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1. Introduction

Banach contraction mapping principle is an important result of modern analysis. This

principle has been extended and generalized in different directions in metric spaces. The

theory of probabilistic metric spaces was introduced in 1942 by Menger [7]. The idea was
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to use distribution functions instead of non-negative real numbers as values of the metric.

Thus probabilistic metric spaces have notions of uncertainty built within the structure of

the space and hence provides a natural framework for the study of quantum mechanical

phenomena. It is pertinent to mention at this point that these notions are very important

in the context of quantum particle physics, especially in relations with both string and

E-infinity theories which have been extensively explored by El Naschie some of which are

noted in [9-13]. for instance, in order to analyse the probability involved in the two-slit

experiment can be modelled in terms of a probabilistic metric.

Recently the study of fixed point theorems in probabilistic metric spaces is also a topic

of recent interest and forms an active direction of research. The first ever effort in this

direction appears to be made by Sehgal [20]. since then several authors have already

studied fixed point and common fixed point theorems in PM spaces which include [1,3-

6,14,15,17,18]. and others have recently initiated work along these lines. Our results

partially extend and improve several known results Rashwan and Hedar [15] and Mishra

[17] .We cite Cain and Kasreil [5],Sherwood[6],Imdad et. al [8] and Sehgal and Bharucha-

Reid [19] and others whose contributions are relevant to the representation of this paper.

2. Preliminaries

Definition 2.1. [2] A mapping F : < → <+ is called distribution function if it is non-

decreasing, left continuous with

inf{F (t) : t ∈ <+} = 0 and sup{F (t) : t ∈ <+} = 1.

Let L be the set of all distribution functions whereas H stands for the specific distribution

function (also known as Heaviside function) defined by

H(x) =

 0 ; x ≤ 0

1 ; x > 0

Definition 2.2. [2] Let X be a non-empty set. An ordered pair (X,F) is called a PM

space where F is a mapping from X ×X into L satisfying the following conditions:
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(i) Fx,y(t) = H(x) if and only if x = y;

(ii) Fx,y(t) = Fy,x(t);

(iii) Fx,y(t) = 1 and Fy,z(s) = 1, then Fx,y(t+s) = 1, for all x, y, z ∈ X and t, s ≥ 0.

Every metric space(X, d) can always be realized as a PM space by considering F : X ×

X → L defined by Fx,y(t) = H(t − d(x, y)) for allx, y ∈ X. So PM spaces offer a wider

framework (than that of the metric spaces) and are general enough to cover even wider

statistical situations.

Definition 2.3. [2] A mapping ∆ : [0, 1]→ [0, 1]→ [0, 1] is called a t-norm if

(i) ∆(a, 1) = a,∆(0, 0) = 0;

(ii) ∆(a, b) = ∆(b, a);

(iii) ∆(c, d) ≥ ∆(b, a) for c ≥ a, d ≥ b;

(iv) ∆(∆(a, b)c) = ∆(a,∆(b, c)) for all a, b, c ∈ [0, 1].

Remark 2.1. The following are the four basic t-norms:

(i) The minimum t-norm: TM(a, b) = min {a, b}.

(ii) The product t-norm: TP (a, b) = a.b.

(iii) The Lukasiewicz t-norm: TL(a, b) = max {a+ b− 1, 0}.

(iv) The weakest t-norm, the drastic product:

H(x) =

 min(a, b) if max (a, b) = 1

0 otherwise

In respect of above mentioned t-norms, we have the following ordering :

TD < TL < TP < TM Throughout this paper, ∆ stands for an arbitrary continuous

t-norm.

Definition 2.4. [7] A Menger PM space(X,F ,∆) is a triplet where (X,F) is a PM space

and ∆ is a t-norm satisfying the following condition

Fx,z(t+ s) ≥ ∆(Fx,y(t), (Fy,z(s)).
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Definition 2.5. [2] A sequence {xn} in a Menger PM space (X,F ,∆)is said to converge

to a point x in X if for every ∈> 0 and λ > 0, there is an integerM(∈, λ) such that

Fxn,x(∈) > 1− λ, for all n ≥M(∈, λ).

Definition 2.6. [2] A sequence {xn} in a Menger PM space (X,F ,∆)is said to cauchy

if for each ε > 0 and λ > 0, there is an integer M(ε, λ) such that Fxn,xm(ε) > 1 − λ, for

all n,m ≥M(ε, λ).

