
Available online at http://scik.org

Adv. Fixed Point Theory, 2020, 10:16

https://doi.org/10.28919/afpt/4770

ISSN: 1927-6303

ON QUASICONVEX METRIC SPACES

O. K. ADEWALE∗, J. O. OLALERU, H. AKEWE

Department of Mathematics, University of Lagos, Nigeria

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. We introduce the notion of quasiconvexity in metric space in this paper. Some fixed point theorems in

this newly introduced space are also formulated and proved. Our results are significant extension of some fixed

point results of convex metric spaces and metric spaces in literature.
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1. INTRODUCTION AND PRELIMINARIES

Metric space is a vital tool in functional analysis, topology, nonlinear analysis and many

other branches of mathematics. Its topological formation has attracted the attention of many

mathematicians partly because of its usefulness in the fixed point theory. In recent years, ap-

plications of fixed point theorems have made researchers to introduce different generalizations

of metric spaces. These spaces include 2-metric spaces, D-metric spaces, D∗-metric spaces,

G-metric spaces, b-metric spaces, quasimetric spaces, Gb-metric spaces, complex valued Gb-

metric spaces, S-metric spaces, Sb-metric spaces, complex valued Sb-metric spaces, A-metric

spaces, γ-generalized quasi metric spaces and , most recently, Sp-metric spaces (see [1-17]).
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In his investigation, Ponstein in 1969 was able to review that quasiconvex function was the

weakest among the convex functions. The breakdown is as shown below:

Function Region SC C SPC PC SQC QC XC

f1(x) = 0 0≤ x≤ 1 N N N N N Y N

f1(x) =−(x−1)2 1≤ x≤ 2 • •

f2(x,y) =−x2 0≤ x,y≤ 1 N N N N Y Y N

f3(x,y) =−x2− x 0≤ x,y≤ 1 N N N Y Y Y N

f4(x) = 0 0≤ x≤ 1 N Y N Y Y Y N

f5(x) =−x 0≤ x≤ 1 N Y Y Y Y Y Y

f6(x) = x2 0≤ x≤ 1 Y Y Y Y Y Y Y

f7(x) =−x2− x 0≤ x≤ 1 N N Y Y Y Y Y

f8(x) =−x2 0≤ x≤ 1 N N N N Y Y Y

Keys:

N=No

Y=Yes

SC=Strict convexity

C=convexity

SPC=Strict Pseudoconvexity

PC=Pseudoconvexity

SQC= Strict Quasiconvexity

QC=Quasiconvexity

XC=Unnamed convexity.

The notion of convexity in metric space was introduced by Takahashi in 1970 and he estab-

lished that all normed spaces and their convex subsets are convex metric spaces. He also gave

examples of convex metric spaces which are not imbedded in any Normed or Banach spaces.

Motivated by the work of Ponstein and Takahashi, we introduce the concept of quasiconvex

metric spaces by replacing the notion of convex function with a more weaker function, quasi-

convex function. We give examples in quasiconvex metric space which are not embedded in

Banach or convex metric space. Our results generalize convex metric spaces in literature.
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We give some basic definitions of concepts which are needed in this work.

The following are the definitions of convexity as defined by Aibinu and Mewomo 2018.

Definition 1.1. [6]

A subset K of E is said to be convex if for every x,y∈K, and λ ∈ [0,1], we have λx+(1−λ )y∈

K.

Definition 1.2. [6]

A function f : K → R defined on a convex subset K of E is convex if for any x,y ∈ K and

λ ∈ [0,1], we have

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y).

If we have strict inequality for all x 6= y in the above definition, the function is said to be strictly

convex.

Definition 1.3. [6]

A function f : K → R is quasiconvex if f (λx+(1− λ )y) ≤ max{ f (x), f (y)} , ∀x,y ∈ K and

λ ∈ [0,1]. Clearly, every convex function is quasiconvex but the converse is not always true. If

function f : R→ R defined by:

f (x) =


x−1, x≤ 1;

lnx, i f x > y.

Then f is quasiconvex but it is not convex.

Definition 1.4. [8]

Let (X ,d) be a complete metric space and E ⊂ X . A mapping T : E → E is said to be an

involution if T 2(x) = x.

Definition 1.5. [8]

A function Ψ : R+→ R+ is called a comparison function if:

(i) Ψ is monotone increasing, and

(ii) limn→∞ Ψn(t) = 0 ∀t ∈ R+.
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2. MAIN RESULTS

In this section, we introduce the notion of quasiconvex metric space and prove some fixed

point theorems in this new space. Throughout this paper, we denote metric space as (X ,d) or

X .

Definition 2.1.

