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Abstract. In this paper, we obtain Ćirić type fixed point theorems for continuous or non-continuous mappings

under c-distance on mapping-orbitally complete cone metric spaces over Banach algebras without normalities.
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1. INTRODUCTION AND PRELIMINARIES

Ćirić[1] introduced and studied the follwoing quasicontraction as one of the most general

classes of contrative type mappings:

Let (X ,d) is a complete space. f : X→X is said to be a quasicontracion if, for some k∈ (0,1)

and for all x,y ∈ X , one has

d( f x, f y)≤ k max{d(x,y),d(x, f x),d(y, f y),d(x, f y),d( f x,y)}.

He proved that any quasicontration f has a unique fixed point on a complete metric space

(X ,d). Recently, many researchers discussed and obtained various similar results on metric
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spaces, cone metric spaces and cone metric spaces over Banach algebras, for details, see [2-12].

These conclusions goodly generalize and improve Ćirić’s fixed point theorem.

On the other hand, some authors discussed (common) fixed point problems under c-distance

on cone metric spaces, see [13-19] and others. Especially, Huang et al[20] and Huang et al[21]

discussed and obtained fixed point theorems for mappings under c-distance on cone metric

space over Banach algebras without normalities.

In this paper, we will discuss and obtain Ćirić type fixed point problems for continuous or

non-continuous mappings under c-distance on mapping-orbitally complete cone metric spaces

over Banach algebras without normalities.

Now, we give some known definitions and lemmas:

Let A always be a Banach algebra, that is, A is a real Banach space in which an operation

of multiplication is defined, subject to the following properties(for all x,y,z ∈A , α ∈ R):

1. (xy)z = x(yz);

2. x(y+ z) = xy+ xz and (x+ y)z = xz+ yz;

3. α(xy) = (αx)y = x(αy);

4. ‖ xy ‖≤‖ x ‖‖ y ‖ .

In this paper, we shall assume that a Banach algebra A has a unit (i.e., a multiplicative

identity) e such that ex = xe = x for all x ∈A . an element x ∈A is said to be invertible if there

is an inverse element y ∈ A such that xy = yx = e. The inverse of x denoted by x−1. For more

detail, we refer to [22-24].

A subset P of a Banach algebra A is called a cone if

1. P is nonempty closed and {0,e} ⊂ P;

2. α P+β P⊂ P for all non-negative real numbers α.β ;

3. P2 = PP⊂ P;

4. P∩ (−P) = {0}.

Where 0 denotes the null of the Banach algebra A .

For a given cone P⊂A , we can define a partial ordering ≤ with respect to P by x≤ y if and

only if y− x ∈ P. x < y stand for x≤ y and x 6= y. While x� y sill stand for y− x ∈ intP, where

intP denotes the interior of P. A cone P is called solid if intP 6= /0.
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The cone P is called normal if there is a number M > 0 such that for all x,y ∈A .

0≤ x≤ y =⇒ ‖ x ‖≤M ‖ y ‖ .

The least positive number satisfying the above is called the normal constant of P.

Here, we always assume that P is a solid and ≤ is the partial ordering with respect to P.

Definition 1.1. [20, 21] Let X be a non-empty set. Suppose that the mapping d : X ×X → A

satisfies

1. 0≤ d(x,y) for all x,y ∈ X and d(x,y) = 0 if and only if x = y;

2. d(x,y) = d(y,x) for all x,y ∈ X ;

3. d(x,y)≤ d(x,z)+d(z,y) for all x,y,z ∈ X .

Then d is called a cone metric on X and (X ,d) is called a cone metric space(over a Banach

algebra A ).

Remark 1.1. If A = E is a Banach space in Definition 1.1, then(X ,d) is call a cone metric

space.

Definition 1.2. [21] Let (X ,d) be a cone metric space over a Banach algebra A , x∈ X and {xn}

a sequence in X . Then:

1. {xn} converges to x whenever for each c ∈A with 0� c there is a natural number N such

that d(xn,x)� c for all n≥ N. We denote this by limn→∞ xn = x or xn→ x.

