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Abstract. In the theory of signal reconstruction, the homogeneous approximation property (HAP) for wavelets is
useful. In this paper, we consider the HAP for the continuous wavelet transform with matrix dilation. When the
dilation of wavelet is different in various directions, we show that the HAP holds in L?(R¢). The HAP also holds

in L(R?) when we add some conditions.
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1. INTRODUCTION

In 1952, Duffin and Schaeffer proposed the frame of Hilbert space in [5]. Frames have
become an important tool in many other disciplines, because they can provide many different
expression of vectors. Frame theory plays an important role in signal processing and many other
fields. In recent years, more and more scholars are interested in frame theory, especially Gabor
frames and wavelet frames.

Wavelet frames are a class of important frames and have many useful properties [1, 2, 4, 6,
7, 15] during the development. Through limits a,b to discrete values, we can makes wavelet
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transform 7(a,b)y forms a frame. There have been plenty of results on various properties of
wavelet frames, including necessary and sufficient conditions for wavelet systems to be frames.

The wavelet transform of f € L?(IRY) with respect to y € L?(R¢) is defined by

a :cfd/2 X x;b X
ortabyyy=a 2 [ plop(*—)dx
where

(t(a,b)y)(x) =a Py(a ' (x—b)), (a,b) € 9.

Here ¢ := {(a,b) : a > 0,b € R%} is a group and the action on it is defined by
(a,b)(s,t) = (as,b+at).

The homogeneous approximation property (HAP) is an interesting properties of wavelet
frames. If the wavelet frame has good generators, then it has the HAP. The HAP has been
studiedin [1, 8,9, 10, 11, 14, 16, 17]. In addition, the HAP for wavelet frame with nice wavelet
function and arbitrary expansive dilation matrix also was studied in [16, 17] recently.

The following results in recent years is the HAP for the continuous wavelet transform. In
[12, 13], they show that every pair of admissible wavelets possesses the HAP in L2-sense, while
it is not true in general whenever pointwise convergence is considered. But if we add some
conditions on the wavelets and function to be reconstructed, then the HAP holds in L*(R). In
the case of multivariate, this result is still true in L*(R?), but the condition that wavelets and the
function to be reconstructed are all compactly supported on R?\0 is just a sufficient condition,
not the necessary condition [13].

In this paper, we consider the HAP for the continuous wavelet transform with matrix dilation.
When the dilation of wavelet is different in various directions, we show that the HAP holds in

L?>(R9). The HAP also holds in L*(R?) when we add some conditions.

2. NOTATIONS AND PRELIMINARY RESULTS

In this section, we will introduce some notations and definitions.

Define

P(w) = /R e 0dx, o R
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then

1

1) = 3 | J@eda, e,

and
1 "
<f,g>=W<f7§>-

For d x d invertible matrix M,M, and b,b, € Rd, define
(M1,b1)(Ma,by) = (M My, by +M;b3).
For invertible matrix M, define
(2(M,D)y)(x) = M|~ Py (M~ (x— 1)),
where |M| = |detM|. 1t is easy to see that
e (M, b)yl2 = [[yl2 and (e(M,b)y)(w) = |M|'e P 4(M" ).

where M7 denotes the transpose of M.

For a = (a1, 0, ,0y) € RY, u € RT, define
My (u) = diag[u®,--- u®], |o| =04+ -+ 0y,

then M (u) is invertible and My ' (u) = M_ o (1), Mo (1) Mgy () = My oo (11).
Let% = {(a,b):a>0,b € R?}. Forevery (s,t) €¥,a € R?, its (A1, A,; B, )-neighborhood
is defined by

(5,0)0a, Ay = {(sa,t +Mq(s)b) : a € [A1,A2],b € [-B,B]'}.

A function y € L?(R?) is called admissible about the matrix function My (a) , if there exists

C > 0, such that
oo 51
/ ¥ (My(a)o)|” —da < C, a.e wcR?
0 a

and

is independent of ®.
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Similar, we call a pair of function (Y7, y») admissible about the matrix functions
(Mg (1), My (u)), if both yy, ¥, are admissible about the matrix functions (M (1), My (1)) sep-

arately and

is independent of ®. when o = o, we write simply C{%"f% instead of C%‘f{%“’ and we call
(w1, ¥2) admissible about matrix function My (u) at this time.
Now for (y1,y2), we give the definitions of homogeneous approximation property (HAP)

for various directions in L?(R?) and in L= (R¢) for continuous matrix wavelet transforms.

Definition 2.1. We call that (1, ) possess the homogeneous approximation property about
matrix functions (Mg (1), My (1)) in L>(R?) if for any f € L*(R?) and € > 0, there exist Ay >
A1 > 0and B > 0 such that

o(Ma(s), 1)/ — (Cheie )

[] (Ml M), b)) oM (@), D)V dad

(a7b)€(s’t)QA’1 Ab:B o

2

(1) <g, V(s,t) €9,A5 > Ay,0<A] <Ay,B' >B.

