof. If we define a cone on  ,C a b by the following set: 

 ( )   ( )   , : 0 for , ,K p t C a b p t t a b=                      (3.2) 

then, it is clear that ( ) ( ) ( ) ( )   , with , sup : ,a t bK p q p t q t t a b   = −   is a complete metric 

space satisfying the conditions (2.3) and (2.4) of Theorem 2.1. 

From the Remark 2.2, it is obvious that the integral operator A  defined by (2.21) applies the cone 

K  into itself, since according to the assumptions both of the functions ( ),G t s  and ( ),f t u are 

continuous.  
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Now, we prove that the assumptions of the Theorem 2.1 are satisfied by the integral operator A  

defined by (2.21). 

First, we prove that the operator A is non-decreasing. 

Since ( ),f t u  is non-decreasing with respect to the second variable, then for 

 , , and , ,p q K p q t a b   we have  

 
( ) ( ) ( )( )

( ) ( )( ) ( )

, ,

, , .

b

a

b

a

Ap t G t s f s p s ds

G t s f s q s ds Aq t

=

 =




                     (3.3) 

Thus, the operator A is non-decreasing.  

Again, since ( ),G t s  and ( ),f t u are continuous, then the operator A is so. 

Now, for,  , , and ,p q K p q t a b   , from our assumptions we yield the following estimate: 

 

( ) ( ) ( )

( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( ) ( )( )

( ) ( )( )

( )( ) ( )( )
( )( )

( )( )
( )( )

( )( )
( )( )
( )

, sup

sup

sup , , ,

sup ,

sup , ,

, sup ,

1
, sup ,

sup ,

,
,

,

a t b

a t b

b

a t b
a

b

a t b
a

b

a t b
a

b

a t b
a

b

a t bb a

a t b
a

Ap Aq Ap t Aq t

Ap t Aq t

G t s f s p s f s q s ds

G t s p s q s ds

G t s p q ds

p q G t s ds

p q G t s ds
G t s ds

p q
p q p

p q





 

 

 

 
  



 

 

 

 

 

 

 

 

= −

= −

= −

 −



=



= = 












( ), .q

               (3.4) 

Hence, for  , , and ,p q K p q t a b   , (3.4) yields 

 ( ) ( )( ) ( ), , , .Ap Aq p q p q                              (3.5) 

It is also clear that the inequality (3.5) holds for .p q=  

Therefore, contractive condition of Theorem 2.1 is satisfied for .p q  
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Again, since both of the functions ( ),G t s  and ( ),f t u are non-negative, then we get 

 ( ) ( )(0) , ,0 0
b

a
A G t s f s ds=  .                       (3.6) 

We have already confirm that the cone K satisfy the assumptions (2.3) and (2.4) of Theorem 2.1. 

Hence, all the assumptions of the Theorem 2.1 are satisfied by the integral operator A .  

Therefore, according to the Theorem 2.1, we can say that the integral operator A defined by (2.21) 

has a unique fixed point and which confirm that the BVP defined by (1.1) and (1.2) has a unique 

non-negative solution. 

This completes the proof.                   ∎ 

In the next theorem, we will prove that the BVP defined by (1.1) and (1.2) exist a unique positive 

solution.  

Theorem 3.2. ff the boundary value problem defined by (1.1) and (1.2) satisfy the assumptions

( ) ( ) ( )1 2 3,A A and A of Theorem 3.1 and the following additional assumption: 

( )4A there exists a certain  0 ,t a b such that ( )0 ,0 0f t  ,  

then the boundary value problem defined by (1.1) and (1.2) has a unique positive solution. 

Proof. Since, all the assumptions of Theorem 3.1 are satisfied, thus we get a unique non-negative 

solution ( )u t   for the BVP (1.1) and (1.2) and this solution ( )u t   must satisfy the following 

integral equations: 

 ( ) ( ) ( )( ), , .
b

a
u t G t s f s u s ds=                       (3.7) 

To complete the proof it is enough to show that ( )u t is a positive solution of the BVP (1.1) and 

(1.2). We will prove this by a contradiction.  