Let (X ,d) be a metric space, A mapping γ : X ×X × [0,1]→ X is said to have quasiconvex

structure on X if for each (x,y,λ ) ∈ X×X× [0,1] and u ∈ X ,

(1) d(u,γ(x,y,λ ))≤ max{d(u,x),d(u,y)}

Definition 2.2

A metric space (X ,d) having quasiconvex structure γ is called a quasiconvex metric space.

Remark 2.3

If max{d(u,x),d(u,y)}= λd(u,x)+(1−λ )d(u,y) in Definition 2.1 where λ ∈ [0,1], we obtain

convex structure in metric spaces as defined by Takahashi [12].

Example 2.4

Considering a linear space, V which is at the same time a metric space with metric, d. For all

x,y ∈V and λ ∈ [0,1] if:

(i) d(x,y) = d(x− y,0), and

(ii) d(λx+(1−λ )y,0) = max{d(x,0),d(y,0)}

Then V is a quasiconvex metric space.

Example 2.5

Considering a linear space, V which is at the same time a metric space with metric, d defined

by

d(x,y) =



0, i f x = y = 0;

1, i f x,y ∈ N;

0.5, Otherwise.
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For all x,y,z ∈V and λ ∈ [0,1] if:

(i) d(x,y+ z) = d(x− y,z), and

(ii) d(λx+(1−λ )y,z)≤max{d(x,z),d(y,z)}

Then V is a quasiconvex metric space but not convex metric space because if x = 0,y = 2,z = 3

and λ = 0.5, we obtain d(1,3) = 1 > 0.5d(0,3)+0.5d(2,3) = 0.75.

Definition 2.6.

A subset C of a quasiconvex metric space X is said to be quasiconvex if γ(x,y,λ ) ∈ C and

γ(x,y,λ )≤max{x,y} for all x.y ∈C and λ ∈ [0,1].

Definition 2.7.

Let (X ,d,γ) be a complete quasiconvex metric space and E a nonempty closed convex subset

of X . A mapping T : E→ E is said to be (k,L)-Lipschitzian if there exists k ∈ [1,∞), L ∈ [0,1)

such that

(2) d(T x,Ty)≤ Ld(x,T x)+ kd(x,y),∀x,y ∈ E.

The above mapping generalizes many known mappings in literature.

Definition 2.8.

Let (X ,d,γ) be a quasiconvex metric space. An open ball S(z,r) in (X ,d,γ) is defined by

S(z,r) = {(x,y) ∈ X2 : d(z,γ(x,y,λ ))< r}.

Definition 2.9.

Let (X ,d,γ) be a quasiconvex metric space. A closed ball S̄(z,r) in (X ,d,γ) is defined by

S̄(z,r) = {(x,y) ∈ X2 : d(z,γ(x,y,λ ))≤ r}.

The following propositions show that an open ball and a closed ball in quasiconvex metric space

are respectively open and closed subset of the space.

Proposition 2.10.

Let X be a quasiconvex metric space. Open ball S(x,r) and closed ball S̄(x,r) in X are quasi-

convex subsets of X .

Proof
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For y,z ∈ S(x,r) ⊂ X and λ ∈ [0.1], we have γ(y,z,λ ) ∈ X . It is sufficient to show that

γ(y,z,λ ) ∈ S(x,r). Since X is a quasiconvex metric space,

d(x,γ(y,z,λ ))≤ max{d(x,y),d(x,z)}< r.

Therefore, γ(y,z,λ ) ∈ S(x,r). Similarly, S̄(x,r) is a quasiconvex subset of X .

Proposition 2.11.

Let X be a quasiconvex metric space. For y,z ∈ X and λ ∈ [0.1],

d(x,y)≤ d(x,γ(x,y,λ ))+d(γ(x,y,λ ),y).

These theorems extend the results of Beg[4] as well as result of Goebel[6].

Theorem 2.12

Let (X ,d,γ) be a complete quasiconvex metric space, F, a nonempty closed quasiconvex subset

of X and T : F → F , a (k,L)-Lipschitzian mapping. Suppose ψ : R+ → R+ is a comparison

function such that for arbitrary x ∈ F there exists q ∈ F with

(3) d(T q,q)≤ ψ(d(T x,x))

Then T has a fixed point in F .

Proof:

Suppose x0 ∈ F is an arbitrary point. By condition (3), we obtain

(4) d(T xn+1,xn+1)≤ ψ(d(T xn,xn)),n = 0,1,2, ...

By induction in (4), we obtain

d(T xn+1,xn+1) ≤ ψ(d(T xn,xn))(5)

≤ ψ
2(d(T xn−1,xn−1))≤ ...≤(6)

≤ ψ
n+1(d(T x0,x0))(7)
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Using (7) along with (1), the following are obtained:

d(T xn,xn) ≤ d(T xn,γ(T xn,xn,λ ))+d(γ(T xn,xn,λ ),xn)

≤ max{d(T xn,T xn),d(T xn,xn)}+max{d(T xn,xn),d(xn,xn)}

≤ 2d(T xn,xn)

≤ 2ψn(d(T x0,x0)).

