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1. Introduction

The fixed point stability has been an interesting and continuing area of research in
fixed point theory since its inception in 1962, when a result about the relationship between
the convergence of a sequence of contraction mappings {7},} of a metric space X and
their fixed points was obtained by Bonsall [6] (see also Sonnenshein [31]). Subsequent
results by Nadler, Jr. [22] and others (see [1, 3-5, 14-21, 24-30]) in various settings

address mainly the problem of replacing the completeness of the space X (metric or
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otherwise) by the existence of fixed points and various relaxations on the contraction
constant. In most of these results, pointwise and uniform convergence play invariably a
vital role in arriving at the desired conclusion. However, if the domain of definition of
T,, is different for each n € N (naturals), then these notions do not work. An alternative
to this problem has recently been presented by Barbet and Nachi [4, 5] where some new
notions of convergence have been introduced and utilized to obtain stability results in a
metric space which generalize the earlier results of Bonsall [6] and Nadler [22]. These
results have been further generalized by Mishra et al. [17-21]. On the other hand, the so
called nonlinear contractions (or p—contraction mappings) studied by Boyd and Wong
[7] form a natural generalization of the contraction mappings. In this paper, motivated
by Barbet and Nachi [4] and Boyd and Wong [7], we obtain a number of stability results
in 2-metric spaces due to Géhler [8]. The results obtained here in thus compliment the
results of Barbet and Nachi [4] and Mishra el al. [17-21]. We note that the results so
obtained are significant in the sense that 2-metric spaces differ topologically with metric

spaces(see Remark 1.4 below).

2. Preliminaries

We first recall some basics of 2-metric spaces. For details we refer to Gahler [8] and Iséki

[0-11].

Definition 2.1. Let X be a nonempty set, consisting of at least three points. A 2-metric

on X is a real-valued function p on X x X x X which satisfies the following conditions:

(a) To each pair of distinct points z,y € X there exists a point a € X such that

p(z,y,a) # 0.
(b) If at least two of z,y, a are equal then p(z,y,a) = 0.

() p(x,y,a) = p(y. a,z) = plw,a,y) for all ,y,a € X.
(d) pl,y,0) < pla,y, 2) + pla, 2,a) + plz,y,a) for all z,y, 2,0 € X.

It is easily seen that p is non-negative. The pair (X, p) is called a 2-metric space.
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Definition 2.2. A sequence {z,} in a 2-metric space (X, p) is said to be convergent with
limit z € X if r}irgop(mn, z,a) = 0 for all @ € X. Notice that if the sequence {x,} converges
to z, then T}Lrgop(mn,a,b) = p(z,a,b) for all a,b € X. Further, the sequence {z,} is said
to be a Cauchy sequence if lirgmp(xm, Tn,a) =0 for all @ € X. A 2-metric space (X, p)

)

is said to be complete if every Cauchy sequence in X is convergent.

Definition 2.3. A 2-metric space (X, p) is said to be bounded if there is a constant K
such that p(a,b,¢) < K for all a,b,c € X.

Remark 2.4. The following remarks briefly capture some distinct features of topological
properties of 2-metric spaces which differ from those of metric spaces. (i) Given any metric
space which consist of more than two points, there always exists a 2-metric compatible
with the topology of the space. But the converse is not always true as one can find a
2-metric space which does not have a countable basis associated with one of its arguments
(see Gaher [8, Theorem 20 and Example on page 145]). (ii) It is known that a 2-metric p is
continuous in any one of its arguments. Generally, we cannot however assert the continuity
of p in all the three arguments. But if it is continuous in any two arguments, then it is
continuous in all the three arguments (see Géher [8, page 123]). (iii) In a complete 2-metric
space a convergent sequence need not be Cauchy (see Naidu and Prasad [23, Example 0.1
). (iv) In a 2-mertic space (X, p) every convergent sequence is Cauchy whenever p is
continuous. However, the converse need not be true (see Naidu and Prasad [23, Example

0.2]).

Definition 2.5. Let (X, p) be a 2-metric space. A mapping T': X — X is called Lipschitz

(or k—Lipschitz) if there exists a constant k& > 0 such that

(1.1) p(Tz,Ty,a) < kp(z,y,a)

for all z,y,a € X. If 0 < k < 1, then T is called contraction (or k-contraction).

It is well known that a contraction mapping on a 2-metric space X has a unique fixed

point. Initially, an additional requirement of boundedness was placed on X by Iséki et

al. [12] and which was dispensed with subsequently by Rhoades [24] and Lal and Singh
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[13] independently. For some recent developments on fixed points in 2—metric spaces, we

refer to Aliouche and Simpson [2].