2. {xn} is Cauchy sequence whenever for each c ∈A with 0� c there is a natural number

N such that d(xn,xm)� c for all n,m≥ N.

3. (X ,d) is a complete cone metric space if every Cauchy sequence is convergent.

Definition 1.3. [17, 18, 22] Let P is a solid cone in a Banach space A . A sequence {un} ⊂A

is a c-sequence if for each c� 0 there exists n0 ∈ N such that un� c for all n≥ n0.

Definition 1.4. [20, 21] Let (X ,d) be a cone metric space over a Banach algebra. A function

q : X×X →A is called a c-distance on X . If

(q1) θ ≤ q(x,y) for all x,y ∈ X ;

(q2) q(x,z)≤ q(x,y)+q(y,z) for all x,y,z ∈ X ;

(q3) If a sequence {yn} in X converges to a point y ∈ X , and for any x ∈ X , there exists

u = ux ∈ P such that q(x,yn)≤ u holds for each n ∈ N, then q(x,y)≤ u;
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(q4) For each c ∈ A with θ � c, there exists e ∈ A with θ � e, such that q(z,x)� e and

q(z,y)� e implies d(x,y)� c.

Remark 1.2. [13, 15] Generally, q(x,y) 6= (y,x) for x,y ∈ X , and q(x,y) = 0 is not necessarily

equivalent to x = y.

Definition 1.5. [12] Let (X ,d) be a cone metric space over a Banach algebra A , T : X → X a

mapping. For any x ∈ X and any positive number n, let

OT (x,n) = {x,T x,T 2x, · · · ,T nx}, OT (x,+∞) = {x,T x,T 2x, · · ·}.

The set OT (x,+∞) is called the T -orbit at x. (X ,d) is said to be T -orbitally complete if, every

Cauchy sequence in OT (x,+∞) is convergent for every x ∈ X .

Lemma 1.1. [22] Let A be a Banach algebra with a unit e, and x ∈ A . If the spectral radius

r(x) of x is less than 1, i.e.,

r(x) = lim
n→∞
‖ xn ‖

1
n = inf

n→∞
‖ xn ‖

1
n < 1.

Then (e− x) is invertible. Actually,

(e− x)−1 =
+∞

∑
i=0

xi.

Lemma 1.2. [22] Let P is a solid cone in a Banach algebra A and {un} and {vn} be two c-

sequences in A . If k, l ∈ P are two arbitarily given vectors, then {kun + lvn} is a c-sequence in

A .

Lemma 1.3. [22] Let P be a solid cone in Banach algebra A and u,v,w ∈ A . If u ≤ v� w,

then u� w.

Lemma 1.4. [11] Let P be a solid cone in a Banach algebra A and a,k ∈ P with r(k) < 1. If

a≤ ka, then a = 0.

Lemma 1.5. [12] If E is a real Banach space with a solid cone P and if ‖ xn ‖→ 0 as n→ ∞,

then for any 0� c, there exists N ∈ N such that xn� c for all n > N.

Lemma 1.6. [23] If A is a Banach algebra and k ∈A with r(k)< 1, then ‖ kn ‖→ 0 as n→∞.

Lemma 1.7. [23] Let A be a Banach algebra and x,y ∈ A . If x and y commute, then the

following hold:

(i) r(xy)≤ r(x)r(y);
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(ii) r(x+ y)≤ r(x)+ r(y);

(iii) | r(x)− r(y) |≤ r(x− y).

Lemma 1.8. [24] Let (X ,d) be a cone metric space over a Banach algebra A , {xn} ⊂ X a

sequence. If {xn} is convergent, then the limits of {xn} is unique.

Lemma 1.9. [21]. Let (X ,d) be a cone metric space over Banach algebra A , q a c-distance on

X . Suppose that{xn} is a sequences in X and y,z ∈ X . If {un} and {vn} are two c-sequences in

P, then the following properties hold:

(1) If q(xn,y) ≤ un and q(xn,z) ≤ vn, ∀n ∈ N, then y = z. In particular, if q(x,y) = 0 and

q(x,z) = 0, then y = z.

