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Abstract. In this paper, we establish some new periodic point and fixed point theorems of single-valued mapping

operating between complete ordered locally convex spaces under weaker assumptions. As an application, we prove

the existence of lower and upper solutions of differential equations.
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1. INTRODUCTION

A lot of research has been devoted to the study of the existence of a fixed and periodic points

of single-valued and multivalued mappings in ordered Banach spaces and Metric spaces,[16],[17],

[1], [9], and in complete locally convex spaces [7], [4], [5]. In the present work, we discuss an

analogue of a periodic and a fixed point theorems proved in [1] in the setting of a complete

ordered locally convex spaces.

The aim of this paper is to investigate the notion of order in a complete ordered locally convex
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spaces which will give us a new periodic and a new fixed point results for a monotone mappings

in the case of singe-valued mapping.

The concept of measure of noncompactness in locally convex spaces [3, p 90] is used to define

condensing operators in this new setting. Hence, we prove in Theorem 3.2 the equivalent of [[1,

Theorem 2.1.1]] in complete ordered locally convex spaces and use it to prove the existence of

a periodic and a fixed point in the theorem 3.5.

It is well known that fixed point theorems play an important role in differential equations, game

theory and mathematical economics..., Toshio Yuasa [7], D. Guo, V. Lakshmikantham [1], S.

Reich [15].

In Section 4, we prove the existence of lower and upper solutions of differential equations in a

new framework.

2. NOTATIONS AND PRELIMINARIES

Let E be a real vector space. A cone K in E is a subset of E with K+K ⊂ K, αK ⊂ K for all

α ≥ 0, and K∩ (−K) = {0} . As usual E will be ordered by the (partial) order relation

x≤ y⇔ y− x ∈ K

and the cone K will be denoted by E+. E is said to be an ordered topological vector space, if

E is an ordered vector space equipped with a linear topology for which the positive cone E+ is

closed. For two vectors x,y ∈ E the order interval [x,y] is the set defined by

[x,y] = {z ∈ E : x≤ z≤ y}.

Note that if x
 y then [x,y] = φ .

A cone E+ of an ordered topological vector space E is said to be normal whenever the

topology of E has a base at zero consisting of order convex sets. If the topology of E is also

locally convex, then E is said to be an ordered locally convex space, and in this case the topology

of E has a base at zero consisting of open, circled, convex, and order convex neighborhoods.

The following two lemmas will be useful in the proofs of our results.

Lemma 2.1 ([2, Lemma 2.3]). If E is an ordered topological vector space, then E is Hausdorff

and the order intervals of E are closed.
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Lemma 2.2 ([2, Lemma 2.22 and Theorem 2.23]). If the cone E+ of an ordered topological

vector space (E,τ) is normal, then the following assertions hold:

(1) Every order interval is τ−bounded.

(2) For every two nets (xα) , (yα) ⊂ E, (with the same index set I) satisfy 0 ≤ xα ≤ yα for

each α and yα

τ→ 0 imply xα

τ→ 0.

Let E be an ordered locally convex space whose topology is defined by a family P of con-

tinuous semi-norms on E, B is the family of all bounded subsets of E, and Φ is the space of all

functions ϕ : P →R+ with the usual partial ordering ϕ1 ≤ ϕ2 if ϕ1 (p)≤ ϕ2 (p) for all p ∈P .

The measure of noncompactness on E is the function α : B→ Φ such that for every B ∈B,

α(B) is the function from P into R+ defined by

α(B)(p) = inf{d > 0 : sup{p(x− y) : x,y ∈ Bi} ≤ d ∀i}

where the infimum is taken on all subsets Bi such that B is finite union of Bi. Properties of

measure of noncompactness in locally convex spaces are presented in [4, Proposition 1.4].

An operator T : Q ⊂ E → E is called to be countably condensing if T (Q) is bounded and if

for any countably bounded set A of Q with α(A)(p)> 0 we have

α(T (A))(p)< α (A)(p)

Definition 2.3. Let E be a complete ordered locally convex space with a normal cone E+. An

element x ∈ E is said to be a fixed point of a mapping T : E→ E if x = T (x).

Definition 2.4. Let E be a complete ordered locally convex space with a normal cone E+. An

element x ∈ E is said to be a periodic point of a mapping T : E → E if T n(x) = x the smallest

such positive integer n is called the period of x (with respect to T ). We denote the set of all

periodic points of T by Per(T ).