Definition 2.7. [2] A Menger PM space (X,F ,∆)is said to be complete if every Cauchy

sequence in it converges to a point of it.

Lemma 2.1. [4] Let (X,F ,∆) be Menger PM space and Eλ,µ : X × X → R+
⋃

(0) by

Eλ,µ(x, y) = inf{t > 0 : Fx,y(t) > 1− λ} for each λ ∈ (0, 1) and x, y ∈ X. then we have

(i) for any µ ∈ (0, 1) there exists λ ∈ (0, 1) such that

Eµ,F (x1, xn) ≤ Eλ,F (x1, x2) + · · ·+ Eλ,F (xn−1, xn) for all x1, x2, · · · , xn ∈ X.

(ii) The sequence xn is convergent w.r. to Menger PM f if and only if Eµ,F (xn, x)→ 0.

Also the sequence {xn} is a Cauchy sequence w.r. to Menger PM spaces F if and only if

it a Cauchy sequence with Eλ,F .

Lemma 2.2. [14] A function φ : [0,∞) → [0,∞) is said to satisfy the condition (?) : if

φ is nondecreasing and
∑n

n=1 φ
n(t) <∞ for all t > 0, where φn(t) denotes the nth iterate

of φ(t), then φ(t) < t for all t > 0.

Lemma 2.3. [4] Let (X,F ,∆) be a Menger PM space. suppose that xn ⊆ X is such that

Fxn,xn+1(φ
n(t)) ≥ Fx0,x1(t) for all t > 0, where the function φ : [0,∞) → [0,∞) is onto,

strictly increasing and satisfy condition (?). Also assume

EF (x0, x1) = sup{Eω,F (x0, x1) : ω ∈ (0, 1)} <∞.

then {xn} is a Cauchy sequence.

Lemma 2.4. [4] If (X,F ,∆) is a Menger PM space and Fx,y(t) = C, for all t > 0, then

C = H(t) and x = y.
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Lemma 2.5. [4] Let (X,F ,∆) be a Menger PM space. suppose that the function

φ : [0,∞)→ [0,∞)

is onto and strictly increasing, then

inf{φn(s) > 0 : Fx,y(s) > 1− λ} ≤ φn(inf{s > 0 : Fx,y(s) > 1− λ})

for every x, y ∈ X, λ ∈ (o, 1). and n = 1, 2, 3 . . .

Definition 2.8. [17] A pair (A, S) of self mappings of a Menger PM space (X,F ,∆) is

said to be weakly commuting if FSAx,ASx(t) ≥ FAx,Sx(t) for all x ∈ X and t > 0.

Definition 2.9. [18] A pair (A, S) of self mappings of a Menger PM space (X,F ,∆) is

said to be compatible if FSAxn,ASxn(t) → 1 for all t > 0, whenever {xn} is a sequence in

X such that Sxn, Axn → u for some u in X as n→∞.

Definition 2.10. A pair (A, S) of self mappings of a nonempty set X is said to be weakly

compatible or coincidentally commuting if the mappings commute at their coincidence

points, i.e. Ax = Sx for some x ∈ X impliesASx = SAx.

O’Regan and Saadati [4] proved the following result

Theorem 2.1. Let A,B,L,M, S and T be self mappings on complete Menger space

(X,F ,∆) satisfy condition (i) of Theorem (2.1) suppose that

(i) LS = SL,MT = TM,AS = SA,BT = TB,

(ii) either LS or A is continuous,

(iii) the pair (A,LS) is compatible and (B,MT ) is weakly compatible,

(iv)

FAp,Bq(φ(x)) ≥min{FLSp,Ap(x), FMTq,Bq(x), FMTq,Ap(βx),

FLSp,Bq((2− β)x), FLSp,MTq(x)}

for all p, q ∈ X, β ∈ (0, 2) and x > 0; where the function φ : [0,∞)→ [0,∞) is onto and

strictly increasing, and satisfy condition (?). In addition there exists x0, x1, x2 ∈ X with
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Ax0 = MTx1, Bx1 = LSX2 and

EF (AX0, Bx1) = sup{Eγ,F (AX0, Bx1) : γ ∈ (0, 1)} <∞.

Then A,B,L,M, S and T have a unique common fixed point in X.