(2) If q(xn,xm)≤ un for all m > n > n0, then {xn} is a Cauchy sequence in X .

2. ĆIRIĆ TYPE FIXED POINT THEOREMS UNDER c-DISTANCE

Theorem 2.1. Let (X ,d) be a cone metric space over a Banach algebra, q be a c-distance on X ,

f : X → X be continuous on (X ,d), k ∈ P with r(k)< 1. Suppose that for each x,y ∈ X ,

q( f x, f y)≤ k v(x,y), (2.1)

where

v(x,y) ∈ {q(x,y),q(x, f x),q(y, f y),q(x, f y)}. (2.2)

If X is f -orbitally complete, then f has a unique fixed point x∗ ∈ X and q(x∗,x∗) = 0.

Proof. For any x∈X , Let xn = f nx for all n= 1,2, · · · , then xn = f xn−1 for all n= 1,2, · · · ( Here,

set x0 = x).

First, we will prove that for each n≥ 2 and for all i, j such that 1≤ i < j ≤ n, one has

q(xi,x j)≤ k (1− k)−1 q(x0,x1). (2.3)

If n = 2, then i = 1, j = 2. Hence

q(x1,x2) = q( f x0, f x1)≤ k v(x0,x1),
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where
v(x0,x1)

∈ {q(x0,x1),q(x0, f x0),q(x1, f x1),q(x0, f x1)}

= {q(x0,x1),q(x1,x2),q(x0,x2)}.

(2.4)

If v(x0,x1) = q(x0,x1), then

q(x1,x2)≤ k q(x0,x1)≤ k (e− k)−1 q(x0,x1).

If v(x0,x1) = q(x1,x2), then

q(x1,x2)≤ k q(x1,x2) =⇒ (e− k)q(x1,x2)≤ 0,

therefore

q(x1,x2) = 0≤ k (e− k)−1 q(x0,x1).

If v(x0,x1) = q(x0,x2), then

q(x1,x2)≤ k q(x0,x2)≤ k [q(x0,x1)+q(x1,x2)],

hence

q(x1,x2)≤ k (e− k)−1 q(x0,x1).

Based on the above discussions, (2.3) is set up for n = 2.

Assume that (2.3) is true for n = m > 2, that is,

q(xi,x j)≤ k (e− k)−1 q(x0,x1), 1≤ i < j ≤ m. (2.5)

Now, we will prove that (2.3) also holds for n = m+1. If 1≤ i < j ≤ m, then (2.3) holds by

the assumption ( i.e., by (2.5)). Thus, without loss of generality, we assume that j = m+1 and

1≤ i≤ m. Denote i = i0. By (2.1),

q(xi0,xm+1) = q( f xi0−1, f xm)≤ k v(xi0−1,xm), (2.6)

where

v(xi0−1,xm) ∈ {q(xi0−1,xm),q(xi0−1,xi0),q(xm,xm+1),q(xi0−1,xm+1)}. (2.7)

Firstly, we consider that i0 = 1.
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If v(xi0−1,xm) = d(x0,xm), then

q(xi0,xm+1)

≤k q(x0,xm)

≤k [q(x0,x1)+q(x1,xm)]

≤k [q(x0,x1)+ k(e− k)−1 q(x0,x1)]

=k (e− k)−1q(x0,x1),

(2.8)

and the statement follows.

If v(xi0−1,xm) = q(x0,x1), then

q(xi0,xm+1)≤ k q(x0,x1)≤ k (e− k)−1d(x0,x1), (2.9)

and the statement also holds.