Definition 2.6. Let (X, p) be a 2-metric space and 7' : X — X a self-mapping. The

mapping 7' is said to be nonlinear contraction or ¢-contraction on X if

(1.2) p(Tx, Ty, a) < p(p(z,y,a))

for all z,y,a € X, where ¢ : [0,00) — [0, 00) is upper semicontinuous from the right and

@(t) <t for t > 0. We note that ¢(0) = 0. For details we refer to Boyd and Wong [7].

We note that the condition (1.1) is a special case of the condition (1.2) when ¢(t) = kt
with k£ € (0,1).

Now onwards, X will denote a 2-metric space (X, p) with p continuous, N, the set of

naturals and N = N U {co}.
3. Stability under (G)-convergence

Definition 3.1. [19 | Let X be a 2-metrc space, {X,}, .y a family of nonempty subsets
of X and {7}, : X,, = X}, .5 a family of mappings. Then T is called a (G)-limit of

the sequence {7} or, equivalently {7}, .y satisfies the property (G) if the following

neN?

condition holds:

(G): Gr(Tx) C liminf Gr(T,,): for every z € X, there exists a sequence {x,} in
I1 X,, such that
neN

lim p(z,,z,a) =0 and lim p(T,,x,, Twz,a), for all a € X,

n—00 n—oo

where Gr(T') denotes the graph of 7.

Remark 3.2. In view of Barbet and Nachi [4], we note that:

(i): A (G)-limit need not be unique.
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(ii): The property (G) is more general than pointwise convergence. However, the
two notions are equivalent provided the sequence {7}, },en is equicontinuous when

the domains of definitions are identical.

The following proposition extends a result of Barbet and Nachi [4, Proposition 1],
Mishra and Pant [18, Proposition 3.1] and Mishra et al. [19, Proposition 2.2] to -

contractions and ensures the uniqueness of a (G) limit in a 2—metric space.

Proposition 3.3. Let X be a 2-metric space, {X, } , oy a family of nonempty subsets of
X and { T}, : X,, = X} nen a sequence of p-contraction mappings. If T, : Xoo — X is a
(G)-limit of {7}, then T is unique.

Proof. Assume that T, : Xoo — X and T : Xoo — X are (G)-limit mappings of the
sequence {7}, }. Hence for any point = € X, there exist two sequences {z,} and {y,} in
HNX" converging to x such that {T,,z,} and {T,y,} converge to T, and T.%. respectively.
ne

Therefore

lim p (T2, Toox,a) =0, lim p( Thyn, Thx,a) =0 for all a € X.
n—oo

n—0o0

By the triangular area inequality and condition (1.2), for all n € N and for any a € X,

we have

p(Twz, Thx,a) < p(Tox, Tz, Thx,)+ p(Tewr, Tnan, a) + p(Thx,, Tex,a)

IA

+p(Tnxn7 Tnyrw a) + p(TnyTH T:o‘rﬂ CL)

IN

p(Tooxa T;OCL’, Tnxn) + p(TooJ:, Tnxm CL) + p(Tnxm TO*OZE, Tnyn)

+o(p(Tn, Yn, @) + p(Toyn, Tz, a) — 0 as n — oo.

Hence we deduce that lim p(Twz, T5 2z, a) = 0 and the unicity of the limit is established.

n—o0
U

When ¢(t) = kt and k € (0,1) in the above proposition, we get the following result.
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Corollary 3.4. [19, Proposition 2.2] Let X be a 2-metric space, {X,} ,ex @ family of
nonempty subsets of X and { T,, : X,, = X} nen a sequence of k-contraction mappings.

IfTe : Xoo — X is a (G)-limit of {T,,} then Ty is the unique.
The following theorem is our first stability result.

Theorem 3.5. Let X be a 2-metric space, {X,} ,on o family of nonempty subsets of X
and {T, : X;, = X} e @ family of mappings satisfying the property (G) and such that,
for alln € N, T,, : X,, = X is a p-contraction, where o is nondecreasing. If, for all

n €N, x, is a fived point of T,,, then the sequence {xp} nen converges to .

