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Abstract. In this paper, we introduce the notions of random, comparable MY, contraction and random, comparable
Meir-Keeler contraction in the framework of complete random G-metric spaces. We examine the existence of a

random fixed point for these contractions. We express illustrative examples to support the presented results.
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1. INTRODUCTION

Probabilistic functional analysis is one of the most useful and interesting research field and
random fixed point theory is the main pillar of it. Random fixed point theory is one of the basis
of probabilistic functional analysis. Random fixed point theory is the addition of standard fixed
point theory within the structure of random analysis. So, we can random fixed point theory
appear at the intersection of topology, functional analysis and stochastic analysis. The initial
results in random fixed point theory were reported by Speack [1] and Hans [2,3]. After that,
the series of many well-known, metric fixed point theorems have been described by different
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authors; e.g., [4-14].

the very interesting fixed point theorem. In this paper, we focus on the Meir-Keeler contraction
[15] which is a generalization of Banach contraction principle [16]. Mustafa and Sims [17]
introduced a new class of generalized metric space called G-metric space in 2005 which is a
generalization of metric sapce (M,d).

In recent past, Chen and Chang [18] gave the concept of “weaker Meir-Keeler function” and
the “strong Meir-Keeler function” which were noticed from the reflection of the original idea
of Meir-Keeler. These access have been investigated dully by several authors; e.g., [19-25].

In what follows, we assert some basic definitions and presented our terminology needed in the
series. Throughout the paper, we suppose that all considered sets are non-empty. We present
Rar = [0,00), and N is used for positive integers. Let } be a sigma-algebra of subsets of Q.

Under this supposition, the pair (€2,Y") is called a measurable space.

2. PRELIMINARIES

Definition 2.1. [17] Let M be a non empty set, and G : M x M x M — R be a function satisfying

the following properties:

(1) G(I,m,n) =0ifl =m=n,

(2) 0< G(L,l,m), for all [,m € M, with [ # m,

(3) G(I,1,m) < G(I,m,n), for all [,m,n € M, with n # m,

4) G(l,m,n) = G(l,n,m) = G(m,n,l) = ...(symmetry in all three variables),

(5) G(l,m,n) < G(l,a,a)+ G(a,m,n), for all I,m,n,a € M, (rectangular inequality).

Then the function G is called a generalized metric, or, more specifically a G-metric on M, and

the pair (M, G) is called a G-metric space.

Example 2.2. Let M = {I,m}, let G(1,1,]) = G(m,m,m) = 0,G(l,I,m) = 1,G(I,m,m) =2 and
extend G to all of M x M x M by symmetry in the variables. Then G is a G-metric space. It is

non-symmetric since G(I,m,m) # G(l,1,m).

Definition 2.3. [17] Let (M,G) be a G-metric space. We say that {/,} is a G-convergent se-

quence to [ € M if, for any € > 0, there is N € N such that for all n,p > N,G(l,1,,1,) < €.
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Definition 2.4. [17] Let (M,G) be a G-metric space. A sequence {,} is said to be a G-Cauchy
sequence if for each € > 0 there exists a positive integer N such that G(I,,1,,1;) < € for all

n,p,x > N.

Definition 2.5. [17] A G-metric space (M, G) is said to G-complete if every G-Cauchy sequence
in (M, G) is G-convergent in (M, G).

In what follow, we presented the definition of the MY function.

Definition 2.6. [26] Let y be a function that is defined from non-negative reals into the interval

[0,1) then y is called the MY function if the following are satisfied:

lim,_,;+ sup Y(s) = inf,~0Supg,_,-o W(s) < 1 forall s € RT.

Theorem 2.7. [26] For a mapping ¥ : R™ — [0, 1), the following are equivalent.
(1) yisan MY function.

(2) For any non-increasing sequence {8, }ncn in RT, we have

0 <sup,ey ¥(8,) < L.

Remark 2.8. [26] Notice that in the case that y : RT™ — [0,1) is non-increasing or non-

decreasing, then y is a MY function

3. MAIN RESULTS

In 2020, Li, Karapinar and Chen [27] proved the random Meir-Keeler contraction results in
metric space and we extend the following results in G-metric space.
The mappings 7 : Rg X R(J)r X Rg X R(’)L — Rg is called a comparable function, if the following

three axioms are fulfilled:
(1) yis a non-decreasing, continuous function in each coordinate;
(2) y(r,r,r,r) < r,y(0,r,0,r) < rand y(0,0,r,r) < r, for all r > 0;

(3) y(r1,ra,r3,r4) =0if andonly if ry =rp, =r3 =r4 =0.