Definition 2.2. A pair of admissible wavelets (W1, ys) is said to possess the homogeneous
approximation property in L*(R?) if for any f € L*>(R%), x € R? and € > 0, there exist some

Ay > Ay > 0 such that

(0N = (E)

Alys da
‘ / (o 2)2 /IRJ<T(MOC(S)7’)fvT(Ma(a)ab)‘lf1>T(Ma'(d)7b)l//2(x)db

A’ls a

[

<€,

) VAL > Ay, 0 <A} <Ay, (s,1) €Y.

Now we give an important proposition.
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Proposition 2.3. [3, Proposition 2.4.1] For all f,g € L>*(R?), if (w1, ) is admissible about

matrix functions (Mg, (1), My (1)), then

[ 4550, b1 T, 70 @) D)) b = i ().

From this proposition, we can see that the continuous wavelet transform can reconstruct a

function f as following:

@ W =Gl [ da [ U (labyye) (b

where the convergence is in the weak sense. Here (1, y») is a pair of admissible function. The

following is a useful lemma in this paper.

Lemma 2.4. Suppose that y;, vy, € L>(R?) and (w1, W) is admissible about matrix functions
(Mg (u),My (1)) and C{ﬁ{%a/ #0. Forany f € L*>(RY) and A> > A > 0, define

fA1,A2( )
a/ d b b —1 db
V’lJI/z / a/Rd<faT(Ma(a); ) (t(My(a),b)yz) (x)a(|oc|+|a’|+2)/2 J
(%)

then we have

© Ut = () 7o) [ HMa@o) el o) .

Proof. For any x € R4, we have

A2 da
| e L1 1 Ma(a).0)va) (s (@), b)) (4)] b

A a

= Wl | e G /R d f (@)1 (Ma(a)0) P

VAN
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1 A2 . R 12 v g "
(zﬂ)d/2||‘lf2||2 (/A a‘a‘cil /Rdaa|f(a))|2|W1(Ma(a)a))|2d(D) </A #)

1 t~da N 5 ) 1/2 A g 12
(2m)d/? Soalvall (/0 7/]1@ |f(@)]7]9n (Mg (a)o)| da)) (/Al W)

1

)

da 1/2
Mg \1/2
Smarlvell e (7 g

IN

IN

(27
< oo,

(7

Hence, fa, a, is well defined on R4,

For any x,x’ € RY, similar arguments show that
[far0 (X) = fa 4, ()]
_ (CMa,Ma/> ~1 /AZ da y
— V1,2 A a(|a|+‘a/‘+2)/2

[ oM@, b)) (M (@), 0)y2) () = ((Mer (0).) w)(x’))db\
< \(C’qi’ffi,i‘f“’)_l ((2710 [ | @P i (Ma@)

N L\ 12
: (/Al v (M, (a)x— ) — yo (M, (a)x' — H2a|j|+1>

e e AR [CRe T

. 4\ 12
.(/Al w2 (M (a)x =) = yo (M, (a)x' — Hz |g|+1> '

Hence lim,_ |, 0 [fa,.4, (X) — fa, 4, (x")| = 0. That is, fa, 4, is uniformly continuous on R4,

Zdadw) 1/2
X

Next we prove (6). By (7), for any g € L' (RY) N L?(RY),

As a
gl [~ [ 1 Mala), b)) (s (@), 5)y2) (9] b < o=

Ay

By Fubini’s Theorem, we have

<fA1,A27g>
1

-1 Az
= (C{‘V{avlf\f&/) /Al da/Rd<faT(Ma(a)7b)‘l’1>(T(Ma’(a),b)WZ,g>mdb~
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A similar argument as that done in [3, Proposition 2.4.1] shows that

A da

) = s (Cin) [ F@)i@)do [ 5 0a(ajo) i (@@)

Al a

Since g € L' (RY) N L*(RY) is arbitrary, we have

oMy -1 Az,\—,\ da
(fAhAz)A(w) - (C{‘I//iﬂlfz ) f(w)/A L4 (Ma(a)w)lW(Ma’(a)w);-
1
0
3. HAP FOR VARIOUS DIRECTIONS IN L?(RY) AND L= (R¢)
In this section, we first consider HAP for various directions in L?(R?).
a,Ma/

Theorem 3.1. Suppose that w1, y, € L*(RY) is admissible about Mo (1), M (1) and that Cy"yy,
0, then (Y1, y») possess the homogeneous approximation property about matrix function

(Mo (1), Mg (u)) in L*(R).