Suppose that there exists a ( )* ,t a b  such that ( )* 0u t = , i.e.,  

 ( ) ( ) ( )( )* *, , 0.
b

a
u t G t s f s u s ds= =                               (3.8) 

Now, since u  is nonnegative, the function f is non-decreasing with respect to the second variable 

and ( ), 0,G t s  thus we get 
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 ( ) ( ) ( )( ) ( ) ( )* * *0 , , , ,0 0,
b b

a a
u t G t s f s u s ds G t s f s ds= =                    (3.9) and 

this yields 

 ( ) ( )*, ,0 0.
b

a
G t s f s ds =                         (3.10) Hence 

from the non-negativity of ( ),G t s and ( )( ),f t u t , we have  

 ( ) ( ) ( ) ( )( )*, ,0 0 a.e almost everywhere .G t s f s s s =             (3.11) 

But, ( )*,G t s expressed as polynomial, hence ( ) ( )*, 0 a.e ,G t s s and this imply that 

 ( ) ( ),0 0 a.e .f s s=                   (3.12) 

Now, from the assumption ( )4A  , we get ( )0 ,0 0f t    for a certain  0 ,t a b   and hence the 

continuity of f provide us a set  ,D a b  with ( )0 and 0,t D D  where  is the Lebesgue 

measure, such that ( ),0 0, foranyf t t D   . This leads a contradiction in (3.12). Thus, ( )u t  is 

positive for all ( ),t a b . This completes the proof.             ∎ 

Finally, we will prove the existence and uniqueness of symmetric positive solution for our BVP 

(1.1) and (1.2) and the following theorem will establish this. 

Theorem 3.3. ff the boundary value problem defined by (1.1) and (1.2) satisfy the assumptions

( ) ( ) ( )1 2 3,A A and A of Theorem 3.1, ( )4A of Theorem 3.2 and the following additional assumption: 

( )5A ( )( ) ( )( ), 1 ,f t u t f t u t= −  for each ( )( )    ), , ,t u t a b a   ,  

then the boundary value problem defined by (1.1) and (1.2) has a unique symmetric positive 

solution. 

Proof. From the proof of Theorem 3.2, it is clear that the BVP defined by (1.1) and (1.2) exists a 

unique positive solution under our considered assumptions. So, to complete the proof of this 

theorem it is enough to show that the existed solution is symmetric. 

According to the proof of Theorem 3.1, if we replace the cone K  by J  and define the cone J  

on  ,C a b as follows 
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 ( )   ( ) ( )   , : 0and issymmetricfor , ,J p t C a b p t p t t a b=                 (3.13) 

then, it is obvious that J is closed subset of  ,C a b  and ( ),J  is a complete metric space with 

the induced metric  define by 

( ) ( ) ( ) ( ) ( )  , sup ,for , and ,a t bp q p t q t p t q t J t a b  = −   .            (3.14)  

Furthermore, J with the induced partially ordered set  ( ), ,C a b  satisfy the condition (2.3) of 

Theorem 2.1, and it is also clear that the function ( ) ( )  ( ) ( )max , , for , ,p t q t J p t q t J   

 ,t a b and hence, ( ),J  satisfies the condition (2.4) of Theorem 2.1. 

Now, as in the Remark 2.2 we define an integral operator by 

 ( ) ( ) ( )( ), , , for all .
b

a
Ap t G t s f s p s ds p K=                        (3.15) 

Finally, under our assumptions we prove that the operator A  maps J into itself, which ensure the 

symmetric property of the solution of VBP (1.1) and (1.2). 

From (3.15), we get 

 ( ) ( ) ( )( )1 1 , , .
b

a
Ap t G t s f s p s ds− = −                      (3.16) 

Putting 1s r= −  in (3.16) and for  , , 0, 1 ,t a b b a b  = − we obtain  

 
( ) ( ) ( )( )

( ) ( )( )

1 1 ,1 1 , 1

1 ,1 1 , 1 .

a

b

b

a

Ap t G t r f r p r dr

G t r f r p r dr

− = − − − − −

= − − − −




               (3.17)

 

Now, if we replace andt s  by 1 and 1t s− − in the Green’s function ( ),G t s  defined by (2.9), 

then we can easily prove that, ( ) ( ), 1 ,1 ,G t s G t s= − − hence from (3.17), we have 

 ( ) ( ) ( )( )1 , 1 , 1 .
b

a
Ap t G t r f r p r dr− = − −                 (3.18) 

Applying our assumption ( )5A  and the symmetric property of p , from (3.18) we obtain 



92 

MD. ASADUZZAMAN AND MD. ZULFIKAR ALI 

 

( ) ( ) ( )( )

( ) ( )( )

( )

1 , ,

, ,

b

a

b

a

Ap t G t r f r p r dr

G t s f s p s ds

Ap t

− =

=

=



                          (3.19) 

Hence, the integral operator A   maps J  into itself. Therefore, the solution leads by the integral 

operator A is symmetric. 

