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Abstract. Let C be a nonempty closed convex subset of a real Hilbert space, H and let T : C→C be an asymptot-

ically k-strictly pseudo-contractive mapping with a nonempty fixed-point set, F(T ) = {x ∈C : T x = x}. Let {tn},

{αn} and {βn} be real sequences in (0,1). We consider the sequence {xn}, generated from an arbitrary x1 ∈C, by

either

I. xn+1 = PC[(1−αn−βn)xn +βnT nxn], n≥ 1, or

II.

 νn = PC((1− tn)xn)

xn+1 = (1−αn)νn +αnT nνn, n≥ 1
We prove that under some mild conditions on the real sequences {αn} and {βn}, the sequence {xn} generated by

I converges strongly to a fixed point of T . Furthermore, under some mild conditions on the sequences {tn} and

{αn}, the sequence generated by II converges strongly to the least norm element of the fixed point set of T . Some

examples are used to compare the convergence rates of these two iteration schemes. Our results compliment and

extend several strong convergence results in the literature to the class of mappings considered in our work.

Keywords: asymptotically nonexpansive maps; asymptotically k-strictly pseudocontractive maps; fixed points;

strong convergence; Hilbert spaces.

2010 AMS Subject Classification: 47H09, 47J25, 65J15.

∗Corresponding author

E-mail address: epukeezinneuk@yahoo.com

Received February 27, 2019
178



ASYMPTOTICALLY k-STRICTLY PSEUDOCONTRACTIVE MAPS 179

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈., .〉 and induced norm ||.||. Let C be a

nonempty closed convex subset of H. A mapping T : C→C is said to be L-Lipschitzian if there

exists L≥ 0 such that

||T x−Ty|| ≤ L||x− y||, ∀x,y ∈C. (1.1)

T is said to be a contraction if L ∈ [0,1) and T is said to be nonexpansive if L = 1 (see for

example [1],[17]). T is said to be asymptotically nonexpansive (see for example [7],[10-11]) if

there exists a sequence {kn}∞
n=1 ⊆ [1,∞) with lim

n→∞
kn = 1 such that

||T nx−T ny|| ≤ kn||x− y||, ∀x,y ∈C. (1.2)

It is well known (see for example [7]) that the class of nonexpansive mappings is a proper

subclass of the class of asymptotically nonexpansive mappings. T is said to be uniformly L-

Lipschitzian if there exists L > 0 such that

||T nx−T ny|| ≤ L||x− y||, ∀x,y ∈C. (1.3)

T is said to be demiclosed at p if whenever {xn}∞
n=1 is a sequence in C which converges weakly

to x∗ ∈C and {T xn}∞
n=1 converges strongly to p, then T x∗ = p.

Let PC : H→C denote the metric projection (the proximity map) which assigns to each point

x ∈ H the unique nearest point in C, denoted by PC(x). It is well known that z = PC(x) if and

only if 〈x− z,z− y〉 ≥ 0, ∀y ∈C, and that PC is nonexpansive.

A mapping T : C→C is said to be k-strictly asymptotically pseudocontractive if there exist

k ∈ [0,1) and a sequence {kn}∞
n=1 ⊆ [1,∞) with lim

n→∞
kn = 1 such that

‖T nx−T ny‖2 ≤ kn‖x− y‖2 + k‖(x−T nx)− (y−T ny)‖2. (1.4)

The class of k-strictly asymptotically pseudocontractive maps is more general than the class of

asymptotically nonexpansive maps and each k-strictly asymptotically pseudocontractive map is

uniformly L-Lipschitzian with L = sup
n≥1

√
kn+
√

k
1−
√

k
. It is proved in [19] that the class of k-strictly

asymptotically pseudocontractive maps and the class of k-stricly pseudocontractive maps (i.e.,

mappings satisfying ‖T x−Ty‖2 ≤ ‖x− y‖2 + k‖x−T x− (y−Ty)‖2, ∀x,y ∈ C and for some

k ∈ [0,1), see for example [2]) are independent.
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In the iterative approximation of fixed points of asymptotically nonexpansive maps, the mod-

ified averaging iterative scheme of Mann:

xn+1 = (1−αn)xn +αnT nxn, n≥ 1; (1.5)

and Ishikawa:

xn+1 = (1−αn)xn +αnT n[(1−βn)xn +βnT nxn], n≥ 1, (1.6)

where {αn}∞
n=1 and {βn}∞

n=1 are suitable sequence in [0,1] have played pivotal role. These

schemes were first studied by Schu ([24-25]) in 1991 and the schemes have played pivotal

roles in approximation of fixed points of maps with asymptotic type behaviours (see for ex-

ample [1],[4-6],[11],[18-22],[24-26]). However, these two iteration schemes yield only weak

convergence usually obtained mostly from lim
n→∞
‖xn−T xn‖ = 0; and require strong ”compact-

ness” assumption either on the operator or the domain of the operator or even both to yield

strong convergence. Even for nonexpansive maps, k-strictly pseudocontractive maps and other

generalizations that do not exhibit asymptotic behaviours, sometimes very strong condition are

imposed on the fixed-point set, F(T ) to obtain strong convergence using the usual Mann or the

Ishikawa iteration process (see for example [1],[6],[23],[30]) . For instance in [23], the author

required that F(T ) is finite where T is a continuous pseudocontractive-type self-mapping of a

nonempty convex compact of a Hilbert space, and in [30] the authors required that the interior

of F(T ) is nonempty where T is a Lipschitz pseudocontractive self-mapping of a nonempty

closed convex subset of a Hilbert space. Thus many other schemes have been recently stud-

ied by several authors to achieve strong convergence with mild assumptions on the operator,

its domain, its set of fixed points and other necessary components (see for example [8-9],[12-

16],[28],[29],[31]). It is our purpose in this paper to consider the following modified averaging

iteration scheme of Krasnoselskii-Mann generated for arbitrary x1 ∈C by either

xn+1 = PC[(1−αn−βn)xn +βnT nxn] n≥ 1, (1.7)

where {αn}∞
n=1 ⊂ (0,1),{βn}∞

n=1 ⊂ (0,1), are suitable real sequences in [0,1] or νn = PC

(
(1− tn)xn

)
xn+1 = (1−αn)νn +αnT nνn,

(1.8)
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where {tn}∞
n=1 ⊂ (0,1),{αn}∞

n=1 ⊂ (0,1), are suitable real sequences in (0,1).