Definition 3.1. Let X be a nonempty subset of a random G-metric space (M,G),y be a MY
function and ¥ : Q X X x X — X be a random operator. Then, for / € Q,Y(/,.,.) is called a

random, comparable MY_, contraction if the following condition holds:
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G(Y(S(1),Y(&(1)),Y(5(1)) <w(G(E(1D),s(D),5(1))).T(E(1),5(1),5 (D)),

where

L(E(0),8(D),5(1) = rG(E(1),5(D), (1)), G(E (1), Y (1), Y (6(1), T(E(1), Y (§(1)), Y (§(1))),
GUEDY EUYENHTEDL EYED),)

forall £,& € X.

Theorem 3.2. Suppose (M,G) is a complete random G-metric space and X C M. IfY(l,.) :
Q x X xX — X is a continuous, random, comparable MY—, contraction, then Y possesses a

random fixed point in M.

Proof. Given {y(l) € Q x M x M and defining {;(I) = Y ({o(!)) and ,1(1) =Y (E,(1)) =
Y™ 1(&(1)) for each n € N, since Y(/,.) : @ x X x X — X is a random, comparable MY —,

contraction, we have

G(Gn(D), Gnr1(D); Gui1 () = G(Y (Gu1(1)), Y (Ga(1)), Y (Gu(1)))
S Y(G(Gr-1(1), Gn(D), Ea(1))) - T((Gn1(1), a(1), Ga(D)))

and

L((Ca—1(1), Gu(1), Cu(1)) =

VG((Gn-1(1),Gu(1), 8u(1))), G((Gu1(1), Y (8u(1)), Y (Cu(1))), G(Eu(l)
G

G(&n(1), Y (Gu(1)), Y (&u(D))),
(Gt (DY GO Gl G (DY (Gt (DY (B (1)

= Y((Ga1(1): Gn(1); 6 (1)) G (a1 (1), Ga(D); Ga(1)) G((Gu (1) Gui1 (1), Gnta (1)),
{(SBUR UK R (AURAURA U

If G(8u(1), §ui1 (1), Gua1 (1) > G(Eu—1(1),8u(1), Eu(1)) for some n, then by the conditions of the

function y we have that

D(Ga-1(1); 6a(0), (D) Y((Gn1(D); Gn(1); 6a(1)), G((Gn—1 (D), Ga(1)5 6a(1)), G((Gn(1) Gt 1 (1) Gu 1 (1))
(U AROR G St AURAGR AT

< (G(Gu(D), Car1 (1), Gui1 (1)), G(Gn (D), Gui1 (1), Gt 1 (1)), G(Gn (1), Gni1 (1), a1 (1)), G(Gu (1), Gy 1 (1), Gug1 (1))
S G(Cn(l)a Cn+1(l)7 CnJrl(l))

In a different order pair of y
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G(Gn(1), Gna1 (1), Gui1 (1) = G(Y (G (1)), Y (Ca—1(1)), Y (Gu-1(1)))
< W(G<Cn(l>v Cn—l (l)a Cn—l (l)))'r(Cna): Cn—l (1)7 Cn—l (D);

and

L(Ca(1), Cn-1(1), Gn—1(1))
= Y(G(Cn(l)7 Cn—l(l)v Cn—l(l»vG(Cn(l))aY(Cn(l»’Y(Cn(l))vG(Cn—l(D)’Y(Cn—l(l))vy(gn—l(l))v
G(Cﬂ(l)%Y(Cnfl(l))vy(gn—l(1))2+G(Cn71(l))vy(gn(l))vy(cﬂ(l)))

< NG(Gn(D); Gna1 (1), Ea—1(1)), G(Eu (1), Gui1 (1), Gnt (1), G (Gn—1(1)), a(D)), Cu(D))),
AU AGIRAGEL S0 RO RARION

—

[\

If G(8u(1), §nr1(1), Eur1 () > G(Eu—1(1),8,(1),Eu(1)) for some n, then by the conditions of the
comparable function y we have that
F(Cn(l)v Cnfl (l)a Cnfl (l))