Proof. Let x, be a fixed point of T, for each n € N. Since property (G) holds and

Too € Xoo, there exists a sequence {y,} in HNanuch that
ne

lm p(Yn, T, a) =0 and lm p(T,yn, Toooo,a) =0 for all a € X.
n—oo

n—o0

If lim p(z,, T, a) = 0, then there is nothing to prove. Assume that lim p(z,, 2z, a) =7
n—o0 n—oo
for some r > 0. By the triangular area inequality, condition (1.2) and the fact that ¢ is

nondecreasing, we get

P( T, Tooy @) = p(TnZn, TooToo, @)
< p(Tazn, Toyn, @) + p(Tntn, TooZos, Trntin) + P(Tnin, TooToo, @)
< @(p(Tn, Yn, @) + p(Laxn, TocToo, Tnyn) + p(Tnyn: ToToo, )
< @(p(Tn, Tooy @) + P(Tny Yy Too) + P(Toos Yy @) + p(TTns Toooos Tryn)

+o(Tnyn: TooT oo, @).
Making n — oo in the above inequality, we get
r<o(r)<r,

a contradiction. Therefore lim p(x,, T, a) = 0 and the conclusion follows. O
n—oo
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Corollary 3.6. [19, Theorem 2.3] Let X be a 2-metric space, {X,} ,ox o family of
nonempty subsets of X and {T,, : X,, = X} , o a family of mappings satisfying the prop-
erty (G) and such that, for alln € N, T,, : X,, — X is a k-contraction. If, for all n € N,

Xy, 18 a fized point of T, then the sequence {x,} nen converges to ..

Proof. It comes from Theorem 3.5 when ¢(t) = kt and k € (0,1). O

The following result gives a comparison with Rhoades [24, Theorem 2] and presents a

2-metric space version of Bonsall [6, Theorem 1.2, page 6.

Corollary 3.7. Let X be a complete 2-metric space and { T,, : X — X} | 5 a family of
contraction mappings with the same Lipschitz constant k < 1 and such that the sequence
{T} nen converges pointwise to T,. Then, for all n € N, T, has a unique fized point x,,

and the sequence {x,} nen converges to Too.

Proof. This comes from Corollary 3.6 when X,, = X for all n € N and the fact that X is

complete. ([l

The existence of a fixed point for a (G)-limit mapping is characterized by the following
result when it is a contraction mapping. This result also presents an analogue of [18,

Theorem 3.6] to 2-metric spaces.

Theorem 3.8. Let X be a 2-metric space, { X, },cx o family of nonempty subsets of X
and {T, : X, = X},cn @ family of mappings satisfying the property (G) and such that,
for anyn € N, T, : X,, = X is a p-contraction, where ¢ is nondecreasing. Assume that,

for any n € N, z,, is a fived point of T,,. Then:
T admits a fized point < {x,} converges and limx, € X

< {x,} admits a subsequence converging to a point of X.

Proof. The necessary part is already proved in Theorem 3.5. To prove the sufficiency, let

{x,,} be a subsequence of {z,} such that

J
there exists a sequence {y,} in HNXn such that
ne

ggo Tp; = Too € Xoo. By the property (G),

Hm p(Yn, Too, @) = 0 and lim p(T,,Yn, TeoZToo, a) = 0 for all a € X.
n—oo

n—oo
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Hence for any a € X and n € N, we have
P (T, TooToo,a) < p(Too, Tny,a) +p (Tnja:nj,Toozroo, a) +p (a:oo,Tooxoo, Tnj$nj)
< p(Too, Tnyya) +p (Tnja:nj,Tooxoo,Tnjynj) +
0 (Tuyn, oyt ) + 9 (Toy Tt 0

+p (xoou Tooxooa Tnjxnj)

IN

P (Too, Tnyr @) + p (To, Ty TooToo, Ty Yn, ) + 0 (0 (Tnys Ynyr @) ) +
P (T, ;s Tooos, @) + p (Zoo, TooToos Ty, ) -
The right hand side of the above expression tends to zero as j — oo and hence Tz, =

Zoo, proving that x., is a fixed point of T,. OJ

Remark 3.9. Under the assumptions of Theorem 3.8, and if
(i): liminf X,, C X« (i.e., the limit of any convergent sequence {z,} in HNX” is in
ne
Xw), then:

T admits a fixed point < {z,,} converges.

(ii): limsup X,, C X (i.e., the cluster point of any sequence {z,} in HNX" is in Xoo
ne

) then:

T admits a fixed point < {z,} admits a convergent subsequence.

The following proposition extends a result of [18, Proposition 3.8] to 2-metric spaces
and provides a sufficient condition under which a (G)-limit of a sequence of p-contraction

mappings is again a ¢-contraction.

Proposition 3.10. Let X be a 2-metric space, {X,} , x5 a family of nonempty subsets
of X and { T}, : X,, = X} , .y a family of mappings satisfying the property (G) and such

that, for any n € N, T}, is a ¢-contraction from X,, to X. Then T is a (p-contraction.