We prove that under some mild conditions on the real sequences {αn} and {βn}, the sequence

{xn} generated by I converges strongly to a fixed point of T . Furthermore, under some mild

conditions on the sequences {tn} and {αn}, the sequence generated by II converges strongly

to the least norm element of the fixed point set of T . Some examples are used to compare the

convergence rates of these two iteration schemes. Our results compliment and extend several

strong convergence results in the literature to the class of mappings considered here.

2. PRELIMINARIES

We shall need the following results: Lemma 2.1. ([27]) Let H be a real Hilbert space. Then,

‖x+ y‖2 ≤ ‖x‖2 +2〈y,x+ y〉, ∀x,y ∈ H.

Lemma 2.2. ([19]) Let C be a nonempty closed convex subset of a real Hilbert space H and let

T : C−→C be a k-strictly asymptotically pseudocontractive mapping. Then I−T is demiclosed

at 0. i.e, if xn ⇀ x ∈C and xn−T xn→ 0, then x = T x.

Lemma 2.3. ([1],[6]) Let H be a real Hilbert space. If {xn} is a sequence in H weakly conver-

gent to z, then

limsup
n→∞

‖xn− y‖2 = limsup
n→∞

‖xn− z‖2 +‖z− y‖2,∀ y ∈ H.

Lemma 2.4 ([12]). Let {Γn} be a sequence of real numbers. Assume {Γn} does not decrease

at infinity, that is , there exists at least a subsequence {Γnk} of {Γn} such that Γnk ≤ Γnk+1 for

all k ≥ 0. For every n≥ n0, define an integer sequence {τ(n)} as

τ(n) = max{k ≤ n : Γk ≤ Γk+1}.

Then τ(n)→ ∞ as n→ ∞, and for all n≥ n0,

max{Γτ(n),Γn} ≤ Γτ(n)+1.
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3. MAIN RESULTS

We begin with the following Lemma which will be useful in the proof of our results.

Lemma 3.1. Let {an}∞

n=1 be a sequence of nonnegative real numbers such that

an+1 ≤ (1−αn)an +αnγn +σn,n≥ 1,

where {γn}∞
n=1 is a sequence of real numbers which is bounded above, {αn}∞

n=1 ⊂ [0,1] satisfies

∑
∞
n=1 αn = ∞, and ∑

∞
n=1 σn < ∞. Then, limsup

n→∞

an ≤ limsup
n→∞

γn.

Proof. Since {γn} is bounded above, then for arbitrary but fixed m ∈ N, we define

λm = sup
n≥m

γn.

Then for n≥ m, we obtain

an+1−an +αn(an−λm)≤ σn.

Let

bn = an−λm (3.1).

Then

bn+1 = an+1−λm

≤ (1−αn)an +αnγn +σn−λm

= an−λm−αnan +αnγn +σn

≤ an−λm−αnan +αnλm +σn

= (1−αn)bn +σn.

This implies that {bn} is bounded and so {an} is also bounded. Moreover,

bn+1 ≤
[ n

∏
j=m

(1−α j)
]
bm +

n

∑
j=m

σ j. (3.2)

Since ∑
∞
n=1 αn = ∞, we have that lim

n→∞
∏

n
j=m(1−α j) = 0. Thus, it follows from (3.2) that

limsup
n→∞

bn = limsup
n→∞

bn+1 ≤ 0,
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which is equivalent to

limsup
n→∞

an ≤ λm,

and letting m→ ∞, we obtain

limsup
n→∞

an ≤ limsup
n→∞

γn.

We now prove the following strong convergence theorems:

Theorem 3.1 Let H be a real Hilbert space and let C be a nonempty closed convex subset of H.

Let T : C→C be an asymptotically k-strictly pseudo-contractive mapping such that F (T ) 6= /0

. Let {αn} and {βn} be two real sequences ∈ (0,1). Assume that the following conditions are

satisfied:

(C1) lim
n→∞

αn = 0; ∑
∞
n=1 αn = ∞

(C2) ∑
∞
n=1 (kn−1)< ∞

b (C3) βn ∈ (0,(1− k)(1−αn)) , with lim
n→∞

βn = δ > 0

(C4) lim
n→∞

kn−1
αn

= 0.

Then the sequence {xn} generated by (1.7) converges strongly to a fixed point of T .

Proof. First, we prove that the sequence {xn} is bounded.

Take p ∈ F (T ). From (1.7) , we have

‖xn+1− p‖ = ‖PC[(1−αn−βn)xn +βnT nxn]− p‖

≤ ‖(1−αn−βn)xn +βnT nxn− p‖

= ‖(1−αn−βn)(xn− p)+βn (T nxn− p)−αn p‖

≤ ‖(1−αn−βn)(xn− p)+βn (T nxn− p)‖+αn‖p‖ (3.3)

From (1.4) we obtain

‖T nx−T ny‖2 = ‖x− y‖2 +‖x−T nx− (y−T ny)‖2

−2〈x−T nx− (y−T ny),x− y〉

≤ kn‖x− y‖2 + k‖x−T nx− (y−T ny)‖2.
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Thus

〈x−T nx− (y−T ny),x− y〉 ≥ (1− k)
2
‖x−T nx− (y−T ny)‖2

−(kn−1)
2
‖x− y‖2, (3.4)

or equivalently,

〈T nx−T ny,x− y〉 ≤ (1+ kn)

2
‖x− y‖2

−(1− k)
2
‖x−T nx− (y−T ny)‖2. (3.5)