Inspired by the treatment given in [4] we prove our main result for more generalize

version by taking both pairs to be weakly compatible maps

3. Main results

Theorem 3.1. Let A,B, S and T be self mappings of Menger spaces (X,F ,∆)satisfying

the following conditions:

(i) A(X) ⊂ T (X), and B(X) ⊂ S(X),

(ii)

FAx,By(φ(t)) ≥min{FAx,Sx(t), FBy,Ty(t), FAx,Ty(βt), FBy,Sx((2− β)t),

FAx,Ty(2t).FSx,By(2t)

FAx,Sx(t)
,

2.FSx,Ty(t)

FAx,Sx(t) + FSx,Ty(t)

}(3.1)

for all x, y ∈ X, β ∈ (0, 2) and t > 0; where the function φ : [0,∞) → [0,∞) is onto and

strictly increasing, and satisfy condition (?).

In addition there exists x0, x1, x2 ∈ X with Ax0 = Tx1, Bx1 = Sx2 and

EF (Ax0, Bx1) = sup{Eγ,F (Ax0, Bx1) : γ ∈ (0, 1)} <∞.

(iii) one of A(X),B(X),S(X) or T (X) is a complete subspace of X. Then

(a)the pair (A, S) (and (B, T )) have a coincidence point,

(b)A,B, S and T have a unique common fixed point provided both the poirs (A, S) and

(B, T ) are weakly compatible.

Proof. Let x0 be an arbitrary element in X. By (i) there exists x1, x2 in X such that

Ax0 = Tx1 and Bx1 = Sx2 and EF (Ax0, Bx1) <∞. Inductively, we construct sequences

{xn} and {yn} in X such that Ax2n = Tx2n+1 = y2n and Bx2n+1 = Sx2n+2 = y2n+1 for
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n = 0, 1, 2, · · · . To show that the sequence {yn} is a Cauchy sequence putting x = x2n

and y = x2n+1 for x > 0, β = 1− λ with λ ∈ (0, 1)then we get by equation(3.1)

Fy2n,y2n+1(φ(t)) =FAx2n,Bx2n+1(φ(t)),

≥min{FAx2n,Sx2n(t), FBx2n+1,Tx2n+1(t), FAx2n,Tx2n+1(βt),

FBx2n+1,Sx2n((2− β)t),
FAx2n,Tx2n+1(2t).FSx2n,Bx2n+1(2t)

FAx2n,Sx2n(t)
,

2FSx2n,Tx2n+1(t)

FAx2n,Sx2n(t) + FSx2n,Tx2n+1(t)

}
= min{Fy2n,y2n−1(t), Fy2n+1,y2n(t), Fy2n,y2n(βt), Fy2n+1,y2n−1((2− β)t),

Fy2n,y2n(2t)Fy2n−1,y2n+1(2t)

Fy2n,y2n−1(t)
,

2Fy2n−1,y2n(t),

Fy2n,y2n−1(t) + Fy2n−1,y2n(t)

}
= min{Fy2n,y2n−1(t), Fy2n+1,y2n(t), 1, Fy2n+1,y2n−1((2− 1 + λ)t),

Fy2n−1,y2n+1(2t)

Fy2n,y2n−1(t)
, 1
}

= min{Fy2n,y2n−1(t), Fy2n+1,y2n(t), 1, Fy2n+1,y2n−1((1 + λ)t),

Fy2n,y2n+1(t), 1}

= min{Fy2n,y2n−1(t), Fy2n+1,y2n(t), 1, (Fy2n+1,y2n(t) + Fy2n,y2n+1(λt)),

Fy2n,y2n+1(t), 1}

= min{Fy2n−1,y2n(t), Fy2n,y2n+1(t), Fy2n,y2n+1(λt)}

which on taking λ→ 1, we get

Fy2n,y2n+1(φ(t)) ≥ min{Fy2n−1,y2n(t), Fy2n,y2n+1(t)}

Similarly we can show that

Fy2n+1,y2n+2(φ(t)) ≥ min{Fy2n,y2n+1(t), Fy2n+1,y2n+2(t)}

for all even or odd n, we have

Fyn,yn+1(φ(t)) ≥ min{Fyn−1,yn(t), Fyn,yn+1(t)}

Fyn,yn+1(t) ≥ min{Fyn−1,yn(φ−1t), Fyn,yn+1(φ
−1t)}
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continuing this process, we get

Fyn,yn+1(t) ≥ min{Fyn−1,yn(φ−1t), Fyn−1,yn(φ−2t), Fyn,yn+1(φ
−2t)}

= min{Fyn−1,yn(φ−1t), Fyn,yn+1(φ
−2t)}

≥ · · · ≥ min{Fyn−1,yn(φ−1t), Fyn,yn+1(φ
−mt)}.

