

Available online at http://scik.org
Advances in Fixed Point Theory, 2 (2012), No. 4, 433-441
ISSN: 1927-6303

REALIZATION OF SYMPLECTIC CYCLIC ACTIONS ON ELLIPTIC SURFACES

HONGXIA LI*

College of Arts and Sciences, Shang Maritime University, Shanghai 201306, China

Abstract

In this paper, we study the existence of pseudofree, homologically trivial, symplectic cyclic actions \mathbf{Z}_{p} with order $7<p \leq 40$ on elliptic surfaces $E(n)$. Especially, we construct the \mathbf{Z}_{13} action on $E(n)$ and give the local representations of fixed points.

Keywords: symplectic cyclic action; elliptic surfaces; fixed points; local representation.
2000 AMS Subject Classification: 57S25; 57R45; 57R15

1. Introduction

Let $E(n)(n \geq 2)$ be a minimal elliptic surface with rational base. $E(n)$ is a simply connected 4-manifold which is defined as the n-fold fiber sum of copies of $E(1)$, where $E(1)=\mathbf{C} P^{2} \sharp \overline{\mathbf{C} P^{2}}$ being equipped with an elliptic fibration. Note that $\operatorname{sign}(E(n))=-8 n$ and $\chi(E(n))=12 n$. Thus $E(2)=E(1) \sharp_{\mathbb{T}^{2}} E(1)$ is the $K 3$-surface. To see this just note that the Euler characteristic are additive under taking fiber connected sums over a torus. Hence $\operatorname{sign}(E(2))=-16$ and $\chi(E(2))=24$ which characterizes $K 3$ surface [4]. Elliptic surface $E(n)$ is Kähler, hence can be equipped with a symplectic structure which is provided by the complex structure and the Kähler metric.

[^0]Let \mathbf{Z}_{p} be a symplectic cyclic action on 4-manifold $E(n)$ with odd prime order p and \mathbf{Z}_{p} preserves the symplectic structure on $E(n)$. In the study of symplectic action of a finite group action on 4-manifolds, a central problem is describing the structure of fixed-point set and action around it. In this aspect, W. Chen and S. Kwasik [2] give a complete description of the fixed-point set structure of a symplectic cyclic action of prime order on a minimal symplectic 4 -manifold with $c_{1}^{2}=0$. When $p \leq 7,[6]$ study the pseudofree, homologically trivial, symplectic cyclic actions on $E(n)$ with order $2,3,5$ and 7 . In this paper, we study the pseudofree, homologically trivial, symplectic cyclic actions on $E(n)$ with order $7<p \leq 40$. In this case, the construction of the action is more complex. So we only construct the action \mathbf{Z}_{13} on $E(n)$ and give the local representations of fixed points. While the other action \mathbf{Z}_{p} with $p>13$ can be constructed similarly.

2. Preliminaries

In this section, we review some theorems and notations such as the Lefschetz fixed point formula, the G-signature theorem, the realization theorem of Edmonds and Ewing [3] and some useful results of W. Chen and S. Kwasik [2].

Let $g: X \rightarrow X$ generate an action of G on a closed, simply connected 4-manifold X. we have the Lefschetz fixed point formula

$$
\chi(F)=\Lambda(g)=2+\operatorname{Trace}\left[g_{*}: H_{2}(X) \rightarrow H_{2}(X)\right]
$$

We can refer to Allday and Puppe [1] for details.
Let X be a closed, oriented smooth 4-manifold. Let $G=\mathbf{Z}_{p}$ be an orientation-preserving cyclic group action with odd prime order on X. Then the fixed-point set of G on X, if nonempty, will be consist of a disjoint union of finitely many isolated points and 2dimensional orientable submanifolds. On each isolated fixed point, G defines a local complex representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{k q} z_{2}\right)$ for some $k, q \neq 0 \bmod p$, where q is uniquely determined, and k is determined up to a sign and $\mu_{p} \equiv \exp \left(\frac{2 \pi i}{p}\right)$.