Using (3.3) we obtain

‖(1−αn−βn)(xn− p)+βn (T nxn− p)‖2

= (1−αn−βn)
2‖xn− p‖2 +β

2
n ‖T nxn− p‖2

+2(1−αn−βn)βn〈T nxn− p,xn− p〉

≤ (1−αn−βn)
2 ‖xn− p‖2 +β

2
n
[
kn‖xn− p‖2 + k‖xn−T nxn‖2]

+2(1−αn−βn)βn

[
(1+ kn)

2
‖xn− p‖2− (1− k)

2
‖xn−T nxn‖2

]
= (1−αn)

2‖xn− p‖2 +β
2
n ‖xn− p‖2−2βn(1−αn)‖xn− p‖2

+β
2
n kn‖xn− p‖2 +(1−αn−βn)βn(1+ kn)‖xn− p‖2

+β
2
n k‖xn−T nxn‖2− (1− k)(1−αn−βn)βn‖xn−T nxn‖2

= (1−αn)
2‖xn− p‖2 +βn [(1−αn)(kn−1)]‖xn− p‖2

−βn [(1− k)(1−αn)−βn]‖xn−T nxn‖2

≤ (1−αn)
2‖xn− p‖2 +βn [(1−αn)(kn−1)]‖xn− p‖2

≤ (1−αn)
2‖xn− p‖2 +(1−αn) [(1−αn)(kn−1)]‖xn− p‖2

= (1−αn)
2kn‖xn− p‖2

≤ (1−αn)
2k2

n‖xn− p‖2

which implies that

‖(1−αn−βn)(xn− p)+βn(T nxn− p)‖ ≤ (1−αn)kn‖xn− p‖. (3.6)
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It follows from (3.6) and (3.3) that

‖xn+1− p‖ ≤ kn(1−αn)‖xn− p‖+αn‖p‖

≤ (1−αn)kn‖xn− p‖+αnkn‖p‖

≤ kn max{‖xn− p‖,‖p‖}

Hence

‖xn+1− p‖ ≤ ekn−1 max{‖xn− p‖,‖p‖}, (3.7)

and it follows by induction that

‖xn+1− p‖ ≤ e∑
∞
j=1(k j−1)max{‖x1− p‖,‖p‖}.

This implies that {xn} is bounded.

Using (1.7), (3.4) and Lemma 2.1, we obtain,

‖xn+1− p‖2 = ‖PC[(1−αn−βn)xn +βnT nxn]− p‖2

≤ ‖(1−αn−βn)xn +βnT nxn− p‖2

= ‖(xn− p)−βn(xn−T nxn)−αnxn‖2

≤ ‖(xn− p)−βn(xn−T nxn)‖2−2αn〈xn,xn+1− p〉

= ‖(xn− p)‖2−2βn〈xn−T nxn,xn− p〉+β
2
n ‖xn−T nxn‖2

−2αn〈xn,xn+1− p〉

≤ ‖(xn− p)‖2−βn(1− k)‖xn−T nxn)‖2 +(kn−1)‖xn− p‖2

+β
2
n ‖(xn−T nxn)‖2−2αn〈xn,xn+1− p〉 (using (3.4))

= [1+(kn−1)]‖xn− p‖2−βn [(1− k)−βn]‖xn−T nxn‖2

−2αn〈xn,xn+1− p〉. (3.8)

Since {xn} is bounded ∃ constants M > 0, D > 0 such that

−2〈xn,xn+1− p〉 ≤M; ‖xn− p‖2 ≤ D for all n≥ 0.

Consequently from (3.8), we get

‖xn+1− p‖2−‖xn− p‖2 +βn [(1− k)−βn]‖xn−T nxn‖2 ≤Mαn +(kn−1)D. (3.9)
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We now prove that {xn} converges strongly to a point in F(T ). We divide the proof into two

cases:

Case I :- Assume that the sequence {‖xn− p‖} is a monotonically decreasing sequence. Then,

{‖xn− p‖} is convergent and we have, ‖xn+1− p‖2−‖xn− p‖2 −→ 0 as n→ ∞. This together

with (C1) and (3.9) imply that

βn [(1− k)−βn]‖xn−T nxn‖2→ 0 as n→ ∞. Hence

lim
n→∞
‖xn−T nxn‖= 0. (3.10)

Observe that

‖xn+1− xn‖ = ‖(1−αn−βn)xn +βnT nxn− xn‖

= ‖αnxn +βn(xn−T nxn)‖

≤ βn‖xn−T nxn‖+αn‖xn‖→ 0 as n→ ∞.

Thus

‖xn−T xn‖ ≤ ‖xn−T nxn‖+‖T nxn−T xn‖

≤ ‖xn−T nxn‖+L‖T n−1xn− xn‖

≤ ‖xn−T nxn‖+L‖T n−1xn−T n−1xn−1‖

+L‖T n−1xn−1− xn‖

≤ ‖xn−T nxn‖+L2‖xn− xn−1‖

+L‖T n−1xn−1− xn−1‖+L‖xn− xn−1‖

= ‖xn−T nxn‖+L(1+L)‖xn− xn−1‖

+L‖T n−1xn−1− xn−1‖→ 0 as n→ ∞. (3.11)

By Lemma 2.2 and (3.11), we see that if we define,

wω(xn) = {x : ∃xni ⇀ x} the weak w-limit set of {xn}. Then wω(xn) ⊂ F(T ). If we take x∗ ,

x̄ ∈ wω(xni) and let {xni} and {xm j} be subsequences of {xn} such that xni ⇀ x∗ and xm j ⇀ x̄

respectively,
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since lim
n→∞
‖xn− z‖ exists for z ∈ F(T ), then it follows from Lemma 2.3 that

lim
n→∞
‖xn− x∗‖2 = lim

j→∞
‖xm j − x∗‖2

= lim
j→∞
‖xm j − x̄‖2 +‖x̄− x∗‖2

= lim
i→∞
‖xni− x̄‖2 +‖x̄− x∗‖2

= lim
n→∞
‖xn− x∗‖2 +2‖x̄− x∗‖2

Hence x̄ = x∗ and this implies that wω(xn) is singleton so that {xn} converges weakly to a fixed

point x∗ in F(T ).