For each γ ∈ (0, 1) we have

Eγ,F (yn, yn+1) = inf{t > 0 : F(yn, yn+1)(t) ≥ 1− γ}

= inf{t > 0 : min{Fyn−1,yn(φ−1t), Fyn,yn+1(φ
−m)t} ≥ 1− γ}

= max{inf{t > 0 : Fyn−1,yn(φ−1t) ≥ 1− γ},

inf{t > 0 : Fyn,yn+1(φ
−mt) ≥ 1− γ}}

= max{φ(Eγ,F (yn−1, yn)), φm(Eγ,F (yn, yn+1))}

taking n→∞ we get

Eγ,F (yn, yn+1) ≤ φ(Eγ,F (yn−1, yn)) ≤ φn(Eγ,F (y0, y1))

Owing to Lemma(2.3), we conclude that {yn} is a Cauchy sequence in X.

Now suppose that S(X) is a complete subspace of X then there exists a limit point

u ∈ S(X) such that Su = z as {yn} is a Cauchy sequence containing a convergent

subsequence {yn+1}, therefore the sequence {yn} also converges implying thereby the

convergence of {y2n} being a subsequence of {yn}.

To established Au = z, set x = u and y = x2n−1 with β = 1 in inequality (3.1)

FAu,B2n−1(φ(t)) ≥min{FAu,Su(t), FBx2n−1,Tx2n−1(t), FAu,Tx2n−1(t), FBx2n−1,Su(t),

FAu,Tx2n−1(2t).FSu,Bx2n−1(2t)

FAu,Su(t)
,

2FSu,Tx2n−1(t)

FAu,Su(t) + FSu,Tx2n−1(t)

}
taking n→∞

FAu,z(φ(t)) ≥min{FAu,z(t), Fz,z(t), FAu,z(t), Fz,z,
FAu,z(2t).Fz,z(2t)

FAu,z(t)
,

2Fz,z(t)

FAu,z(t) + Fz,z(t)

}
= min{FAu,z(t), 1, FAu,z(t), 1,

FAu,z(2t)

FAu,z(t)
,

2

FAu,z(t) + 1
}
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i.e.

FAu,z(φ(t)) ≥ FAu,z(t)

but

FAu,z(φ(t)) ≤ FAu,z(t)

and hence FAu,z(t) = C for all t > 0 now applying to Lemma(2.4) we have H(x) = C and

hence Au = Su = z which shows that the pair (A, S) has a point of coincidence.

Since A(X) ⊂ T (X) and Au = z hence z ∈ T (x). Let Tv = z. If Bv 6= z then by

inequality (3.1) with x = x2n , y = v with β = 1, we have

FAx2n,Bv(φ(t)) ≥min{FAx2n,Sx2n(t), FBv,Tv(t), FAx2n,T v(t), FBv,Sx2n(t),

FAx2n,T v(2t).FSx2n,Bv(2t)

FAx2n,Sx2n(t)
,

2FSx2n,T v(t)

FAx2n,Sx2n(t) + FSx2n,T v(t)

}
which on making n→∞

Fz,Bv(φ(t)) ≥min{Fz,z(t), FBv,z(t), Fz,z(t), FBv,z(t),
Fz,z(2t).Fz,Bv(2t)

Fz,z(t)
,

2Fz,z(t)

Fz,z(t) + Fz,z(t)

}
= min{Fz,z(t), FBv,z(t), Fz,z(t), FBv,z(t), Fz,Bv(2t), 1}

i.e.

Fz,Bv(φ(t)) ≥ Fz,Bv(t)

but

Fz,Bv(φ(t)) ≤ Fz,Bv(t)

therefore Fz,Bv(t) = C. Now again appealing to Lemma(2.4) we have H(x) = C for all

t > 0 and hence Bv = z. Thus we get Bv = Tv = z. Which shows that the pair (B, T )

has a point of coincidence.