Proof. Let Ay > A; > 0 and B > 0 be constants to be determined later. Suppose that A5 > A

and 0 < A} <A|. Then for any f € L?(R) and (s,t) € ¥, we have

[] (o0Ma(6).0) 7 5(Maa), b)) (M) D)~
2

(a,b)E(S,I)QA/l A8

(etotats)n g~ (et

= sup
llgll2=1

2

/ <r<Ma<s>,r>f,r(Ma<a>,b>w1>r<Ma/<a>,b>sz%7g>

(@b)E(s:1)Qur 411 o
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oMy -1
= sup 7 X
lgll=! (c)
2
dadb
(¢(Ma($).00f. 7(Ma(a). b)) (2 (Mo (@), BV o)
(a,b s,t)QA/ AL o
Mg 2 dadb
< ( ) / [ 1 Mas).0)7 o Mala) D)) e
lgll=1 b a
S Al A/ B/
dadb
/] |<g,r<Ma/<a>,b>w2>|2W
9

(using Proposition 2.3)

- |(ce) / [ a0 2 Mata) by P Gt

(a,b)¢(s,t) QA’ Ab:B o

= (i / [ e -0 S

(a b) (Sl QA’ A’ B a

[] 1 cata) by P S

ab)%QA/ Ab:B
((a b) — (as,t + My(s)b))
/g dadb
< arl(an) | [ @l G
(ab) §ZQA1A23

By Proposition 2.3, we can make E4, 4,.p arbitrary small by choosing A, and B large enough

and A; small enough. This completes the proof. 0

Now we show that the HAP for various directions also holds in L= (R¢).

Theorem 3.2. Suppose that f € L*(R?) satisfies f € L'(R?), that (w1, v,) is admissible about

matrix functions (Mg (u), My (1)), then for Ve, so > 0, there exist Ay > Ay > 0, for any (s,t) € ¥,
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which satisfy s > so > 0, and any A’2 >A,0< A’1 <Ay, we have

(e(Ma(s).)f — (Chgn) ™ x

A’zs dadb
[ 40 [ JFMals).0F 2V ) b)) (2 (M@, 0)W2) s |
@®) <e.

Proof. By Lemma 2.4, it is easy to see that for any f € L?(R?), we have

(t(Ma(s),1)f — (Cffffiﬁf“’) N

[ da [ (50 (5).0)1, 7 M) b)) (2o ) D))

!
ls

o)

[Ma(s)['/?e™" f(Ma(s)@)

g@/ﬂw

Al PR Ays 1
— () Ma(o)] e Ma5)0) | T (Ma(@)0) 9 (Mo (0)0) - dalde
2m) |y
A , A’zsA )
[ Ma(o)|'2 FMa(s)0)|Cheyt — [ GrMa{@)0) oMy (@)0) - dal do
1 121 7
< M, My
G et M) (Ma(s)0)] X
A’ls
M@ 0) 9 (Mo (@)@)~da do
1 -
+ My, M,
| [, Ma(9)]'? | FMa(5))]
[ B L@@ (Mo ()0) da do

9 = I+11
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First, we estimate /. By substituting M ! (s)® for @, we have

1

[ = (27|;;/iza(;2”|;;4a/ R 1f ()] '/()A’ls g (Ma <g> a)) %(Ma’(a)Mal(S)a))éda deo
Y1,y
=2 "s
2 )ds)CMwa e ’f(a))|/0A1 W (Ma <g> a)> (M (a)M;, (5)0) édada)

Ot

o

Since both y; and y; are admissible about the matrix function My (a), My (a) separately, we

have
[0 (e (%) @) 0t @t ()0)| L
0 1 o g 2 o o a
1
Als | a 21 Als | 21
< = - ) " -
< (/0 1;/1<Ma(s)w>‘ da) (/O 92 (Ma (@) (s) )
1
All n 21 2 Fee ~ -1 21
< ([T nMa@o)P sda) ([ [9a(Me(@Mtg! (5)0)[ Lda
< CA/I‘J‘C{,\,/I2 , a.e.
and
, A 51
lim |91 (Mg (a)w)|” —da =0, a.e.
A1—0J0 a
Since
_la M / L
2 . A 2
1 S i@l ([ i Matwe) L) do.
Colllerimd B 0

By the dominated convergence theorem, we have

im [ 1f(@ >|(/OA'rw<Ma<> >\2§da)%dw=o.

A =0

Hence, we can choose some A; > 0 such that for any s > 59 and 0 < A’l <Ay,

(10) 1<

NIO‘)

1

i f(@ !/Al]s 1%} (Ma <g> w) (Mg (a)My ! (s)w) ;dada).
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Next we estimate /1. Using Holder’s inequality twice, we have

/Rd!Ma W2 F (M (s)o }‘/ V1 (Mo (a)0) Y2 (M (a) @) ~da

a
1/2
(/Rd|M“ )| | (Me(s) \dw) X

oo o) 1/2
it )
R4
< 2m)"2|f ]2 %

(o (e om0 o sttt o) ao)
( 1112"") 2m)42|| £l (/ —da/ 0 (Mog(a)® )|2da))1/2

" e 1/2
= ()" emitatwile ([, Zaraa)

A 1/2
(cye) " emyflallwale
|a|1/2(A’ BIEIE

() miflalvale
|a|1/2(A2s0>\a\/2

IN

¥ <Ma<a>w>%<Ma,<a>w>éda

Als

IN

<

Hence
() Uflalhva
oMy
\C%% @]/ (Agso) /2.

1/lel
Take Ay = <4C3,/12°‘/Hf\|%|]lm H%/ ’ny/[]“% o |ds|a|> . Then for any A, > A, we have

(11) <e/2.

Putting (10) and (11) together, we get the conclusion. U
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