Next we prove that {xn} converges strongly to x∗.

Setting yn = (1−βn)xn +βnT nxn, n≥ 0 then we can rewrite (1.7) as

xn+1 = PC(yn−αnxn) ,n≥ 0

It follows that

xn+1 = PC[(1−αn)yn−αn(xn− yn)]

= PC[(1−αn)yn−αnxn +αn [(1−βn)xn +βnT nxn]]

= PC[(1−αn)yn−αnβn(xn−T nxn)] (3.12)

Furthermore, we note that

‖yn− x∗‖2 = ‖xn− x∗−βn(xn−T nxn)‖2

= ‖xn− x∗‖2−2βn〈xn−T nxn,xn− x∗〉+β
2
n ‖xn−T nxn‖2

≤ ‖xn− x∗‖2 +βn
[
(kn−1)‖xn− x∗‖2− (1− k)‖xn−T nxn‖2]

+β
2
n ‖xn−T nxn‖2

≤ [1+βn(kn−1)]‖xn− x∗‖2−βn[1− k−βn]‖xn−T nxn‖2

≤ [1+(kn−1)]‖xn− x∗‖2.
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Applying Lemma 2.1 to (3.12), we obtain

‖xn+1− x∗‖2 = ‖PC[(1−αn)yn−αnβn(xn−T nxn)]− x∗‖2

≤ ‖(1−αn)yn−αnβn(xn−T nxn)− x∗‖2

= ‖(1−αn)yn− (1−αn)x∗−αnβn(xn−T nxn)−αnx∗‖2

= ‖(1−αn)(yn− x∗)−αnβn(xn−T nxn)−αnx∗‖2

≤ ‖(1−αn)(yn− x∗)‖2−2〈αnβn(xn−T nxn)−αnx∗,xn+1− x∗〉

= (1−αn)
2‖yn− x∗‖2−2αnβn〈xn−T nxn,xn+1− x∗〉

−2αn〈x∗,xn+1− x∗〉

≤ (1−αn)
2‖xn− x∗‖2−2αnβn〈xn−T nxn,xn+1− x∗〉

−2αn〈x∗,xn+1− x∗〉+(1−αn)
2(kn−1)‖xn− x∗‖2. (3.13)

Since lim
n→∞
〈xn−T nxn,xn+1− x∗〉= 0, lim

n→∞
〈x∗,xn+1− x∗〉= 0 and ∑

∞
n=1(kn−1)< ∞, it follows

from Lemma 3.1 that lim
n→∞
‖xn− x∗‖= 0

Thus, xn −→ x∗ as n→ ∞.

Case 2: Assume that {‖xn− p‖} is not a monotone decreasing sequence.

Set Γn = ‖xn− p‖2 and let τ : N −→ N be a mapping for all n≥ n0 for some n0 large enough by

τ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}

Clearly, τ is a non decreasing sequence such that τ(n)→ ∞ as n→ ∞ and Γτ(n) ≤ Γτ(n)+1 for

n≥ n0

From (3.9) we see that

‖xτ(n)+1− x∗‖2−‖xτ(n)− x∗‖2 +βτ(n)[(1− k)−βτ(n)]‖xτ(n)−T τ(n)xτ(n)‖2

≤Mατ(n)+(kτ(n)−1)D.

It follows that,

‖xτ(n)−T τ(n)xτ(n)‖2 ≤
Mατ(n)+(kτ(n)−1)D

βτ(n)
[
(1− k)−βτ(n)

] −→ 0.

By the argument similar to case 1, we conclude that xτ(n) converges weakly to x∗ as τ(n)−→∞.

Furthermore, we note that for all n≥ n0
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0≤ ‖xτ(n)+1− x∗‖2−‖xτ(n)− x∗‖2

Observe from (3.13) that,

‖xn+1− x∗‖2 ≤ ‖xn− x∗‖2 +αn[2βn〈xn−T nxn,x∗− xn+1〉

+2〈x∗,x∗− xn+1〉−‖xn− x∗‖2]

+(1−αn)
2(kn−1)‖xn− x∗‖2.

Hence

‖xn+1− x∗‖2−‖xn− x∗‖2 ≤ αn[2βn〈xn−T nxn,x∗− xn+1〉

+2〈x∗,x∗− xn+1〉−‖xn− x∗‖2]

+(1−αn)
2(kn−1)‖xn− x∗‖2.

Thus,

0 ≤ ατ(n)[2βτ(n)〈xτ(n)−T τ(n)xτ(n),x
∗− xτ(n)+1〉

+2〈x∗,x∗− xτ(n)+1〉−‖xτ(n)− x∗‖2]

+(1−ατ(n))
2(kτ(n)−1)‖xτ(n)− x∗‖2.

This implies that

‖xτ(n)− x∗‖2 ≤ 2βτ(n)〈xτ(n)−T τ(n)xτ(n),x
∗− xτ(n)+1〉

+2〈x∗,x∗− xτ(n)+1〉

+
(1−ατ(n))

2(kτ(n)−1)
ατ(n)

‖xτ(n)− x∗‖2.