This completes the proof.                   ∎ 

Remark 3.1. Our Theorem 3.1, Theorem 3.2 and Theorem 3.3 generalized directly Theorem 3.1, 

Theorem 3.2 and Theorem 4.2 of Caballero et al.[5] respectively in case of arbitrariness of 

boundary points, as because we established our theorems under arbitrary two-point boundary 

conditions, whereas Caballero et al.[5] used particular two-point boundary conditions. Our results 

also generalized the results of Zhai et al.[6] in case of arbitrariness of boundary points, but they 

used different fixed point theorems. 

 

4. Examples 

In this section, we provide some examples to illustrate our main results. 

Example 4.1. Consider the following nonlinear fourth order arbitrary two-point boundary value 

problem: 

 
( ) ( )( )  

( ) ( ) ( ) ( )

(4) 1tan , , , 0, 1 , and , 0

0.

u t d u t t a b b a b d

u a u b u a u b

 − = +   = − 


 = = = =

            (4.1)  

Now, by using our Theorem 3.1 and Theorem 3.2, we justify that the BVP (4.1) exist a unique non-

negative solution and a unique positive solution respectively. 

For the above BVP if we consider  

( )( ) ( )( )1, tan ,f t u t d u t −= +                       (4.2) then, 

it is easy to prove that the assumptions ( ) ( )1 2andA A of Theorem 3.1 are satisfied by the function

( )( ),f t u t .  
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Before justifying the function ( )( ),f t u t  satisfies the assumption ( )3A  of Theorem 3.1, we will 

prove that the function  )  ): , ,a a  →   defined by ( ) 1tan ,w w −= satisfies  

 ( ) ( ) ( )1 2 1 2 1 2, for .w w w w w w  −  −                        (4.3) As

  is non-decreasing and 1 2w w , so if we put  

( ) ( )1 1

1 1 1 2 2 2tan and tanw w w w   − −= = = = ,  

then we get 1 2 1 2and , 0, .
2


   

 
  

 
 Consequently,  )  )1 2tan , tan 0, , .a        

Hence, from ( ) 1 2
1 2

1 2

tan tan
tan ,

1 tan tan

 
 

 

−
− =

+ 
 we yield 

 ( )1 2 1 2tan tan tan .   −  −                         (4.4) 

Now, applying non-decreasing property of   in the inequality (4.4), we obtain 

 
( )

( ) ( ) ( ) ( )

1

1 2 1 2

1

1 2 1 2 1 2

tan tan tan

tan .w w w w w w

   

  

−

−

−  −

 −  − = −
                   (4.5) 

This proves our assertion. 

For  and , ,p q t a b  we have 

 

( ) ( ) ( )
( )

( )

1 1

1

, , tan tan

tan

.

f t q f t p q p

q p

q p





 

− −

−

− = −

 −

= −
                      (4.6)

 

Now using the definition of E we prove that E . It is clear that   maps  ),a   into itself. 

Since ( ) 2

1

1
p

p
 =

+
 and   is non-decreasing, then by putting ( ) ( ),p p p = − we have  

 ( ) 2

1
1 0,for 0,

1
p p

p
 = −  

+
  

hence   is strictly increasing, and thus ( ) , for 0.p p p    
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If we consider ( )
( ) 1tanp p

p
p p




−

= =   and ( ) ,nt b →   then the sequence  nt   must be 

bounded, otherwise nt → and this leads a contradiction. Now, we have to prove that .nt a→  

Suppose that nt a→ . Then we get an 0   such that, for each n there exist nq n  with 

.
nqt   By the bounded properties of  nt we yield a convergent subsequence    of .

n nr qt t If we 

consider ,
nr

t c→ then from ( ) ,nt b →  we obtain 

 
( )1 1tan tan

.
n

n

r

r

t c
b

t c

− −

→ =   

This gives us a unique solution, 0c = , i.e., 0,
nr

t → and this contradicts the fact that 
nqt  . Hence 

our supposition is not correct. Therefore, nt a→ . This proves that  E . Thus the assumption 

( )3A   of Theorem 3.1 is satisfied by considering 

( )( )
1

,
sup ,

b

a t b
a

a
G t s ds



 

 


 where ( ),G t s  is 

the Green’s function of the corresponding homogeneous BVP of the BVP (4.1). Therefore, 

according to the Theorem 3.1, we can say that the BVP defined by (4.1) exist a unique non-negative 

solution.  