Theorem 2.1.[5](G-Signature Theorem for Prime Order Cyclic Actions).

$$
|G| \cdot \sigma(X / G)=\sigma(X)+\sum_{m \in F} d e f_{m}+\sum_{Y \in F} d e f_{Y}
$$

where m stands for an isolated fixed point, and Y stands for a 2-dimensional component of M^{G}. The terms def f_{m} and de f_{Y} are called signature defects and they are given by the following formulae:

$$
d e f_{m}=\sum_{k=1}^{p-1} \frac{\left(1+\mu_{p}^{k}\right)\left(1+\mu_{p}^{k q}\right)}{\left(1-\mu_{p}^{k}\right)\left(1-\mu_{p}^{k q}\right)}
$$

if the local representation at m is given by $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{k q} z_{2}\right)$, and

$$
d e f_{Y}=\frac{P^{2}-1}{3} \cdot(Y \cdot Y)
$$

where $Y \cdot Y$ is the self-intersection of Y.
An action on a space is called pseudofree if it is free on the compliment of a discrete subset.

Theorem 2.2. [3](Realization Theorem for Pseudofree Prime Order Cyclic Actions) Let G be the cyclic group of order p. Suppose that one is given a fixed point data

$$
D=\left\{\left(a_{0}, b_{0}\right),\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right),\left(a_{n+1}, b_{n+1}\right)\right\}
$$

where $a_{i}, b_{i} \in \mathbf{Z}_{p} \backslash\{0\}$, and a G-invariant symmetric unimodular form

$$
\Phi: V \times V \rightarrow \mathbf{Z}
$$

where V be a finitely generated \mathbf{Z}-free $\mathbf{Z}[G]$-module. Then the data D and the form (V, Φ) are realizable by a locally linear, pseudofree, G-action on a closed, simply-connected, topological 4-manifold if and only if they satisfy the following two conditions
(1) The condition REP: As a $\mathbf{Z}[G]$-module, V splits into $F \oplus T$, where F is free and T is a trivial $\mathbf{Z}[G]$-module with $\operatorname{rank}_{\mathbf{Z}} T=n$.
(2) The condition GSF: The G-Signature Formula is satisfied

$$
\sigma(g,(V, \Phi))=\sum_{i=0}^{n+1} \frac{\left(\zeta^{a_{i}}+1\right)\left(\zeta^{b_{i}}+1\right)}{\left(\zeta^{a_{i}}-1\right)\left(\zeta^{b_{i}}-1\right)}
$$

where $\zeta=\exp (2 \pi \sqrt{-1} / p)$.

Note that for homologically trivial action $\mathbf{Z}_{p}(p$ being odd prime number), GSF is the only condition needed for realization of \mathbf{Z}_{p}.

Theorem 2.3. [2] Let M be a minimal symplectic 4-manifold with $c_{1}^{2}=0$ and $b_{2}^{+} \geq 2$, which admits a nontrivial, pseudofree action of $G \equiv \mathbf{Z}_{p}$, where p is prime, such that the symplectic structure is preserved under the action and the induced action on $H^{2}(M ; Q)$ is trivial. Then the set of fixed points of G can be divided into groups each of which belongs to one of the following five possible types.
(1) One fixed point with local representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{-k} z_{2}\right)$ for some $k \neq 0$ $\bmod p$, i.e., with local representation contained in $S L_{2}(\mathbf{C})$.
(2) Two fixed points with local representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{2 k} z_{1}, \mu_{p}^{3 k} z_{2}\right),\left(z_{1}, z_{2}\right) \mapsto$ $\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{6 k} z_{2}\right)$ for some $k \neq 0 \bmod p$ respectively. Fixed points of this type occur only when $p>5$.
(3) Three fixed points, one with local representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{2 k} z_{2}\right)$ and the other two with local representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{4 k} z_{2}\right)$ for some $k \neq 0 \bmod$ p. Fixed points of this type occur only when $p>3$.
(4) Four fixed points, one with local representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{k} z_{2}\right)$ and the other three with local representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right)$ for some $k \neq 0 \bmod$ p. Fixed points of this type occur only when $p>3$.
(5) Three fixed points, each with local representation $\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{k} z_{2}\right)$ for some $k \neq 0 \bmod p$. Fixed points of this type occur only when $p=3$.