If v(xi0−1,xm) = q(xm,xm+1), then we let i1 = m and we have

q(xi0,xm+1)≤ k q(xi1,xm+1). (2.10)

If v(xi0−1,xm) = q(x0,xm+1), then

q(xi0,xm+1)≤ k q(x0,xm+1)≤ k [d(x0,x1)+d(xi0,xm+1)],

which implies that

q(xi0,xm+1)≤ k (e− k)−1d(x0,x1), (2.11)

and the statement also holds.

Secondly, we consider that 2≤ i0 ≤ m.

If v(xi0−1,xm) = q(xi0−1,xm) or v(xi0−1,xm) = q(xi0−1,xi0), then by the assumption,

q(xi0,xm+1)≤ k v(xi0−1,xm)≤ k2(e− k)−1q(x0,x1)≤ k (e− k)−1q(x0,x1), (2.12)

and the statement follows.

If v(xi0−1,xm) = q(xm,xm+1) or v(xi0−1,xm) = q(xi0−1,xm+1), then we let i1 = m or i1 =

i0−1≥ 1, respectively, hence

q(xi0,xm+1)≤ k v(xi0−1,xm+1) = k q(xi1,xm+1). (2.13)
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In conclusion from discussion of both cases, it results that either the proof is complete, that

is

q(xi0,xm+1)≤ k (e− k)−1q(x0,x1), (2.14),

or there exists an integer i1 such that

q(xi0,xm+1)≤ k d(xi1,xm+1), 1≤ i1 ≤ m. (2.15)

As for the latter situation, we continue in a similar way, and come to the result that either

q(xi1,xm+1)≤ k (e− k)−1q(x0,x1), (2.16),

which implies that

q(xi0,xm+1)≤ k q(xi1,xm+1)≤ k2 (e− k)−1q(x0,x1)≤ k (e− k)−1q(x0,x1), (2.17),

and the proof is complete, or there exists integer i2 such that

q(xi1,xm+1)≤ k q(xi2,xm+1),∃1≤ i2 ≤ m, (2.18)

which implies that

q(xi0 ,xm+1)≤ k2 q(xi2 ,xm+1),∃1≤ i2 ≤ m. (2.19)

Generally, if the procedure ends by the l-th step with l ≤ m− 1, that is, there exist l + 1

integers

i0, i1, · · · , il ∈ {1,2, · · · ,m} (2.20)

such that

q(xi0,xm+1)≤ k q(xi1,xm+1)≤ ·· · ≤ kl q(xil ,xm+1), (2.21)

and

q(xil ,xm+1)≤ k (e− k)−1q(x0,x1), (2.22)

then

q(xi0,xm+1)≤ kl q(xil ,xm+1)≤ kl+1 (e− k)−1q(x0,x1)≤ k (e− k)−1q(x0,x1). (2.23)

Hence, the proof is complete.

If the procedure continues more than m steps, then exist (m+1) integers

i0, i1, · · · , im ∈ {1,2, · · · ,m} (2.24)
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such that

q(xi0,xm+1)≤ k q(xi1,xm+1)≤ ·· · ≤ km q(xim,xm+1), (2.25)

From (2.24), there must exist integers p and q such that

0≤ p < q≤ m, ip = iq. (2.26)

Hence by (2.25) and (2.26),

q(xip ,xm+1)≤ kq−p q(xiq,xm+1) = kq−p d(xip,xm+1), (2.27)

which implies that

(e− kq−p)q(xip,xm+1)≤ 0.

Hence d(xiq,xm+1)= 0 since r(kq−p)≤ (r(k))q−p < 1 implies that (e−kq−p) is invertible. From

(2.25) again,

q(xi0,xm+1)≤ kp q(xip,xm+1) = 0≤ k(e− k)−1q(x0,x1). (2.28)

Therefore, by induction, (2.3) holds.