Now, we verify that the according to the Theorem 3.2, the BVP by (4.1) exists a unique positive 

solution and for this it is enough to prove that the assumption ( )4A of Theorem 3.2 is satisfied by 

the function ( )( ),f t u t .  

From (4.2), we get 

 ( ),0 0.f t d=   

This confirms the assumption ( )4A of Theorem 3.2 hold.  

Therefore, according to the Theorem 3.2, we can say that the BVP defined by (4.1) exist a unique 

positive solution. 
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Example 4.2. Consider the following nonlinear fourth order arbitrary two-point boundary value 

problem: 

 
( ) ( ) ( )( )  

( ) ( ) ( ) ( )

(4) 1sin tan , , , 0, 1 , and , 0

0.

u t d t u t t a b b a b d

u a u b u a u b

  − = +   = − 


 = = = =

           (4.7) 

Now, by using our Theorem 3.3, we justify that the BVP (4.7) exist a unique symmetric positive 

solution. 

For the BVP (4.7) if we consider  

( )( ) ( ) ( )( )1, sin tan ,f t u t d t u t  −= +                      (4.8) 

then, it is easy to prove that the assumptions ( ) ( )1 2andA A of Theorem 3.1 as well as of Theorem 

3.3 are satisfied by the function ( )( ),f t u t .  

Now, as in the Example 4.1, taking a function  )  ): , ,a a  →   defined by ( ) 1tan ,w w −= we 

can prove that  E and for  , , ,p q t a b  we obtain 

 

( ) ( ) ( ) ( )
( ) ( )

( )

1 1

1

1

, , sin tan tan

sin tan

tan .

f t q f t p t q p

t q p

q p

 

 



− −

−

−

− =  −

  −

  −
                    (4.9)

 

Thus, if we consider  

( )( )
1

,
sup ,

b

a t b
a

a
G t s ds



 

 


 where ( ),G t s  is the Green’s function of the corresponding 

homogeneous BVP of the BVP (4.2), then the assumption ( )3A  of Theorem 3.1 as well as of 

Theorem 3.3 is satisfied by ( )( ),f t u t .  

Now, we have 

( ) ( ) ( )1,0 sin tan 0 0.f t d t d  −= + =                           (4.10) 

This confirms the validity of the assumption ( )4A of Theorem 3.2 as well as of Theorem 3.3. 

Finally, we will check the validity of the assumption ( )5A  of Theorem 3.3 for the function
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( )( ),f t u t . 

If we replace t   by 1 t−   in (4.8) with respect the first variable only, then for each

( )( )    ), , ,t u t a b a   , we have 

 

( )( ) ( )( ) ( )

( ) ( )

( )( )

1

1

1 , sin 1 tan

sin tan

, ,

f t u t d t u

d t u

f t u t

 

 

−

−

− = + −

= +

=

 

i.e., ( )( ),f t u t is symmetric with respect to the first variable.  

Hence, the assumption ( )5A of Theorem 3.3 holds for the function ( )( ),f t u t . 

Therefore, according to the Theorem 3.3, we can say that the BVP defined by (4.2) exist a unique 

symmetric positive solution. 

 

5. Conclusion 

In this study, we have established general approaches for checking the existence and uniqueness 

of symmetric positive solutions of nonlinear fourth order arbitrary two-point boundary value 

problem defined by (1.1) and (1.2) applying a fixed point theorem in partially ordered metric space 

due to Amini-Harandi and Emami [19]. By our Theorem 3.1 one can check the existence of unique 

non-negative solution of the BVP (1.1) and (1.2). Theorem 3.2 has been used to examine the 

existence of unique positive solution of the BVP (1.1) and (1.2) whereas Theorem 3.3 has been 

used to check the existence of unique symmetric positive solution of that BVP. The results of this 

paper generalized the corresponding results of Caballero et al.[5] and Zhai et al.[6]. Finally, by 

Example 4.1 and Example 4.2, we verified our results.  

 

Conflict of Interests 

The authors declare that there is no conflict of interests. 