= ’}/(G(Cn(l)7 Cnfl(l% Crhl(l))? G(Cn(l))v CnJrl(l)? €n+1(l>)a G(Cnfl(l))’ Cn(l)a Cn(l))v
G(Cn(Z))7Cn(l)>§n(1))+6(§n71(l))7Cn+1(l)vgnJrl(l)))

< VGG (1), Cns1 (1), Cnr1 (1)), G(Cn(1)), Gr1 (1), Cat 1 (1)), G(Gn(D)), G (1), Grs1 (1)),
G(Gu(1), Grs1(1), Cut1 (1))
S G(Cn(l)7 €n+1 (l), CnJrl(l))

Since y is a MY function, we conclude that

G(Ga(1), Gni1 (D), Gui1 (1) < W(G(Gu1 (1), Ga(1), Gn(D)))-G(Gn(D), Gay1 (1), Gut1 (1))
< G(Gal1), Gut1 (1), Gns1 (D)),

which implies a contradiction. So, we conclude that

G(&u(1),Cnr1(D), 81 (D) < G(&Gu1(D),8n(1),80(1)), for eachn € N.

From above argument, then sequence {G(&u (1), Gur1(1), Gu+1(1)) }nenuio) is non-increasing in

Rar . Since y is an MY function, by Theorem 1 we conclude that

0 < sup, ey Y(G(Gu(D), Cut1 (D), Cur1 (1)) < 1.
Let A = SuanNW(G(Cn(l)’ Cn+l (l)7 Cn+l(l))) < 1; then

0 < W(G(Ga(D), Cns1(1),Gui1 (1)) < A, foralln € N.
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Following from the above arguments and by Y being a random, comparable MY contraction,

we conclude that for each n

(G(&u(D), Gu1(D), i1 (1))
< W(G(Gu1(1),6u (1), 8u(1)))-G(Gu1(1), Eu(1), Cu(1))
< A.G(Gu1 (1), Gu(1), Gu(D))-
Therefore, we also conclude that
G(Gu(1), Gur1 (D), G (1))
=G(YGu1(D),Y Gu(1),Y Cu(1))
< AG(Gu1 (1), Ga(D), Gn(1))
< 22682 (1), Gu1(1), Gu1 (1))
<..
< A"G(G(1), &i(1), &i(D)).
So we have that lim,, e G(&, (1), &y 1(1), &uy1(1)) = 0, since A < 1, and for n > m,
G(Gn(1), Ga(1), Gu(1))
< (A AT AN .G (G, G (1), & (1))
< £7-G(G (1), & (1), &1 (1)
Let 0 < 0 be given. Then we can choose a natural number M such that
22.G(6(), &1(1), 61(1)) < 8, for all m > M,
and we also conclude that
G(&n (1), Gn(1), Ga(1)) < O, forall m > M.

So {&,(1)} is a Cauchy sequence in Q x M x M. On account of the fact that (M, G) is complete,

there exists a {*(I) € Q x M x M such that () converges to {*(1); that is,

limpse0 Gu(1) = C*(0).

Thus, we have
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G(E(1),Y (¢ (1), Y(&* (1))
< G(E (D), a1 (D), Gns1 (1) + G(Gui (1), Y (E7(1)), Y (67(1)))
< G(E (D), a1 (D), Gut1 (1) + G(Y (Ga(D)), Y (67(1)), Y (E7(1)))
<G (D); Gnt1 (1), Guin (D) + W(G (& (D), Y (67(1), Y (§7(1)))-T(EalD), 67(1), &*(1))
< G(E(1); Gr1 (1), Guir (1) + TG (1), E7(1), 67(1)),
and
L(& (1), &7(1), 6*(D)

= GG (1), 67 (1), §(1)), G(&a(D), Y (G (1)), Y (8a(D))), G(S™(1), Y (§7(1)), Y (E™(1))),
GUG(DY(E Y (E INEEE DX E Y E 1)

< Y(G(Ga(1), 67(1), §7(1)), G(Gn(D), Y (Gur1 (1)), Y (Gni1 (1)), G(E™(1), Y (&7 (1)), Y (§(1))),

G(Cn(l)vY(C*(l))vY(C*(l)))+G(C*(1)7Y(24*(l))7Y(C*)+G(C*(l)7Cn+1(1)7Cn+1(1))) )

Taking n — oo, we have

limy e T(6a 1), §7(1). £(1)) = (0,0, G(E* (1), ¥ (§*(1), ¥ (£ (1)), CLLE LI
In a different order pair of y
IN(SONAORA0)