If we take T (X) is complete subspace of X, then analogous arguments establish (iii)(a).

The remaining two cases pertain essentially to the previous cases. Indeed, if B(X) is

complete subspace of X, then z ∈ B(X) ⊂ S(X) and if A(X) is complete then z ∈

A(X) ⊂ T (X). Hence (iii)(a) completely established.
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Now since the pairs (A, S) and (B, T ) are weakly compatible at u and v respectively,

i.e. Au = Su = Bv = Tv = z, therefore Az = ASu = SAu = Sz and Bz = BTv =

TBv = Tz, which shows that z is a common coincidence point of pairs (A, S) and (B, T ).

Now we have to show that Az = Bz = Sz = Tz = z. we put x = x2n, y = z with β = 1

in inequality (3.1)

FAx2n,Bz(φ(t)) ≥min{FAx2n,Sx2n(t), FBz,Tz(t), FAx2n,T z(t), FBz,Sx2n(t),

FAx2n,T z(2t).FSx2n,Bz(2t)

FAx2n,Sx2n(t)
,

2FSx2n,T z(t)

FAx2n,Sx2n(t) + FSx2n,T z(t)

}
as n→∞ we have

Fz,Bz(φ(t)) ≥min{Fz,z(t), FBz,Bz(t), Fz,Tz(t), FBz,z(t),

Fz,Tz(2t).FBz,z(2t)

Fz,z(t)
,

2Fz,Tz(t)

Fz,z(t) + Fz,Tz(t)

}
= min{1, 1, Fz,Bz(t), FBz,z(t),

(Fz,Bz(2t))
2

1
,

2.Fz,Bz(t)

Fz,Bz(t) + 1

}
i.e.

Fz,Bz(φ(t)) ≥ Fz,Bz(t)

but

Fz,Bz(φ(t)) ≤ Fz,Bz(t)

and hence Fz,Bz(t) = C now by Lemma(2.4) we have H(t) = C for all t > 0 and Bz = z.

Hence Bz = Tz = z. Similarly we can show that Az = Sz = z. combine all the result

then we get Az = Bz = Sz = Tz = z Thus z is common fixed point of A,B, S and T.

Following the lines of proved theorem (3.1), one can easily prove the existance of unique

common fixed point of mappings A,B, S and T.. Thus concludes the proof.

We can deduce corollaries for two and three mappings which run as follows:

Corollary 3.1. Let A, S and T be self mappings on complete Menger space (X,F ,∆)

satisfying the conditions

(i) A(X) ⊂ T (X) ∩ S(X),
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(ii)

FAx,By(φ(t)) ≥min{FAx,Sx(t), FAy,Ty(t), FAx,Ty(βt), FAy,Sx((2− β)t),

FAx,Ty(2t).FSx,By(2t)

FAx,Sx(t)
,

2.FSx,Ty(t)

FAx,Sx(t) + FSx,Ty(t)

}
for all x, y ∈ X, β ∈ (0, 2) and t > 0; where the function φ : [0,∞)→ [0,∞) is onto and

strictly increasing, and satisfy condition (?).

In addition there exists x0, x1, x2 ∈ X with Ax0 = Tx1, Ax1 = Sx2 and

EF (Ax0, Ax1) = sup{Eγ,F (Ax0, Ax1) : γ ∈ (0, 1)} <∞.

(iii) one of A(X) , S(X) or T (X) is a complete subspace of X. Then

(a)the pair (A, S) (and (A, T )) have a coincidence point,

(b)A, S and T have a unique common fixed point provided both the poirs (A, S) and

(A, T ) are weakly compatible.

Corollary 3.2. Let A,B and T be self mappings on complete Menger space (X,F ,∆)

satisfying the conditions

(i) A(X) ∪B(X) ⊂ T (X),

(ii)

FAx,By(φ(t)) ≥min{FAx,Tx(t), FBy,Ty(t), FAx,Ty(βt), FBy,Tx((2− β)t),

FAx,Ty(2t).FTx,By(2t)

FAx,Tx(t)
,

2.FTx,Ty(t)

FAx,Tx(t) + FTx,Ty(t)

}
for all x, y ∈ X, β ∈ (0, 2) and t > 0; where the function φ : [0,∞)→ [0,∞) is onto and

strictly increasing, and satisfy condition (?).