Theorem 2.4. [2] Let M be a minimal symplectic 4-manifold with $c_{1}^{2}=0$ and $b_{2}^{+} \geq$ 2, which admits a homologically trivial (over \mathbf{Q} coefficients), pseudofree, symplectic $\mathbf{Z}_{p^{-}}$action for a prime $p>1$. Then the following conclusions hold.
(1) The action is trivial if $p \neq 1 \bmod 4, p \neq 1 \bmod 6$, and the signature of M is nonzero. In particular, if the signature of M is nonzero, then for infinitely many primes p the manifold M does not admit any such nontrivial \mathbf{Z}_{p}-actions.
(2) The action is trivial as long as there is a fixed point of type (1) in Theorem 2.3.

Theorem 2.5. [2] Let $\operatorname{def}(k)$ be the total signature defect contributed by one group of fixed points of type (k) in the Theorem 2.3, where $k=1,2,3,4$. Then we have
(1) $\operatorname{def}(1)=\frac{1}{3}(p-1)(p-2)$ for all $p>1$.
(2) $\operatorname{de} f(2)=-8 r$ if $p=6 r+1,4 \operatorname{de} f(2)=8 r+8$ if $p=6 r+5$.
(3) $\operatorname{def}(3)=-8 r$ if $p=4 r+1, \operatorname{def}(3)=2$ if $p=4 r+3$.
(4) $\operatorname{de} f(4)=-8 r$ if $p=3 r+1$, $\operatorname{def}(4)=-4 r$ if $p=3 r+2$.

3. Main results

In this section, we suppose there exists a pseudofree, homologically trivial, symplectic cyclic actions $G \equiv \mathbf{Z}_{p}$ on elliptic surfaces $E(n)$ with order $7<p \leq 40$ being prime. Obviously, there are eight prime numbers in this scope, which is $11,13,17,19,23,29,31,37$. When $p=11,23, \mathbf{Z}_{p}$ must be trivial by theorem 2.4. When $p=13,17,19,29,31,37, \mathbf{Z}_{p}$ could be nontrivial by theorem 2.4.

For the sake of convenience, we only construct a pseudofree, homologically trivial but nontrivial, symplectic cyclic actions \mathbf{Z}_{13} on elliptic surfaces $E(n)$ and give the local representation of each fixed point.

Since the group action is pseudofree, the fixed point set is consist of isolated points. Hence the G-signature theorem becomes to

$$
|G| \cdot \sigma(X / G)=\sigma(X)+\sum_{m \in F} d e f_{m}
$$

where F denotes the fixed point set. Since the induced action on $H^{2}(X ; \mathbf{Q})$ is trivial, $\sigma(X / G)=\sigma(X)$ and $\chi(X / G)=\chi(X)$. Besides, the action is supposed to be nontrivial then from theorem 2.3, 2.4 the fixed-point set F may be composed of type (2), (3) and (4) by theorem 2.3. Let a_{2}, a_{3} and a_{4} be the numbers of groups of fixed points of type (2), (3) and (4) respectively. From the G-signature theorem and the Lefschetz fixed point formula we have

$$
\begin{equation*}
12 n=2 a_{2}+3 a_{3}+4 a_{4} . \tag{1}
\end{equation*}
$$

Next, we construct the action on $E(n)$ for $n=2 m, n=3 m, n=4 m, n=4 m-1$ and $n=4 m+1(m \in \mathbf{Z})$ respectively. These five cases cover all possible value of n and would simplify our construction.

Case 1. Suppose there exists a pseudofree, homologically trivial but nontrivial, symplectic cyclic actions \mathbf{Z}_{13} on elliptic surfaces $E(n),(n=2 m, m \in \mathbf{Z})$.