= NG (1), 8a(D), 6a(1)), G(E* (D), Y (67 (1)), Y (§7(1))), G(Gu(1), Y (8a (D)), Y (Gu (D)),
GIE (DY (Gl )Y (GGG Y (€ (DY (E (D)

< VUG(E™ (1), 8a(1), 6a(1)), G(E(1), Y (67(1)), Y (§7(1))), G(&a(D), Gn1 (1), Gnr (1))
GE 1) () Gaer D+ OG).L (L 4G MY (E Y E )

Taking n — oo, we have

limy e D(E* (1), 60 (1), Ga() = Y0, G(E* (D), Y (§*(1)), ¥ (§7(1))), 0, CE-DII LTI O

By the condition of the mapping 7y, we conclude that

G(S™ (D), Y(E(1),Y(&* (1)) < G(&*(1), Y (& (1), Y (& (1)),
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and this is a contradiction unless G({*(1),Y (£*(1)),Y(£*(1))) = 0.
Therefore, *(1) =Y ({*(1)), that is {*(I) is a random fixed point of ¥ in M. O

Example 3.3. Let M = X = Rg Q = [0,1] and X be the sigma algebra of Lebegue’s mea-
surable subset of [0,1]. We define mapping as G : (Q x M x M) x (Q x M x M) — X by
G(C(1),s(),n(1)) = max{[C(1) — (D[ +[E () =n (D) +|E()) =n(L)|}. Then (M,G) is a ran-

dom G- metric space. Define random operator Y : Q Xx M x M — M as
_S+1-r2
V(L) = S

Let W(y) = g7y + 3 and ¥(y1,2,y3,54) = max{y1,y2,y3,y4}; then
2 2 2
G(Y(§(), Y (E(D)), Y (n(1)) = G(EW=L SWE=E (=L

= ma{| S=E SOy SO 1O y SOEE  nEy

(l);é(l)|+‘€(l);n(l)|+|C(l);n(l)|}

and

Q
U
B
=
<
=
Tay)
=
=
-
=
=
=
=
+
Q
|~
Ta
=
=
=
U
NS
~
=
=
=
=
=
+
Q
X
=
=
=
U
B
=
~
=
)
pAN
=
=
N~—

2%.max{|w) 5(l)|+|5(l);ﬂ(1)|+|C(l);n(l)|}

and then Y is a continuous, random, comparable MY_, contraction.

Take the measurable mapping m : Q — M as (1) = {1 —I?}, then for every | € Q,
D+1-12 P12
Y(C(l): &( )‘; ): 1 1—51 l :1_12:§(1)~

(1—1?) is a random fixed point of Y.

Definition 3.4. Let X be a nonempty subset of a random G-metric space (M,G), and let Y :
Q x X x X — X be a random operator. Then, for [ € Q,Y(l,.) is called a random Meir-Keeler
contraction if for any real number & > 0, there exists 6 > 0 such that for each {(1),&(1),n(l) €
QxXxX.

§ <G(E(0),6(),n) <6+8=GX(c(),Y(&EM),Y(n()) <¢
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Remark 3.5. Note that if Y is a random Meir-Keeler contraction, then we have
G(Y(£(1)),Y (1), Y(n(1))) <G(E(1).5(1),n(D)).
Further, if G({(1),&(1),n(1)) = 0, then G(Y(£(1)),Y(E(1)),Y((1))) = 0. On the other hand,
if G(C(1),E(1),n(1)) > 0, then
G(Y(E(1),Y(S(1)),Y(n(1)) <G(E(1),5(1),n(1)).

Theorem 3.6. Suppose (M,G) is a complete random G-metric space and X C M. IfY(1,.) :
Q x X x X — X is continuous, random, comparable Meir-Keeler contraction, then Y possesses

a random fixed point in M.