For each intrger n ≥ 1,T n denotes the nth iterate of T, that is, the composition T ◦T ◦ ...◦T

of T with itself n−1 times (T 1 = T,T 2 = T ◦T...). Also, T 0 is the identy map of E.

Definition 2.5. Let E be a complete ordered locally convex space with a normal cone E+. A

map T : E→ E is said to be nondecreasing if for x,y ∈ E and x≤ y we have T x≤ Ty.

A map T : E→ E is said to be nonincreasing if for x,y ∈ E and x≤ y we have T x≥ Ty.
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Definition 2.6. Let E be an ordered locally convex spaces and let x ∈ E. A mapping f : E→ E

is said to be order continuous in x if f (xα)→ f (x) for each increasing or decreasing net {xα}

that converges to x.

It is evident that continuity implies order continuity

3. MAIN RESULTS

The following results generalize the results of [1] in complete ordered locally convex spaces,

and we add another results whith low condtions.

Lemma 3.1. Let E be an ordered topological vector space with a normal cone E+. Then a

monotone net (uα)⊂ E is convergent if and only if it has a weakly convergent subnet.

Proof. The ”only if” part is obvious. For the ” if ” part, assume that (uα)α∈(α) is nondecreasing

and let (uαi)i∈(i) ⊂ (uα) be a subnet such that uαi → u weakly for some u ∈ E, where (α) stands

for the indexed set of the net (uα). Let β ∈ (α) be fixed. For each α ≥ β , let i0 ∈ (i) such that

αi0 ≥ α. Thus, for each i≥ i0 we have

(3.1) uβ ≤ uα ≤ uαi.

Thus, since uαi → u weakly and the cone E+ is weakly closed (being a closed and convex set)

we see that uβ ≤ u for each β ∈ (α). Thus, it follows from [2, Lemma 2.28] that limuαi = u.

Now, let V ∈V (0) be arbitrary. Since the cone E+ is normal we may assume that V is an order

convex set. Let j ∈ (i) such that u−uαi ∈V for each i≥ j. If β ≥ α j then 0≤ u−uβ ≤ u−uα j ,

and hence u−u
β
∈V. That is limuβ = u as required. The desired conclusion is proved similarly

when (uα) is nonincreasing. �

in the following theorem,a Hausdorff locally convex space is regular, [8, see Chapter VI,

Section 1]

Theorem 3.2. Let E be a complete ordered locally convex space with a normal cone E+. Let

Ω be an order convex subset of E,

and let u0,v0 ∈ Ω, u0 ≤ v0 and T : Ω→ Ω be a continuous and nondecreasing mappings such

that :
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u0 ≤ T k(u0) and T k(v0)≤ v0 where k is a positive integer.

Suppose that T is condensing from Ω in to itself.

Then, T has a minimal periodic point u and a maximal periodic point v in Ω.

Proof. We pose : S = T k. Consider the sequences (un) and (vn) defined by:

(3.2) un = Sun−1, vn = Svn−1, n ∈ N

Since T is nondecreasing and fixes the interval [u0,v0]. Then from (3.2) it follows that

(3.3) u0 ≤ u1 ≤ ....≤ un ≤ .....≤ vn ≤ ...≤ v1 ≤ v0

And [u0,v0]⊂Ω because Ω is a order convex subset of E.

Let A = {u0,u1, .....}, we have A = {u0}∪S(A) and the set A is bounded since S is condensing

(because T is condensing and in T (Ω) is bounded).

So A is compact, by [3, p 89],

{un} has a convergent subnet which converges to u ∈ [u0,v0], and by (3.3), {un} is nondecreas-

ing, so by lemma 3.1, the original sequence {un} converges to u ∈ [u0,v0]⊂Ω. Also we have

u = lim
n→∞

un

Since S is continuous mapping, so, u = Su⇔ u = T ku

Similarly, we can prove that {vn} converges to some v ∈ E and v = T kv.

Finally, we prove that u and v are the maximal and minimal periodic points of T in [u0,v0]⊂Ω.

Indeed, let x ∈ [u0,v0] and x = T kx, Since T is nondecreasing, we have un ≤ x≤ vn, taking limit

n→ ∞, we obtain u≤ x≤ v. �

Remark 1. this theorem remains true if continuity is replaced by ordered continuity.

Corollary 3.3. Let E be a complete ordered locally convex space with a normal cone E+. Let

Ω be an order convex subset of E,

and let u0,v0 ∈Ω, u0 ≤ v0 and T : Ω→Ω be a order continuous and nondecreasing mappings

such that : u0 ≤ T (u0) and T (v0)≤ v0.