We choose one solution ($6 n, 0,0$) of equation (1). Since $n=2 m$, there are $24 m$ fixed points all together. We divide them evenly into m group, and assign the points in each group with local representations

$$
\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{2 k} z_{1}, \mu_{p}^{3 k} z_{2}\right),\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{6 k} z_{2}\right)
$$

evaluated at $k=1,2,3, \cdots, 12$. Now we obtain a set of $24 m$ ordered pairs of nonzero elements, we denote it D_{1}. In order to realize D_{1} as the fixed point set of some pseudofree, homologically trivial, symplectic cyclic actions \mathbf{Z}_{13} on $E(2 n)$, we need only to verify the GSF condition. In our study, the GSF condition is

$$
\sigma(g, X)=m \cdot d e f_{(2)}
$$

Since $\sigma(g, X)=\sigma(X)=-8 n=-16 m$ for any $g \in \mathbf{Z}_{13}$ and $d e f_{(2)}=-16$, the GSF condition obviously exists.

Case 2. Suppose there exists a pseudofree, homologically trivial but nontrivial, symplectic cyclic actions \mathbf{Z}_{13} on elliptic surfaces $E(n),(n=3 m, m \in \mathbf{Z})$.

We choose one solution ($0,4 n, 0$) of equation (1). Since $n=3 m$, there are $36 m$ fixed points all together. We divide them evenly into m group, and assign the points in each group with local representations

$$
\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{2 k} z_{2}\right),\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{4 k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{4 k} z_{2}\right)
$$

evaluated at $k=1,2,3, \cdots, 12$. Now we obtain a set of 36 m ordered pairs of nonzero elements, we denote it D_{2}. In order to realize D_{2} as the fixed point set of some pseudofree, homologically trivial, symplectic cyclic actions \mathbf{Z}_{13} on $E(2 n)$, we need only to verify the GSF condition. In our study, the GSF condition is

$$
\sigma(g, X)=m \cdot d e f_{(3)}
$$

Since $\sigma(g, X)=\sigma(X)=-8 n=-24 m$ for any $g \in \mathbf{Z}_{13}$ and $d e f_{(3)}=-24$, the GSF condition obviously exists.

Case 3. Suppose there exists a pseudofree, homologically trivial but nontrivial, symplectic cyclic actions \mathbf{Z}_{13} on elliptic surfaces $E(n),(n=4 m, m \in \mathbf{Z})$.

We choose one solution $(0,0,3 n)$ of equation (1). Since $n=4 m$, there are $48 m$ fixed points all together. We divide them evenly into m group, and assign the points in each group with local representations

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right)
\end{aligned}
$$

evaluated at $k=1,2,3, \cdots, 12$. Then there is a set of $48 m$ ordered pairs of nonzero elements. We denote it D_{3}. In order to realize D_{3} as the fixed point set of some pseudofree, homologically trivial, symplectic cyclic actions \mathbf{Z}_{13} on $E(2 n)$, we need only to verify the GSF condition. In this case, the GSF condition is

$$
\sigma(g, X)=m \cdot d e f_{(4)}
$$

Since $\sigma(g, X)=\sigma(X)=-8 n=-32 m$ for any $g \in \mathbf{Z}_{13}$ and $d e f_{(4)}=-32$, the GSF condition obviously exists.

Case 4. Suppose there exists a pseudofree, homologically trivial but nontrivial, symplectic cyclic actions \mathbf{Z}_{13} on elliptic surfaces $E(n)$, $(n=4 m-1, m \in \mathbf{Z})$.

Since $n=4 m-1,(12,0,12(m-1))$ is a solution of equation (1). Obviously, there are 36 fixed points of type (3) and 48($m-1$) fixed points of type (4). We divide them as follows. The fixed points of type (3) is in one group, and the local representations of each fixed point are

$$
\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{2 k} z_{2}\right),\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{4 k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{4 k} z_{2}\right)
$$

evaluated at $k=1,2,3, \cdots, 12$. The fixed points of type (4) are evenly divided into $m-1$ groups with local representations

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right) \\
& \left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right)
\end{aligned}
$$