Proof. Given {y(l) € Q x M x M and defining (1) =Y (&o(1)), and &,1(1) =Y (&, (1)) =
Y"(&o(1)) for each n € N, since Y(/,.) : Q x X x X — X is a random Meir-Keeler contraction,

by Remark 2, we have

G(Ga(1): Gnt1 (D), Gui1 (1) = G(Y (Gt (1)), Y (Gn(1)), Y (Ga (1)) < G(Gn1 (D), Gn(D), Gu(1))-

Therefore, {G(Cu(1), Gur1(1), Cur1(1)) bnenuioy is decreasing and bounded below; it must con-

verge to some real number p > 0; that is,

G(&u(1), Cur1(1), Cui1 (1)) \( 1, as n — oo,

Note that

(3.1) M= inf{G(Cn(l)a Cn—l—l(l)? Cn+1(l))}neNU{0}'

We assert that 4 = 0. Suppose, on the contrary, that g > 0. Since Y (I,.) : Qx X x X — X is
a continuous, random Meir-Keeler contraction, corresponding to this u, there exist 6 > 0 and

m € N such that

1< G(Gn(1), Cni1 (D), G (1) < +6

= G(Gnt1(1); G2 (D), Gmi2(1)) = GY (Gn(1)), Y (Gnr1 (1)), Y (Gmr1 (1)) < 1,

a contradiction. Attendantly, we find that u = 0.
We next show that {{,(w)} is Cauchy sequence in (M, G). We shall use the method of reduction
absurdum. Suppose, on the contrary, that there exists a real number € > 0 such that for any

k € N, there are my,n; € N with n; > my, > k satisfying
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G (G (1), G (1), G (1)) = €.

In addition, comparable to m; > k, we can choose n; so that ny > m; > k and

G(ka(l)v an(l)a an(l)) Z €.
Therefore, we also have G({y, (1), §n,—2(1), & —2(1)) > €. So, we have that for all k € N,

€ < G(&n (1), G (), G, (1))
< GG, (1), G—2 (1), Gy —2(1)) + G (G2 (1), Gpm1 (), G =1 (1) + G (L1 (1), G (1), G, (1))
<&+ G(Gy—2(D), Gn—1(D), =1 (1) + GG —1 (D), G (1), G (1))
Letting k — oo, we have that
1m0 G(Gn, (1), G (1), G (1)) = €.
On the other hand, we have that
€ < GG (1), G (), G (1))
< GG (D), Gt 1 (1), G 1 (D) + G (G 1 (1), G 1 (), G 1 (1) + G (G 1 (1), G (1), G (1))

< GG (1), G 1 (1) Gy 1(1) + G (G 1 (1) G (1) Gy (1)) + G (G (1), G (1), G (1)) +
G (G (1) G 1 (D), Gyt 1 (1) + G (G 1 (1), Gy (1), Gt (1))

Letting n — oo, we have

G(Y(&*(1)), (1), 6")D) = 0.

This implies that Y ({*(1)) = £*(1); that is {*(I) is a random fixed point of Y. O

Example 3.7. Let M =X = Rg U0, also Q = [0, 1] and Y be the sigma algebrdas of Lebegue’s
measurable subset of [0,1]. Let M = [0,0), and define mappings as G : (Q x M x M) x (Q x
MXxM)x(QxMxM)— X by

G(E(D),6(1);n(1) = max{|E(1) = S ()| + 5 (1) =n (D[ + () =n(D)]}-
Then, (M,G) is a cone random G metric space. Define random operator Y : Q x M x M — M

as

Y(§(1) = 0=

For any £ > 0, take § = &, if
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§<G(E(M),5(),n(1) <5+,

then

_2 72 2
G(Y (1), Y (E(1)),Y(n(1))) = G(EWF=E s WL
:max{|§(l);r_12 _5(1)+—12|+|<§(1);—12|+|n(1)2+—12|+|c(1)+—12 n(1)+_12|}

2 2 2
= max{]£0580)| 4 S0 4 L0y
S(URIUR[O)
1(6+8)=¢.

This implies that ¥ is a continuous, random Meir-Keeler contraction.

Take the measurable mapping m : Q — M as (1) = {1 —I?}, then for every | € Q,

y(g() = S0 P 2 (),

(1—12) is a random fixed point of Y.

4. CONCLUSIONS

One of the most interesting and useful field of research is probabilistic functional analysis
due to its extensive potential of application to probabilistic models in applied problems. In the
theory of random operators many different classes of random equations were investigated. More
specifically, we need some mathematical models or equations when explaining many different
phenomena in different quantitative disciplines (for e.g., engineering, biology and physics).
These models and equations contain some parameters or coefficients with unknown values,
but they have specific interpretations. Random fixed point results play an important role in
differential / integral equations solution [28]. Accordingly, the random fixed point theory is
an important tool for solutions to real-world problems whenever they are realistically modeled.

Our results help to expand the theory of random fixed-points.
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