Hence we deduce that lim
n→∞
‖xτ(n)− x∗‖= 0, and hence lim

n→∞
Γτ(n) = lim

n→∞
Γτ(n)+1 = 0

Furthermore, for n ≥ n0, it is easily observed that Γn ≤ Γτ(n)+1 if n 6= τ(n) (that is, τ(n) < n),

because Γ j > Γ j+1 for τ(n)+1≤ j ≤ n . As a consequence, we obtain for all n≥ n0,

0≤ Γn ≤max{Γτ(n),Γτ(n)+1}= Γτ(n)+1

Hence, lim
n→∞

Γn = 0, this is, {xn} converges strongly to x∗ . This completes the proof.
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Corollary 3.1. Let H be a real Hilbert space and let C be a nonempty closed convex subset

of H with zero in C. Let T : C→C be an asymptotically k-strictly pseudo-contractive mapping

such that F (T ) 6= /0 . Let {αn} and {βn} be two real sequences ∈ (0,1). Assume that the

following conditions are satisfied:

(C1) lim
n→∞

αn = 0; ∑
∞
n=1 αn = ∞

(C2) ∑
∞
n=1 (kn−1)< ∞

(C3) βn ∈ (0,(1− k)(1−αn)) , with lim
n→∞

βn = δ > 0

(C4) lim
n→∞

kn−1
αn

= 0.

Then the sequence {xn} generated by

xn+1 = (1−αn−βn)xn +βnT nxn, n≥ 1

converges strongly to a fixed point of T .

Remark 3.1. If zero is not necessarily in C in Corollary 3.1, one can still dispense with PC

by generating the iteration sequence {xn} from an arbitrary x1 ∈C by

xn+1 = (1−αn−βn)xn +βnT nxn +αnx1, n≥ 1.

Corollary 3.2. Let H be a real Hilbert space and C a nonempty closed convex subset of H.

Let T : C→C be an asymptotically nonexpansive mapping such that F (T ) 6= /0 . Let {αn} and

{βn} be two real sequences in (0,1). Assume that the following conditions are satisfied:

(C1) lim
n→∞

αn = 0; ∑
∞
n=1 αn = ∞

(C2) ∑
∞
n=1 (kn−1)< ∞

(C3) βn ∈ [ε,(1−αn)] f or some ε > 0

(C4) lim
n→∞

kn−1
αn

= 0.

Then the sequence {xn} generated by (1.7) converges strongly to a fixed point of T .

Prototype for our real sequences {αn} and {βn} are:

αn =
√

kn−1+ 1
n+1 and βn =

1
2(1− k)(1−αn), n≥ 1.

Theorem 3.2. Let H be a real Hilbert space and C a nonempty closed convex subset of H.

Let T : C→ C be k-strictly asymptotically pseudocontractive mapping with F(T ) 6= /0 and a
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sequence {kn} ⊂ [1,∞) such that lim
n→∞

kn = 1, and ∑
∞
n=1(k

2
n − 1) < ∞. For arbitrary x1 ∈ C,

define the sequence {xn}∞
n=1 by (1.8) where {tn}∞

n=1 and {αn}∞
n=1 are real sequences satisfying

the following conditions given below:

i lim
n→∞

tn = 0,
∞

∑
n=1

tn = ∞

ii {αn}∞
n=1 ⊂ (0,b) ⊂ (0,1) with 0 < b < 1− k, where k is the constant appearing in

(1.4)

iii lim
n→∞

tn
αn
→ 0 as n→ ∞.

Then the generated sequence {xn}∞
n=1 converges strongly to the least norm element of the fixed

point set of T.

Proof: Let p ∈ F(T ). Then

||xn+1− p||2 = ||vn−αnvn +αnT nvn− p||2

= ||vn− p−αn(vn−T nvn)||2

= ||vn− p||2 +α
2
n ||vn−T nvn||2

−2αn 〈vn−T nvn,vn− p〉 . (3.14)

Using (3.4) in (3.14) yields:

||xn+1− p||2 ≤ ||vn− p||2 +α
2
n ||vn−T nvn||2

−αn(1− k)||vn−T nvn||2 +αn(k2
n−1)||vn− p||2

= [1+αn(k2
n−1)]||vn− p||2−αn(1− k−αn)||vn−T nvn||2

But [1+αn(k2
n−1)] ≤ (1+ k2

n−1) = k2
n, (since {αn}< 1 ∀ n ∈ N.)

So,

||xn+1− p||2 ≤ k2
n||vn− p||2−αn(1− k−αn)||vn−T nvn||2. (3.15)

From (1.8)

vn−T nvn =
1

αn
(vn− xn+1), (3.16)
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and using (3.16) in (3.15), we obtain

||xn+1− p||2 ≤ k2
n||vn− p||2−αn(1− k−αn)

1
α2

n
||vn− xn+1||2

= k2
n||vn− p||2− (1− k−αn)

1
αn
||vn− xn+1||2 (3.17)

since 0 < αn ≤ b < 1−k, we have that (1−k−αn)
1

αn
≥ (1−k−b) 1

αn
> 0 and hence it follows

from (3.17) that

||xn+1− p|| ≤ kn||vn− p||. (3.18)

Furthermore,

||vn− p|| = ||PC[(1− tn)xn]− p||

≤ ||(1− tn)xn− p||

= ||(1− tn)(xn− p)− tn p||

≤ (1− tn)||xn− p||+ tn||p||. (3.19)

Using (3.19) in (3.18), we obtain:

||xn+1− p|| ≤ kn(1− tn)||xn− p||+ kntn||p||

≤ kn(1− tn)max{||xn− p||, ||p||}+ kntnmax{||xn− p||, ||p||}

= kn max{||xn− p||, ||p||}

≤ knkn−1 max{‖xn−1− p‖,‖p‖}
...

≤
n

∏
i=1

kimax{||x1− p||, ||p||}< ∞,

This implies that the sequence {xn}∞
n=1 is bounded. Furthermore,

||vn− p||2 ≤ ||(1− tn)(xn− p)− tn p||2

= (1− tn)2||xn− p||2 + t2
n ||p||2 +2tn(1− tn)〈p− xn, p〉 . (3.20)
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Using (3.20) in (3.17) gives

||xn+1− p||2 ≤ k2
n

[
(1− tn)2||xn− p||2 + t2

n ||p||2

+2tn(1− tn)〈p− xn, p〉
]
− (1− k−αn)

1
αn
||vn− xn+1||2

= (1− tn)2||xn− p||2 +(k2
n−1)(1− tn)2||xn− p||2 + k2

nt2
n ||p||2

+2k2
ntn(1− tn)〈p− xn, p〉− (1− k−αn)

1
αn
||vn− xn+1||2

= (1− tn)2||xn− p||2− tn
[
−2k2

n(1− tn)〈p− xn, p〉

−k2
ntn||p||2 +(1− k−αn)

1
αntn
||vn− xn+1||2

]
+(k2

n−1)(1− tn)2||xn− p||2.