HONGXIA LI*
evaluated at $k=1,2,3, \cdots, 12$. Now we obtain a set of $12(4 m-1)$ ordered pairs of nonzero elements, we denote it D_{4}. In order to realize D_{4} as the fixed point set of some pseudofree, homologically trivial, symplectic cyclic actions \mathbf{Z}_{13} on $E(2 n)$, we need only to verify the GSF condition. In this case, the GSF condition is

$$
\sigma(g, X)=\operatorname{def}(3)+(m-1) \cdot \operatorname{de} f_{(4)} .
$$

Since $\sigma(g, X)=\sigma(X)=-8 n=-8(4 m-1)$ for any $g \in \mathbf{Z}_{13}$ and $d e f_{(3)}=-24$, de $f_{(4)}=$ -32 , the GSF condition exists and the action can be realized.

Case 5. Suppose there exists a pseudofree, homologically trivial but nontrivial, symplectic cyclic actions \mathbf{Z}_{13} on elliptic surfaces $E(n),(n=4 m+1, m \in \mathbf{Z})$.

Since $n=4 m+1,(0,36,12(m-2))$ is a solution of equation (1). Obviously, there are 108 fixed points of type (3) and $48(m-2)$ fixed points of type (4). We divide them as below. The fixed points of type (3) is divided into 3 groups, and each group have local representations

$$
\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{2 k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{4 k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{4 k} z_{2}\right)
$$

evaluated at $k=1,2,3, \cdots, 12$. The fixed points of type (4) are evenly divided into $m-2$ groups, and each group have local representations

$$
\begin{aligned}
& \left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{k} z_{1}, \mu_{p}^{k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right), \\
& \left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right), \quad\left(z_{1}, z_{2}\right) \mapsto\left(\mu_{p}^{-k} z_{1}, \mu_{p}^{3 k} z_{2}\right)
\end{aligned}
$$

evaluated at $k=1,2,3, \cdots, 12$. Now we obtain a set of $12(4 m+1)$ ordered pairs of nonzero elements, we denote it D_{5}. In order to realize D_{5} as the fixed point set of some pseudofree, homologically trivial, symplectic cyclic actions \mathbf{Z}_{13} on $E(2 n)$, we need only to verify the GSF condition. In this case, the GSF condition is

$$
\sigma(g, X)=3 \operatorname{def}(3)+(m-2) \cdot \operatorname{de} f_{(4)} .
$$

Since $\sigma(g, X)=\sigma(X)=-8 n=-8(4 m+1)$ for any $g \in \mathbf{Z}_{13}$ and $\operatorname{de} f_{(3)}=-24$, def(4)$=$ -32 , the GSF condition obviously exists. Thus this action can be realized.

To sum up, for any n, we can construct a pseudofree, homologically trivial but nontrivial, symplectic cyclic actions \mathbf{Z}_{13} on elliptic surfaces $E(n)$. For other \mathbf{Z}_{p} action $(7<p \leq 40)$ on elliptic surfaces $E(n)$, we can construct by the same way.

References

[1] C. Allday and V. Puppe, Cohomological methods in transformations groups, Cambridge studies in Advanced Mathematics 32, Cambridge Univ. Press 1993.
[2] W. Chen, S. KWASIK, Symplectic symmetries of 4-manifolds. Topology, 46(2)(2007) 103-128.
[3] A. L. Edmonds, J. H. Ewing, Realizing forms and fixed point data in dimension four, Amer. J. Math. 114 (1992) 1103-1126.
[4] R. E. Gompf, Nuclei of elliptic surfaces, Topology. 30 (1991) 479-511.
[5] F. Hirzebruch, D.Zagier, The Atiyah-Singer theorem and elementary number theory, Math. Lect. Series vol. 3, Publish or Perish, Inc., 1974.
[6] C. Xue, Symplectic cyclic actions on elliptic surfaces, Journal of Mathematical Research and Exposition. $31(2)(2011)$ 571-577.

[^0]: *Corresponding author
 Supported by Science and Technology Program of Shanghai Maritime University 20110035.
 Received July 4, 2012