Suppose that T is condensing from Ω in to itself.

Then, T has a minimal fixed point u and a maximal fixed point v in Ω.
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Proof. It is obtained by taking k = 1 in Theorem 3.2. �

Corollary 3.4. Let E be a complete ordered locally convex space with a normal cone E+.

Let u0,v0 ∈ E such that u0 ≤ v0 and T : [u0,v0]→ [u0,v0] be a continuous and nondecreasing

mapping such.

Suppose that T is condensing from [u0,v0] in to itself.

Then, T has a minimal fixed point u and a maximal fixed point v

in [u0,v0].

Proof. It is obtained by taking k = 1 and [u0,v0] = Ω in

Theorem 3.2. �

Theorem 3.5. Let E be a complete ordered locally convex space with a normal cone E+. Let Ω

be an order convex subset of E, and let u0,v0 ∈ Ω, u0 ≤ v0 and let T : Ω→ Ω be a continuous

nonincreasing mappings such that u0 ≤ T 2k(u0) and T 2k(v0)≤ v0 where k is a positive integer.

Suppose that T is condensing mapping from Ω in to itself.

Then, the set Per(T ) = {x ∈Ω : T kx = x} is nonempty and compact.

Proof. Since T is condensing and continuous, then so is T 2, also T 2 is nondecreasing and fixes

the interval [u0,v0].

Then, from 3.2, T 2 has a minimal periodic point u and a maximal periodic point v in [u0,v0]. It

is easy to see that Tu and T v are likwise a periodics point of T 2. Therefore, we have :

u≤ T v≤ Tu≤ v

Now, if x ∈ [u,v], then :

u≤ T v≤ T x≤ Tu≤ v

It follows that T fixes the interval [u,v], we pose S = T k′,

with k′ ∈ N∗, so, S also fixes the interval [u,v], then S[u,v] is bounded. Now, because the cone

E+ is normal, the interval [u,v] is a convex, closed, and bounded subset of E.

Then applying [4, Theorem 2.7] for the set [u,v] in the case where Ti = IdE , it follows that S has

a fixed point in [u,v]⊂Ω.
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Then, T has a periodic point in [u,v]⊂Ω.

For the compacity of Per(T ), note that Per(T ) ⊂ [u,v]. Therefore, Per(T ) is a bounded set. If

α(Per(T ))(p) 6= 0 for all p ∈P.

Then we have :

α(Per(T ))(p) = α(T k′(Per(T )))(p)< α(T k′−1(Per(T )))(p)< ... < α(Per(T ))(p),

which is a contradiction. Therefore α(Per(T ))(p) = 0,

that is by [4, Proposition 1.4] and by continuity of T, Per(T ) is a compact set in Ω. �

Corollary 3.6. Let E be a complete ordered locally convex space with a normal cone E+.

Let u0,v0 ∈ E, u0 ≤ v0 and let T : E → E be a continuous nonincreasing mappings such that

u0 ≤ T 2k(u0) and T 2k(v0) ≤ v0 where k is a positive integer. Suppose that T is condensing

mapping from E in to itself.

Then, the set PerT = {x ∈ E : T kx = x} is nonempty and compact.

Proof. It is obtained by taking [u0,v0] = Ω in Theorem 3.5 since [u0,v0] is order convex. �

Corollary 3.7. Let E be a complete ordered locally convex space with a normal cone E+. Let

Ω be an order convex subset of E, and let u0,v0 ∈Ω, u0 ≤ v0 and let T : Ω→Ω be a continuous

nonincreasing mappings such that u0 ≤ T (u0) and T (v0)≤ v0.

Suppose that T is condensing mapping from Ω in to itself.

Then, the set FixT = {x ∈Ω : T x = x} is nonempty and compact.

Proof. It is obtained by taking k = 1 in Theorem 3.5. �

4. APPLICATION TO DIFFERENTIAL EQUATIONS

In this section we will give an application of Corollary 3.4 to the following equation differ-

ential :

(4.1) ẋ(t) = f (t,x(t)), x(t0) = x0, x0 ∈ A.

Where X be a complete ordred Hausdorff locally convex space and A⊂ X be open, J = [t0, t0 +

a]⊂R be an interval, C(J,X) be the space of continuous functions from J to X , f (t,x) ∈C(J×
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A,X);

In this section, ≤ and < mean the total order relation of R.