Since ψ is a comparison function, we get d(T xn,xn)→ 0 as n→ ∞.

Hence, {xn} is a Cauchy sequence in F . By completeness, there exists x∗ ∈ F such that

lim
n→∞

xn = x∗.

By (2), (7) and triangle inequality, we have

d(T x∗,x∗) ≤ d(T x∗,T xn)+d(T xn,xn)+d(xn,x∗)(8)

≤ Ld(T xn,xn)+ kd(xn,x∗)+d(T xn,xn)+d(xn,x∗)(9)

≤ (1+L)d(T xn,xn)+(1+ k)d(xn,x∗)(10)

≤ (1+L)ψn(d(T x0,x0))+(1+ k)d(xn,x∗)(11)

So, d(T x∗,x∗)→ 0 as n→ ∞ which implies that T x∗ = x∗. Hence, x∗ is a fixed point of T .

Theorem 2.12 can be extended to the next result.

Theorem 2.13

Let (X ,d,γ) be a complete quasiconvex metric space, F, a nonempty closed quasiconvex subset

of X and T : F → F , a (k,L)-Lipschitzian mapping. Suppose ψ : R+ → R+ is a comparison

function such that for arbitrary x ∈ F there exists q ∈ F with

(i) d(T q,q)≤ ψ(d(T x,x));

(ii) d(T q,T x)≤ cd(T x,x), c > 0.

Then T has a fixed point in F .

Proof:

Suppose x0 ∈ F is an arbitrary point. By condition (i) and (ii), we obtain

(12) d(T xn+1,xn+1)≤ ψ(d(T xn,xn)),n = 0,1,2, ...
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and

(13) d(T xn,xn)≤ cd(xn,xn−1),n = 0,1,2, ...

By induction in (13), we obtain

d(T xn+1,xn+1) ≤ ψ(d(T xn,xn))(14)

≤ ψ
2(d(T xn−1,xn−1))≤ ...≤(15)

≤ ψ
n+1(d(T x0,x0))(16)

(16) and (13)along with (1) give

(17) d(T xn+1,xn+1)≤ 2cd(T xn,xn)≤ 2cψ
n(d(T x0,x0))

Since ψ is a comparison function, we get d(T xn,xn)→ 0 as n→ ∞.

Hence, {xn} is a Cauchy sequence in F . By completeness, there exists x∗ ∈ F such that

lim
n→∞

xn = x∗.

By (2), (16) and triangle inequality, we have

d(T x∗,x∗) ≤ d(T x∗,T xn)+d(T xn,xn)+d(xn,x∗)(18)

≤ Ld(T xn,xn)+ kd(xn,x∗)+d(T xn,xn)+d(xn,x∗)(19)

≤ (1+L)d(T xn,xn)+(1+ k)d(xn,x∗)(20)

≤ (1+L)ψn(d(T x0,x0))+(1+ k)d(xn,x∗)(21)

So, d(T x∗,x∗)→ 0 as n→ ∞ which implies that T x∗ = x∗. Hence, x∗ is a fixed point of T .

Theorem 2.14

Let (X ,d,γ) be a complete quasiconvex metric space, F, a nonempty closed quasiconvex subset

of X and T : F → F , a k-Lipschitzian involution with k ∈ [0,1). Then T has a fixed point in F .
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Proof:

For any x ∈ F , let u = γ(x,T x,αn). Then,

d(u,x) = d(γ(x,T x,αn),x)(22)

≤ max{d(x,x),d(x,T x)}(23)

= d(T x,x)(24)

Also

d(u,Tu) = d(γ(x,T x,αn),Tu)(25)

≤ max{d(x,Tu),d(T x,Tu)}(26)

≤ max{d(T 2x,Tu),d(T x,Tu)}(27)

≤ max{kd(T x,u),kd(x,u)}(28)

= kd(x,T x)(29)

Using (29) repeatedly, we have

(30) d(T xn,xn)≤ knd(T x0,x0)

By taking the limit, d(T xn,xn)→ 0 as n→ ∞. So, {xn} is a Cauchy sequence in F . By com-

pleteness of F , there exists x∗ ∈ F such that

lim
n→∞

xn = x∗

By using triangle inequality, we get

d(T x∗,x∗) ≤ d(T x∗,T xn)+d(T xn,xn)+d(xn,x∗)(31)

≤ kd(x∗,xn)+d(T xn,xn)+d(xn,x∗)(32)

= d(T xn,xn)+(1+ k)d(xn,x∗)(33)

≤ knd(T x0,x0)+(1+ k)d(xn,x∗)(34)

So, d(T x∗,x∗)→ 0 as n→ ∞ which implies that T x∗ = x∗. Hence, x∗ is the fixed point of T .
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