Hence

||xn+1− p||2 ≤ (1− tn)2||xn− p||2− tnYn +σn (3.21)

where

Yn =−2k2
n(1− tn)〈p− xn, p〉− k2

ntn||p||2 +(1− k−αn)
1

αntn
||vn− xn+1||2 (3.22),

and σn = (k2
n−1)(1− tn)2||xn− p||2. Since {(1− k−αn)

1
αntn
||vn− xn+1||2} is bounded below,

and {−2k2
n(1− tn)〈p− xn, p〉} and {k2

ntn||p||2} are bounded, then Yn is bounded below. So,

using (3.22) and the condition
∞

∑
n=1

tn = ∞, it follows from Lemma 3.1 that

limsup
n→∞

||xn− p||2 ≤ limsup
n→∞

(−Yn) =− liminf
n→∞

Yn. (3.23)

This implies that

liminf
n→∞

Yn ≤− limsup
n→∞

||xn− p||2 < ∞. (3.24)

But

liminf
n→∞

Yn = liminf
n→∞

[−2〈p− xn, p〉+(1− k−αn)
1

αntn
‖vn− xn+1‖2]. (3.25)

Thus, by the property of liminf, there exists a subsequence {Yn j}∞
j=1 of {Yn}∞

n=1 such that

liminf
n→∞

Yn = liminf
j→∞

Yn j .
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This implies that

liminf
n→∞

Yn = lim
j→∞

[
−2
〈

p− xn j , p
〉
+

(1− k−αn j)

αn j

1
tn j

||vn j − xn j+1||2
]
. (3.26)

Since liminf
n→∞

Yn < ∞, it follows that

lim
j→∞

[
−2
〈

p− xn j , p
〉
+

(1− k−αn j)

αn j

1
tn j

||vn j − xn j+1||2
]
< ∞.

Thus, since {xn} is bounded we have that{(1− k−αn j)

αn j

1
tn j

||vn j − xn j+1||2
}∞

n=1

is bounded. Furthermore, from condition (ii) we have −αn >−b >−(1− k) and hence

1− k−αn > 1− k−b > 0.

Thus
(1− k−αn)

αntn
||vn− xn+1||2 >

(1− k−b)
αntn

||vn− xn+1||2,

and hence
1

αn jtn j

||vn j − xn j+1||2 <
(1− k−αn j)

(1− k−b)αn jtn j

||vn j − xn j+1||2.

It follows that { 1
αn j tn j

||vn j − xn j+1||2} is bounded. From (3.16) we have

||vn j −T n jvn j ||
2 =

1
α2

n j

||vn j − xn j+1||2

=
tn j

αn j

||vn j − xn j+1||2

αn jtn j

→ 0 as j→ ∞,

since
tn j
αn j
→ 0 as j→ ∞, and { 1

αn j tn j
||vn j − xn j+1||2} is bounded. Observe that

||xn+1− xn|| = ||(1−αn)vn +αnT nvn− xn||

= ||vn− xn−αn(vn−T nvn)||

≤ tn||xn||+αn||vn−T nvn||.

Thus,

||xn j+1− xn j || ≤ tn j ||xn j ||+αn j ||vn j −T n jvn j || → 0 as j→ ∞.
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Also

||vn j − xn j+1|| ≤ ||vn j − xn j ||+ ||xn j − xn j+1||

≤ tn j ||xn j ||+ ||xn j − xn j+1|| → 0 as j→ ∞.

Similarly,

‖vn j−1−T n j−1vn j‖ ≤ ‖vn j−1−T n j−1vn j−1‖+‖T n j−1vn j−1−T n j−1vn j‖
2

≤ ‖vn j−1−T n j−1vn j−1‖+L‖vn j−1− vn j‖,

and

‖vn j−1− vn j‖ ≤ ‖(1− tn j−1)xn j−1− (1− tn j)xn j‖

≤ ‖xn j−1− xn j‖+‖tn j−1xn j−1− tn jxn j‖

= ‖xn j−1− xn j‖+‖tn j−1xn j−1− tn j−1xn j + tn j−1xn j − tn jxn j‖

≤ ‖xn j−1− xn j‖+ tn j−1‖xn j−1− xn j‖+ |tn j−1− tn j |‖xn j‖

→ 0 as j→ ∞.

Thus,

||vn j−1−T n j−1vn j ||
2→ 0 as n→ ∞.

Hence,

||vn j −T vn j || ≤ ||vn j −T n jvn j ||+ ||T
n jvn j −T vn j ||

≤ ||vn j −T n jvn j ||+L||T n j−1vn j − vn j ||

≤ ||vn j −T n jvn j ||+L||T n j−1vn j −T n j−1vn j−1||+L||T n j−1vn j−1− vn j ||

≤ ||vn j −T n jvn j ||+L||T n j−1vn j−1− vn j−1||

+L(1+L)||vn j − vn j−1|| → 0 as n→ ∞.

Since (I−T ) is demiclosed at 0, it follows that any weak cluster point of {vn j} is a fixed point

of T . Furthermore, since F(T ) is closed and convex, PF(T ) : H → F(T ) is well defined. Thus,
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for p = PF(T )(0), we obtain from (3.26) and a property of PF(T ) that

liminf
n→∞

Yn = −2liminf
j→∞

[
〈
xn j −PF(T )(0),PF(T )(0)

〉
]≤ 0.

− liminf
n→∞

Yn = 2liminf
j→∞

[
〈
xn j −PF(T )(0),PF(T )(0)

〉
]≥ 0.