 



97 

THE UNIQUE SYMMETRIC POSITIVE SOLUTIONS 

REFERENCES 

[1] M. Feng, P. Li and S. Sun, Symmetric positive solutions for fourth-order n-dimensional m-Laplace systems, 

Bound. Value Probl. 2018 (2018), Article ID 63. 

[2] R. Ma, J. Wang and D. Yan, The method of lower and upper solutions for fourth order equations with the 

Navier condition, Bound. Value Probl. 2017 (2017), Article ID 152. 

[3] X. Lv, L. Wang and M. Pei, Monotone positive solution of a fourth-order BVP with integral boundary 

conditions, Bound. Value Probl. 2015 (2015), Article ID 172. 

[4] H. Li, L. Wang, M. Pei, Solvability of a Fourth-Order Boundary Value Problem with Integral Boundary 

Conditions, J. Appl. Math., 2013 (2013), Article ID 782363, 7 pages.  

[5] J. Caballero, J. Harjani, K. Sadarangani, Uniqueness of Positive Solutions for a Class of Fourth-Order 

Boundary Value Problems, Abst. Appl. Anal. 2011 (2011), Article ID 543035. 

[6] C. Zhai, R. Song, Q. Han, The existence and the uniqueness of symmetric positive solutions for a fourth-

order boundary value problem, Comput. Math. Appl. 62 (2011), 2639-2647. 

[7] J.P. Sun and X.Q. Wang, Monotone Positive Solutions for an Elastic Beam Equation with Nonlinear 

Boundary Conditions, Math. Probl. Eng. 2011 (2011), Art. ID 609189. 

[8] G. Bonanno, B. DiBella, D. O’Regan, Non-trivial solutions for nonlinear fourth-order elastic beam equations, 

Comput. Math. Appl. 62(4) (2011) 1862-1869. 

[9] M. Pei and S. K. Chang, “Monotone iterative technique and symmetric positive solutions for a fourth order 

boundary value problem, Math. Comput. Model. 51(9-10) (2010) 1260–1267. 

[10] R. Ma, L. Xu Existence of positive solutions of an onlinear fourth-order boundary Value problem, Appl. Math. 

Lett. 23 (2010) 537–543. 

[11] J.R.L. Webb, G. Infante, and D. Franco, Positive solutions of nonlinear fourth-order boundary-value 

problems with local and non-local boundary conditions, Proc. Royal Soc. Edin. 138(2) (2008) 427–446.  

[12] A. Cabada, J.A. Cid, and L. Sanchez, Positivity and lower and upper solutions for fourth order boundary 

value problems, Nonlinear Anal. 67(5) (2007) 1599–1612.  

[13] X. L. Liu and W. T. Li, Existence and multiplicity of solutions for fourth-order boundary value problems with 

parameters, J. Math. Anal. Appl. 327(1) (2007), 362–375. 

https://www.sciencedirect.com/science/journal/08981221/62/4


98 

MD. ASADUZZAMAN AND MD. ZULFIKAR ALI 

[14] J. Liu1, W. Xu, Positive Solutions for Some Beam Equation Boundary Value Problems, Bound. Value Probl., 

2009 (2009), Article ID 393259. 

[15] Z. Bai, H. Wang, On positive solutions of some nonlinear fourth-order beam equations, J. Math. Anal. Appl. 

270 (2002), 357–368. 

[16] Z. Bai, The method of lower and upper solutions for a bending of an elastic beam equation, J. Math. Anal. 

Appl. 248(1) (2000) 195–202. 

[17] C. P. Gupta, Existence and uniqueness theorems for some fourth order fully quasilinear boundary value 

problems, Appl. Anal., 36(3-4) (1990), 157–169. 

[18] Z. Liu, S.M. Kang and J.S. Ume, Triple positive solutions of nonlinear third order boundary value problems, 

Taiwan. J. Math., 13(3) (2009), 955-971.  

[19] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric 

spaces and application to ordinary differential equations, Nonlinear. Anal. TMA. 72(5) (2010) 2238–2242. 

[20] D.G. Zill, M.R. Cullen, Differential Equations with Boundary-Value Problems, 5th ed., Brooks/Cole, (2001). 

[21] J. J. Nieto and R. Rodr´ıguez-L´opez, Contractive mapping theorems in partially ordered sets and applications 

to ordinary differential equations, Order, 22(3) (2005) 223–239. 