Proof. Given two points x and y in X, by the property (G) there exist two sequences

{z,} and {y,} in I1X,, converging respectively to = and y and such that the sequences
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{T,x,} and {T,y,} converge respectively to Toox and T,.y. For any n € N and a € X,

we deduce from condition (1.2) that

P(Tor, Toy,a) < p(Tez, Tey, Tnxn) + p(Too, Ty, a) + p(Thtn, Tooy, a)

IN

+p(Tnn, Toyn, @) + p(Toyn, Ty, @)

IN

(T, Tooy, Thxn) + p(Too, Ty, a) + p(Tnn, Tooy, Tnyn)
+0(p(Tn, Yn, @) + p(Toyn, Tocy, a).

Since lim sup ¢ (p(n, Yn, a)) < @(p(z, y, a)), we conclude that p(Tocw, Tocy, a) < ¢(p(z, y, a)).
0

Corollary 3.11. Let X be a 2-metric space, {X,} , o5 a family of nonempty subsets of
X and { T,,: X,, = X} oy a family of mappings satisfying the property (G) and such

that, for any n € N, T,, is a k-contraction from X,, to X . Then T, is a k-contraction.

Proof. This comes from Proposition 3.10 when ¢(t) = kt and k € (0, 1). O

Under a compactness assumption, the existence of a fixed point of the (G)-limit mapping
can be obtained from the existence of fixed points of the p-contraction mappings 7},. The

following theorem is an extension of [18, Theorem 3.10] to 2-metric spaces.

Theorem 3.12. Let {X, }, . be a family of nonempty subsets of a 2-metric space X and
{T,, : X,y = X},.cx o family of mappings satisfying the property (G) and such that, for any
n € N, T, is a p-contraction, where ¢ is nondecreasing. Assume that limsup X,, C X
and | J,eny Xn is relatively compact. If, for any n € N, T,, admits a fized point x,,, then
the (G)-limit mapping T, admits a fized point T, and the sequence {x,},en converges to

Too-

Proof. Let x,, be the fixed point of T,, for each n € N. From the compactness condition,
there exists a convergent subsequence {x,,} of {z,}. Now by Remark 3.9, T, admits a

fixed point z, and by Theorem 3.5 the sequence {z,} converges to x. 0J
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Corollary 3.13. [19, Theorem 2.10] Let {X,},cx be a family of nonempty subsets of
a 2-metric space X and {T, : X,, = X}, cx a family of mappings satisfying the property
(G) and such that, for any n € N, T,, is a k-contraction. Assume that limsup X,, C X
and |, ey X is relatively compact. If, for any n € N, T,, admits a fized point x,, then
the (G)-limit mapping T, admits a fized point x, and the sequence {x, }nen converges to

Too-

Proof. This comes from Theorem 3.12, when ¢(t) = kt and k € (0,1). O

The following notion of convergence is weaker than (G)-convergence and has been s-

tudied in [19].

Definition 3.14. [19] Let X be a 2-metrc space, {X,}, .y a family of nonempty subsets
of X and {7, : X,, = X}, a family of mappings. Then T is called a (G~) limit of the
sequence {7}, or, equivalently {7}, . satisfies the property (G~), if the following

condition holds:

(G7): Gr(Tx) C limsupGr(T,) : for all z € X, there exists a sequence {z,},

in HNXn, and which has a subsequence {xnj} such that
ne

lim p(x,,,2,a) = 0 and lim p(7T5,, 2y, Tscz,a) = 0 for all a € X.

Jj—o0 j—oo
The following result which is an extension of [18, Theorem 3.12] to 2-metric spaces,
establishes that a fixed point of a (G~)-limit mapping is a cluster point of the sequence

of fixed points associated with {7},}.

Theorem 3.15. Let {X,,} be a family of nonempty subsets of a 2-metric space X

neN
and {T,, : X,, = X}, e @ family of @-contraction mappings satisfying the property (G~),
where @ is nondecreasing. If, for anyn € N, x,, is a fized point of T,,, then T is a cluster

point of the sequence {x, }nen-

Proof. By the property (G7), there exists a sequence {y,} in HNX” which has a subse-
ne

quence {yn, } such that y,, — 2o and Tp,;yn; —+ TooToo. Therefore

lim p(yn].,xoo,a) =0 and lim p (Tnjxnj,Tooxoo,a) =0 foralla e X.