Consequently, from (3.23) we have that

0≤ limsup
n→∞

||xn−PF(T )(0)||2 ≤− liminf
n→∞

Yn ≤ 0

i.e., limsup
n→∞

||xn−PF(T )(0)||= 0

Clearly ‖PF(T )(0)‖= ‖p‖ ≤ ‖y‖ ∀ y ∈ F(T ).

Thus, the generated sequence {xn}∞
n=1 converges strongly to the least norm element of fixed

point set of T.

Corollary 3.3. Let H be a real Hilbert space. Let T : C→C be an asymptotically nonexpansive

mapping with F(T ) 6= /0, {kn} ⊂ [1,∞) with lim
n→∞

kn = 1,
∞

∑
n=1

(k2
n−1) < ∞. For arbitrary x1 ∈C

define the sequence {xn}∞
n=1 by (1.8), where {tn}∞

n=1,{αn}∞
n=1 are real sequences satisfying the

following conditions given below:

i lim
n→∞

tn = 0,
∞

∑
n=1

tn = ∞

ii {αn}∞
n=1 ⊂ (0,b)⊂ (0,1)

iii tn
αn
→ 0 as n→ ∞.

Then the generated sequence {xn}∞
n=1 converges strongly to the least norm element of the fixed

point set of T.

Remark 3.2. If zero is in C (in particular if C = H), then PC can be dispensed with in the

iteration scheme (1.8).

If zero is not necessarily in C, one can still dispense with PC by generating the iteration sequence

{xn} from an arbitrary x1 ∈C by

vn = (1− tn)xn + tnx1

xn+1 = (1−αn)vn +αnT nvn n≥ 1.
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Prototype for the sequences {tn}∞
n=1 and {αn}∞

n=1 are respectively given by

tn =
1

n+1

αn =
1− k√
n+1

4. NUMERICAL EXAMPLES

Example 4.1. Let ℜ denote the reals with the usual norm and define T : ℜ→ℜ by

T x =

 −3x, x ∈ (−∞,0]

x, x ∈ (0,∞)

∀x,y ∈ (−∞,0], we obtain |T x−Ty|2 = 9|x− y|2, |x−T x− (y−Ty)|2 = 16|x− y|2, and hence

|T x−Ty|2 = 9|x− y|2 = |x− y|2 + 1
2
|x−T x− (y−Ty)|2.

Observe also that ∀x,y ∈ (0,∞) we have

|T x−Ty|2 = |x− y|2 ≤ |x− y|2 + 1
2
|x−T x− (y−Ty)|2.

Furthermore, for all x ∈ (−∞,0] and y ∈ (0,∞) we have

|T x−Ty|2 = |−3x− y|2 = 9x2 +6xy+ y2 and

|x− y|2 + 1
2
|x−T x− (y−Ty)|2 = |x− y|2 + 1

2
|4x|2

= x2−2xy+ y2 +8x2

= 9x2 +6xy+ y2−8xy≥ 9x2 +6xy+ y2 = |T x−Ty|2.

Thus

|T x−Ty|2 ≤ |x− y|2 + 1
2
|x−T x− (y−Ty)|2, ∀x,y ∈ℜ.

Observe that for all integer n≥ 2 we have

T nx =

 −3x, x ∈ (−∞,0]

x, x ∈ (0,∞).

Thus for all x,y ∈ℜ, n ∈ N we have

|T nx−T ny|2 ≤ |x− y|2 + 1
2
|x−T nx− (y−T ny)|2, ∀x,y ∈ℜ.
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It follows that T is strictly asymptotically pseudocontractive. Observe that T is not asymptoti-

cally nonexpansive; F(T ) = [0,∞); kn = 1, ∀n≥ 1; k = 1
2 and for the iteration (1.7), we can take

αn =
1

n+1 , βn =
1
2(1− k)(1−αn) =

n
4(n+1) , ∀n≥ 1, x1 =−1 and the sequence {xn} converges

to zero as shown in Figure 1 below.

Starting from x = 1 yields convergence as in Figure 2 below.

For the iteration scheme 1.8 we can take tn = 1
n+1 ; αn = 1−k√

n+1
∀n ≥ 1,x1 = −1 and the

sequence {xn} converges to zero as shown in Figure 3 below.
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Starting from x = 1 yields convergence as in Figure 4 below.

Example 4.2. Let ℜ denote the reals with the usual norm and define T : ℜ→ℜ by

T x =

 −3x+1, x ∈ (−∞,0]
1
2(x+2), x ∈ (0,∞)

∀x,y ∈ (−∞,0], we obtain |T x−Ty|2 = 9|x− y|2, |x−T x− (y−Ty)|2 = 16|x− y|2, and hence

|T x−Ty|2 = 9|x− y|2 = |x− y|2 + 1
2
|x−T x− (y−Ty)|2.

Observe also that ∀x,y ∈ (0,∞) we have

|T x−Ty|2 = 1
4
|x− y|2 ≤ |x− y|2 + 1

2
|x−T x− (y−Ty)|2.

Furthermore, for all x ∈ (−∞,0] and y ∈ (0,∞) we have

|T x−Ty|2 = |−3x+1− 1
2(y+2)|2 = 1

4 |−6x− y|2 = 1
4(36x2 +12xy+ y2) = 9x2 +3xy+ 1

4y2,
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and

|x− y|2 + 1
2
|x−T x− (y−Ty)|2 = |x− y|2 + 1

2
|4x−1− (y− 1

2
(y+2))|2

= x2−2xy+ y2 +
1
8
|8x− y|2

= x2−2xy+ y2 +
1
8
(64x2−16xy+ y2)

= 9x2−4xy+ y2 +
1
8

y2

= 9x2 +3xy+
1
4

y2−7xy+
7
8

y2

≥ 9x2 +3xy+
1
4

y2 = |T x−Ty|2.

Thus

|T x−Ty|2 ≤ |x− y|2 + 1
2
|x−T x− (y−Ty)|2, ∀x,y ∈ℜ.