In addition there exists x0, x1, x2 ∈ X with Ax0 = Tx1, Bx1 = Tx2 and

EF (Ax0, Ax1) = sup{Eγ,F (Ax0, Ax1) : γ ∈ (0, 1)} <∞.

(iii) one of A(X) , B(X) or T (X) is a complete subspace of X. Then

(a)the pair (A, T ) (and (B, T )) have a coincidence point,

(b)A,B and T have a unique common fixed point provided both the poirs (A, T ) and (B, T )

are weakly compatible.



COMMON FIXED POINT THEOREMS 235

Corollary 3.3. Let A and S be two self mappings on complete Menger space (X,F ,∆)

satisfying the conditions

(i) A(X) ⊂ S(X),

(ii)

FAx,Ay(φ(t)) ≥min{FAx,Sx(t), FAy,Sy(t), FAx,Sy(βt), FAy,Sx((2− β)t),

FAx,Sy(2t).FSx,Ay(2t)

FAx,Sx(t)
,

2.FSx,Sy(t)

FAx,Sx(t) + FSx,Sy(t)

}
for all x, y ∈ X, β ∈ (0, 2) and t > 0; where the function φ : [0,∞)→ [0,∞) is onto and

strictly increasing, and satisfy condition (?).

In addition there exists x0, x1 ∈ X with Ax0 = Sx1, and

EF (Ax0, Ax1) = sup{Eγ,F (Ax0, Ax1) : γ ∈ (0, 1)} <∞.

(iii) one of A(X) ,or S(X) is a complete subspace of X. Then

(a)the pair (A, S) has a coincidence point,

(b)A and S have a unique common fixed point provided the poir (A, S) and (A, T ) are

weakly compatible.

Remark 3.1. Corollary (3.3) improves the result of O’Regan and Saadati[4] proved for a

pair of mappings in respect of continuity, compliteness and commutativity considerations.

Example 3.1. consider X = [0, 6] with

Fx,y(t) =

 t
t+|x−y| ; t > 0

0 ; t = 0

for all x, y ∈ X. then (X,F,∆) is a Menger PM space. Define self mappings A,B, S and

T on X as follows:

A0 = 0, Ax = 1, 0 < x ≤ 6;

B0 = 0, Bx = 3, 0 < x < 6, B6 = 0;

S0 = 0, Sx = 5, 0 < x < 6, S6 = 3;

and

T0 = 0, Tx = 6, 0 < x < 6, T6 = 1.
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Notice that all the four mappings A,B, S and T are discontinuous at 0 which is also

their common fixed point. Also the pairs (A, S) and (B, T ) are weakly compatible with

A(X) = {0, 1} ⊂ {0, 1, 6} = T (X) B(X) = {0, 3} ⊂ {0, 3, 5} = S(X). define φ(t) = kt

with k = 1/2 and choose β = 1. Now, in order to verify the contraction condition (3.1),

with t > 0 we get

Case I if x = 0 and y = 6, then FAx,By(t/2) = 1 = FSx,By(t) ≥ m(t, s),

m(t, s) = min{FAx,Sx(t), FBy,Ty(t), FAx,Ty(βt), FBy,Sx((2− β)t),

FAx,Ty(2t).FSx,By(2t)

FAx,Sx(t)
,

2.FSx,Ty(t)

FAx,Sx(t) + FSx,Ty(t)

}
Case II if x = 6 and y = 0, then FAx,By(t/2) = t

t+2
≥ FSx,By(t) = m(t, s).

Case III if x = 0 and y ∈ (0, 6), then FAx,By(t/2) = t
t+6

= FSx,Ty(t) = m(t, s).

Case IV if x ∈ (0, 6), and y = 0 then FAx,By(t/2) ≥ t
t+2
≥ t

t+5
= FSx,Ty(t) = m(t, s).

Case V if x = 6 and y ∈ (0, 6), then FAx,By(t/2) ≥ t
t+4
≥ t

t+5
= FTy,Ax(t) = m(t, s).

Case VI if x ∈ (0, 6), and y = 6 then FAx,By(t/2) ≥ t
t+2
≥ t

t+5
= FSx,By(t) = m(t, s).

Thus all the conditions of Theorem (3.1) are satisfied and 0 is the unique common fixed

point of the mappings A,B, S and T.
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