For any 1 < m < n, denote that

C(m,n) = {q(xi,x j)|m≤ i < j ≤ n}. (2.29)

From (2.1) and (2.2), for each u ∈C(m,n), there exists v ∈C(m−1,n) such that

u≤ k v. (2.30)

Consequently, using (2.3) and (2.30), we obtain that

q(xm,xn)≤ k u1 ≤ k2 u2 ≤ km−1 um−1 ≤ km(e− k)−1 q(x0,x1), (2.31)

where

u1 ∈C(m−1,n), u2 ∈C(m−2,n) · · · ,um−1 ∈C(1,n),um−1 ≤ k(e− k)−1 q(x0,x1). (2.32)

Since r(k)< 1, km(e−k)−1q(x0,x1) is a c-sequence by Lemma 1.2 and Lemma 1.5 - Lemma

1.6, which implies that {xn} is a Cauchy sequence by Lemma 1.9 and (2.31). Thus there exsits

x∗ ∈ X such that xn→ x∗ as n→ ∞ by the f -orbitally completeness of X .
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Since xn+1 = f xn for all n and f is continuous about the metric d,

x∗ = lim
n→∞

xn+1 = lim
n→∞

f xn = f x∗,

that is, x∗ is a fixed point of f . By (2.1) again,

q(x∗,x∗) = q( f x∗, f x∗)≤ k v(x∗,x∗) = k q(x∗,x∗),

hence q(x∗,x∗) = 0 since r(k)< 1 implies that (e− k) is invertible.

If y∗ is also a fixed point of f , then f y∗ = y∗ and q(y∗,y∗) = 0 by the above discussion. By

(2.1) again,

q(x∗,y∗) = q( f x∗, f y∗)≤ k v(x∗,y∗),

where

v(x∗,y∗) ∈ {q(x∗,y∗),0}.

Hence q(x∗,y∗) = 0 for any one of two cases, therefore x∗ = y∗ by Lemma 1.9. So f has a

unique fixed point.

Now, we once give another version of Theorem 2.1 under removing the continuity of f :

Theorem 2.2. Let (X ,d) be a cone metric space over Banach algebra, q be a c-distance on X ,

f : X → X a mapping, k ∈ P with r(k)< 1. Suppose that for each x,y ∈ X ,

q( f x, f y)≤ k u(x,y), (2.33)

where

u(x,y) ∈ {q(x,y),q(x, f x),q(x, f y)}. (2.34)

If X is f -orbitally complete, then f has a unique fixed point x∗ ∈ X and q(x∗,x∗) = 0.

Proof. Repeating the proof of Theorem 2.1, we know that there exists a sequence {xn} in

X(Here, {xn} satisfies xn = f xn−1 for all n = 1,2, · · · ) converging to a point x∗ ∈ X . For any n,

by (2.33),

q(xn, f x∗) = q( f xn−1, f x∗)≤ k u(xn−1,x∗),

where

u(xn−1,x∗) ∈ {q(xn−1,x∗),q(xn−1,xn),q(xn−1, f x∗)}.
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From (2.31) and Definition 1.4(q3), we have

q(xm,x∗)≤ km(1− k)−1 d(x0,x1),∀m≥ 1. (2.35)

If u(xn−1,x∗) = q(xn−1,x∗), then

q(xn, f x∗)≤ k q(xn−1,x∗). (2.36)

If u(xn−1,x∗) = q(xn−1,xn), then

q(xn, f x∗)≤ k q(xn−1,xn). (2.37)

If u(xn−1,x∗) = q(xn−1, f x∗), then

q(xn, f x∗)≤ k q(xn−1, f x∗)≤ k [q(xn−1,xn)+q(xn, f x∗)],

hence

q(xn, f x∗)≤ k (e− k)−1q(xn−1,xn). (2.38)

{q(xm,xn)}n>m and {q(xn,x∗)} are both c-sequences by (2.31) and (2.35) and Lemma 1.5–

Lemma 1.6, hence the right sides of inequalities in (2.35)-(2.38) are all c-sequences. Therefore

x∗ = f x∗ by Lemma 1.9(1). The rest is similar to the proof of Theorem 2.1.
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[22] H P Huang, G T Deng, S Radenović, Some topological properties and fixed point results in cone metric

spaces over Banach algebras, Positivity, 23(2019), 21–34.
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