Jj—00 Jj—o0
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Since each T),; is a ¢-contraction and ¢ is nondecreasing, for any a € X we have

p(xnja Lo, CL) = p(TnJ Ly s Tooxoou CL)

IN

p(Tn] xnja Tnjynj7 (l) + p(TTL]yTLJ ) TOO'IOO7 CL) +

+p (Tn] xnj 9 meooa Tnj yn])

S kp(Tnjxnjvynjaa) +p(TnjynjaTooxooaa) +
p (:ana Tooxooa Tnjynj)
< @(p(xnjaynjaxoo) "‘p(xnﬁxoma) +p(xoo,yn].,a))

—I—p(Tn]. Ynjs LooToo, a) + IO<Tnjan- s TooToo, T, ynj)'

The right hand side of the above expression tends to 0 as j — oo. Thus {z,,} converges

t0 T, the fixed point of T,. O

Corollary 3.16. [19, Theorem 2.12] Let {X,} be a family of nonempty subsets of a

neEN
2-metric space X and {T, : X,, = X}, .5 a family of k-contraction mappings satisfying
the property (G~ ). If, for any n € N, x,, is a fived point of Ty, then T« is a cluster point

of the sequence {x, }nen-

Proof. This comes from Theorem 3.15, when ¢(t) = kt and k € (0, 1). O

4. Stability under (H)-convergence

Definition 4.1. [19] Let X be a 2-metric space, {X,}, o a family of nonempty subsets
of X and {7}, : X,, = X}, x a family of mappings. Then T is called an (H)—limit of
the sequence {7}, .y or, equivalently {7},},  satisfies the property (H) if the following

condition holds:

(H): For all sequences {z,} in HNX”’ there exists a sequence {y,} in X such that:
ne

lim p(x,, yn,a) =0 and lim p(T,x,, Tooyn,a) = 0 for all a € X.

n—oo n—o0
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Remark 4.2. We remark that:

(a): A (G)-limit is not necessarily an (H)-limit.
(b): If {T}, : X — X}, .y converges uniformly to T on X, then T is an (H)-limit
of {T,,}.

(c): The converse of (b) holds only when T, is uniformly continuous on X.

The following result reveals the relationship between (G)-convergence and (H)-convergence

in a 2-metric space and is an extension of [4, Proposition 9].

Proposition 4.3. [19, Proposition 2.2] Let {X,},.x be a family of nonempty subsets of
a 2-metric space X such that X C liminf X,,. Let {7, : X,, = X}, 5 be a family of
mappings such that T, is continuous on X. If T, is an (H)-limit of {7}, },en, then T
is a (@) -limit of {7}, }nen-

When X, = M, a nonempty subset of X for all n € N, we obtain the following

comparison with uniform convergence.

Proposition 4.4. [19, Proposition 2.3] Let {7}, : M — X}, . be a family of mappings

where M is a nonempty subset of a 2 -metric space X.

(a): If {T), } en converges uniformly to T, on M, then T, is an (H)-limit of {7}, } .en.

(b): The converse holds when T, is uniformly continuous on M.

The following theorem which is an extension of [18, Theorem 4.1] to 2-metric spaces,

is our second stability result.

Theorem 4.5. Let X be a 2-metric space, { Xy}, c § a family of nonempty subsets of X,
{T : X0, = X}, cx a family of mappings satisfying the property (H) and such that T, is
a p-contraction. If, for any n € N, z,, is a fized point of T),, then the sequence {y, }nen

converges 10 Tog.
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Proof. By the property (H), there exists a sequence {y,, } in X, such that lim,, ., p(Z, Yn,a) =

0 and lim, o0 p(T0Zn, TooYn, a) = 0 for any a € X. Hence for any a € X,

P(Tns Tooy @) = p(Tntn, TooToo, @)
< p(Toazn, Tosyns a) + p(Tosyns TooToo, @) + p(TnTn, TooToo, TocYn)

< p(Thzn, ToYn, @) + ©(P(Yn, Too, @) + P(TnZn, TooToo, Tooln) — 0 as n — 00,

and the conclusion follows. O

Corollary 4.6. [19, Theorem 3.4] Let X be a 2-metric space, {X,},c & @ sequence of
nonempty subsets of X, {T,, : X,, = X}, a sequence of mappings satisfying the property
(H) and such that Ty, is a k-contraction. If, for anyn € N, x,, is a fized point of T,,, then

the sequence {x,}, .y converges to .

Proof. This comes from Theorem 4.5, when ¢(t) = kt and k € (0,1). O

When X,, = X for all n € N, in Corollary 4.6, we get a special case of Rhoades 24,

Theorem 3] which in turn presents a 2—metric space version of Nadler [22, Theorem 1].

Corollary 4.7. Let X be a 2-metric space, {T,,: X — X}, .5 a sequence of mappings
which converges uniformly to a contraction mapping T : X — X. If, for anyn € N, x,,

is a fized point of T,,, then the sequence {x, }nen converges to T.
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