Observe that for all integer n≥ 2, we have

T nx =

 1
2n−1 (−3x+2n−1), x ∈ (−∞,0]
1
2n (x+2(2n−1)), x ∈ (0,∞).

Observe that ∀x,y ∈ (−∞,0], we obtain

|T nx−T ny|2 = 32

22(n−1)
|x− y|2.

Furthermore,

|x−T nx− (y−T ny)|2 = (1+
3

2n−1 )
2|x− y|2.

Thus

|x− y|2 + 1
2
|x−T nx− (y−T ny)|2 = [1+

1
2
(1+

3
2n−1 )

2]|x− y|2

=
32

22(n−1)
|x− y|2 +[1+

1
2
(1+

3
2n−1 )

2− 32

22(n−1)
]|x− y|2

=
32

22(n−1)
|x− y|2 +[

3
2
+

3
2n−1 (1−

3
2n )]|x− y|2

≥ 32

22(n−1)
|x− y|2 = |T nx−T ny|2.
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Next for all x,y ∈ (0,∞) we have

|T nx−T ny|2 = 1
22n |x− y|2 ≤ |x− y|2 + 1

2
|x−T nx− (y−T ny)|2.

If we now consider all x ∈ (−∞,0] and all y ∈ (0,∞) we obtain

|T nx−T ny|2 = 1
22(n−1)

[9x2 +3xy+
y2

4
],

and

|x−T nx− (y−T ny)|2 = (1+
3

2n−1 )
2x2 +(1− 1

2n )
2y2−2(1+

3
2n−1 )(1−

1
2n )xy.

Hence

|x− y|2 + 1
2
|x−T nx− (y−T ny)|2 = [1+

1
2
(1+

3
2n−1 )

2]x2 +[1+
1
2
(1− 1

2n )
2]y2

−[2+2(1+
3

2n−1 )(1−
1
2n )]xy

=
1

22(n−1)
[9x2 +3xy+

y2

4
]+ [1+

1
2
(1+

3
2n−1 )

2− 9
22(n−1)

]x2

+[1+
1
2
(1− 1

2n )
2− 1

22n ]y
2

−[2+2(1+
3

2n−1 )(1−
1
2n )+

3
22(n−1)

]xy

= |T nx−T ny|2 +[
3
2
+

3
2n−1 (1−

3
2n )]x

2 +
3
2
(1− 1

2n )y
2

−[4+ 5
2(n−1)

]xy

≥ |T nx−T ny|2.

Thus for all x,y ∈ℜ, n ∈ N we have

|T nx−T ny|2 ≤ |x− y|2 + 1
2
|x−T nx− (y−T ny)|2, ∀x,y ∈ℜ.

It follows that T is strictly asymptotically pseudocontractive and F(T ) = {2}. kn = 1, ∀n ≥

1; k = 1
2 and for the iteration (1.7), we can take αn =

1
n+1 , βn =

1
2(1−k)(1−αn) =

n
4(n+1) , ∀n≥

1, x1 =−1 and the sequence {xn} converges to 2 as shown in Figure 5. below
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Starting from x = 1 yields convergence as in Figure 6 below.

For the iteration scheme 1.8 we can take tn = 1
n+1 ; αn = 1−k√

n+1
∀n ≥ 1,x1 = −1 and the

sequence {xn} converges to 2 as shown in Figure 7 below.
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Starting from x = 1 yields convergence as in Figure 8 below.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgement

The authors used the facilities of the Office of Pastor E.A. Adeboye Professorial Chair in Math-

ematics at University of Nigeria, Nsukka. We are grateful to the Office.

REFERENCES

[1] V. Berinde, Iterative Approximation of Fixed Points, Lectures Notes 1912 Springer (2002).

[2] F.E. Browder and W.V.Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J.

Math. Anal. Appl. 20(1967), 197-228.

[3] F. E. Browder, Nonexpansive Nonlinear Operators in Banach Spaces,Proc. Nat. Acad. Sci, 54 (1965), 1041-

1044.

[4] S-S. Chang, Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive

mappings,Proc. Amer. Math. Mech. 129(2000), 845-853.

[5] S-S. Chang,Y.J Cho, and H.Zhou,Demi-Closed principle and weak convergence problems for asymptotically

nonexpansive mappings,J. Korean Math. Soc. 38(2001), No.6. 1245-1260.

[6] C.E. Chidume, Geometric Properties of Banach Spaces and Nonlinear Iterations, Lecture Notes in Mathe-

matics 1965, Springer (2009).

[7] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer.

Math. Soc. 35(1972), 171-174.

[8] N. Hussain, K. Ullah, M. Arshad, Fixed point approximation of Suzuki generalized nonexpansive mapping

via new faster iteration process, arXiv:1802.09888v1[math.FA] (2018).



204 E.E. CHIMA ET AL

[9] T.H. Kim and H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. TMA, 61(2005),

51-60.

[10] W.A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Isreal

J. Math. 17(1974), 339-346.

[11] T.C. Lim and H.K. Xu, Fixed point point theorems for asymptotically nonexpansive mappings, Nonlinear

Anal. TMA, 22(1994),1345-1355.

[12] P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex

minimization, Set-Valued Anal. 16 (7) (2008), 899-912.

[13] P.E. Mainge and S. Maruster, Convergence in Norm of modified Krasnoselkii- Mann iterations for fixed

points of demicontractive mappings, Appl. Math. Comput., 217 (2011), 9864-9874.

[14] P. Majee and C. Nahak, A modified iterative method for a finite collection of non-self mappings and family

of variational inequality problems, Med. J. Math. 15(2018), 58

[15] G. Marino and H.K. Xu, Weak and strong convergence theorems for strict pseudocontrations in Hilbert

spaces, J. Math. Anal. Appl., 329(2007), 336-349.

[16] M. Li and Y. Yao, Strong convergence of an Iterative algorithm for λ -strictly pseudocontractive mappings in
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