We define an order relation � in C(J, X) by the order cone P in

C(J, X) defined by the cone P = {x ∈C(J,X)/x(t) ∈ X+,∀t ∈ J} where X+ is a normal cone in

X .

C(J,X) is a complete ordred Hausdorff locally convex space with a normal cone P.

The equation (4.1) is equivalent to the integral equation :

(4.2) x(t) = x0 +
∫ t

t0
f (s,x(s))ds

where the integral is in the Riemann sense. see [12, II,p.29.Theorem 21].

Proposition 4.1.
∫ t1

t0 f (s,x(s))ds ∈ co({ f (s,x(s))/s ∈ [t0, t1]}

This proposition directly follows from the definition of the Riemann integral.

The following proposition characterizes the measure of nonprecompactness of a bounded, equicon-

tinuous subset H of C(J,X). Similar results are obtained for α(A) and ω(A) by [13, Ambrosetti]

and [13, Mitchell, Smith] respectively.

Proposition 4.2. [7, proposition 2]

Let X be a complete Kausdorff locally convex space and let J = [to, t0 + a] ⊂ R be a interval.

Let H ⊂C(J,X) be a bounded equicontinuous set. Then we have :

α(H)(p) = α(H(J))(p) =
⋃
t∈J

α(H(t))(p)

for all p ∈P

Definition 4.3. A function f (t,x) is said to be nondecreasing with respect to x if for any x,y∈ X

with x� y we have that f (t,x)� f (t,y) for all t ∈ J .

Theorem 4.4. Assume the following hypotheses :

(1) f (t,x) increasing in x.

(2) There exists a order convex set F such as x0 ∈ F ⊂ A and B0 = co(( f (J×F)∪ ({0}) is

bounded and x0 +α0B0 ⊂ F for some α0 > 0.
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(3) For any bounded set B1 ⊂ B1 ⊂ A there exist an intercal J′ = [t0, t0 +a′]⊂ J and a con-

stant λ > 0 such that for any countably bounded set B⊂ B1 with α(B)(p)> 0 we have:

α( f
(
J′×B

)
)(p)< α (B)(p)

(4) there exists γ,δ ∈C(J′,X) such that γ � δ :

γ(t)� x0 +
∫ t

t0
f (s,x(s))ds� δ (t)

Then, ∃β ∈]0,a] such that the equationa(4.1) has a lower and upper solution in the order inter-

val [γ,δ ]⊂C(I,X) ∀t ∈ I = [t0, t0 +β ].

Proof. Let β = inf{α0,a′} and let I = [t0, t0 +β ].

Since I ⊂ J′, it follows that :

α( f (I×B))(p)< α (B)(p)

for any countably bounded set B⊂ B1 with α(B)(p)> 0.

By hypotheses (4), we have :

[γ,δ ] = {x ∈C(I,X)/x(t0) = x0,x(t)− x(t ′) ∈ (t− t ′)B0,γ(t)� x(t)� δ (t),∀t, t ′ ∈ I}

Clearly, [γ,δ ] is a nonempty, order convex, equicontinuous set

in C(I,F)⊂C(J,X).

We define the operator T : [γ,δ ]→ [γ,δ ] by :

T x(t) = x0 +
∫ t

t0
f (s,x(s))ds

T is well defined , it remains to show that the operator T satisfies the conditions of Corollary

3.4.

First, the proof of the continuity of T is similar to that of [7, p543].
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Second, for any countably bounded set B⊂ H with α(B)(p)> 0., we have :

α(T (B))(p) = α

(⋃
t∈I

T (B(t))
)
(p)

= α

(⋃
t∈I

{
x0 +

t1∫
t0

f (s,x(s))ds : x ∈ B
})

(p)

= α

(⋃
t∈I

{ t1∫
t0

f (s,x(s))ds : x ∈ B
})

(p)

≤ α
(⋃

t∈I

{
(t− t0)conv f (I×B(I))

})
(p)

≤ α(conv f (I×B(I)))(p)

= α( f (I×B(I)))(p)

< α(B(I))(p)

= α(B)(p)

Finally, by hypotheses (1) and the monotonicity of integral, we have T is nondecreasing.

Thus the conditions of Corollary 3.4 are satisfied. Consequently, T has a minimal fixed point u

and a maximal fixed point v in [ω,δ ].

This further implies that differential equation (4.1) has a lower and upper solution in the order

interval [γ,δ ]. This completes the proof �
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