
Available online at http://scik.org

Adv. Fixed Point Theory, 2021, 11:4

https://doi.org/10.28919/afpt/5324

ISSN: 1927-6303

EXTENSION OF PHASE-ISOMETRIES BETWEEN THE UNIT SPHERES OF
COMPLEX `p(Γ)-SPACES (p > 1)

JIANAN YANG, LINGEN ZHU, YARONG ZHANG∗

College of Science, Tianjin University of Technology, Tianjin 300384, China

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. Let Γ,∆ be nonempty index sets. For p ∈ (1,∞), we prove that every surjective mapping f : S`p(Γ)→

S`p(∆) satisfying the functional equation

{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖} (x,y ∈ S`p(Γ)),

its positive homogeneous extension is a phase-isometry which is phase equivalent a real linear isometry.
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1. INTRODUCTION

Let X and Y be normed real or complex spaces. A mapping f : X → Y is called an isometry

if it satisfies the equation

‖ f (x)− f (y)‖= ‖x− y‖ (x,y ∈ X).
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Since 1987, D. Tingley proposed the following problem in [8]: Let X and Y be real normed

spaces with unit spheres S(X) and S(Y ). Suppose that f0 : S(X)→ S(Y ) be a surjective iso-

metric mapping. Does there exist a linear isometry F from X onto Y which is extension of f0?

What is nowadays the so-called Tingley’s problem. According to this problem which remains

unsolved, more and more researchers have been results about this question in positive. There are

fundamental conclusions to Tingley’s problem for a wide range of Banach spaces includes se-

quence spaces lp(Γ)-spaces (see[9, 11, 12]), C0(L) spaces [17], finite dimensional C∗-algebras

and finite von Neumann algebras (see [18, 19]). The classical Mazur-Ulam theorem [2] state

that every surjective isometry between X and Y with f (0) = 0 is (real) linear isometry, which is

intrinsically linked to Tingley’s problem.

Another significant result is the Wigner’s theorem, which has several equivalen formulations,

and can be observed positive answers in [4, 5]. One of the important conclusions is related to

(real) linear isometries: Let H and K be real inner product spaces, Rätz’s result characterizes

mapping f : H → K that are phase equivalent to a linear isometry(i.e., there exists a function

ε : H→{−1,1} such that ε · f is a norm preserving real linear map) by the functional equation

|< f (x), f (y)> |= |< x,y > | (x,y ∈ X).

In the paper [1], a real version of Wigner’s theorem was revisited by using the functional equa-

tion

{‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {‖x+ y‖,‖x− y‖} (x,y ∈ H).(1)

Then it fllows that there exists a plus-minus function ε : H→ {−1,1} such that ε · f is a linear

isometry. In the case of complex inner product spaces, there exists a phase function ε : H→ T

such that ε · f is a linear or conjugate linear isometry, respectively. Here we say that f and ε · f

are called phase equivalent, f is called phase-isometry which satisfies the equation (1). At the

end of [1] Maksa and Páles posed the following question: What are the solutions f : H→ K of

(1) when H and K are normed but not necessarily inner product spaces? By Wigner’s theorem,

Huang and Tan prove surjective phase-isometries between the real normed sequence spaces

such as `p(Γ) spaces[6] and Lp(Γ)-type spaces[7]. We can easily see that every mapping is

phase equivalent to a linear isometry is a phase-isometry.
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Let X and Y be real or complex normed spaces with unit spheres S(X) and S(Y ). It is given

the natural positive homogeneous exstension of f by

F(x) =


‖x‖ f ( x

‖x‖), if x 6= 0,

0, if x .
= 0.

Motivated by Tingley’s problem, Mazur-Ulam theorem and Wigner’s theorem, one of the most

interesting question arised.

Problem 1.1. Let f : S(X)→ S(Y ) is a surjective phase-isometry. Is it true that F is phase-

isometry from X onto Y , which is the natural positive homogeneous exstension of f ?

In the proof of [14], Huang and Jin observed that a surjective phase-isometry between the

unit spheres of two real Lp-spaces for p > 0, its positive homogeneous exstension is a phase-

isometry which is phase equivalent to a linear isometry.

In this paper, we answer Problem 1.1 on complex `p(Γ)-type spaces with p > 1. That is to

say, we show that every phase-isometry f between the unit complex `p(Γ)-type spaces with

p > 1 is a plus-minus real linear isometry. In order to do this, we also give the representation

theorem of surjective phase-isometry between two `p(Γ)-type spaces with p > 1.

2. RESULTS

Throughout this paper, X will be a Banach space over complex field, S(X) will denote the

unit spheres of X , respectively. We consider use the symbol Γ and ∆ to represent nonempty

index set. We shall note T = {α : |α| = 1,α ∈ C}. For a,b ∈ R, we write a∨ b = max{a,b}

and a∧b = min{a,b}.

We mainly concern the standard notation `p(Γ), where p ∈ (1,∞) and Γ is a nonempty index

set. It will denote the Banach space of all functions x : Γ→C such that ∑γ∈Γ |xγ |p < ∞. That is

`p(Γ) = {x = ∑
γ∈Γ

xγeγ : ‖x‖= (∑
γ∈Γ

|xγ |p)
1
p < ∞}

where eγ is the vector in `p(Γ) having 1 at the γ-th entry and otherwise 0. The unit sphere

of `p(Γ) is {x ∈ `p(Γ) : ‖x‖ = 1} and denoted by S`p(Γ). For every x ∈ `p(Γ), we denote the
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support of x by Γx, i.e.,

Γx = {γ ∈ Γ : xγ 6= 0}.

Then x can be rewritten in the form x = ∑γ∈Γx xγeγ . Let x,y ∈ `p(Γ), we say that x is orthogonal

to y, denoted by x⊥y, if Γx∩Γy = /0. It has been known that if p ∈ (1,∞)\{2}, equality

‖x+ y‖p +‖x− y‖p = 2(‖x‖p +‖y‖p)

holds for x,y ∈ `p(Γ) if and only if x⊥y.

Theorem 2.1. Let H and K be complex Hilbert spaces, and let f : S(H)→ S(K) be a phase-

isometry. Then the positive homogeneous extension F of f is a phase-isometry, and there exists

a plus-minus function ε : H→{−1,1} such that ε ·F is a real linear isometry.

Proof: Elementary observations show that f : S(H)→ S(K) is a phase-isometry if and only if

f is a norm preserving map such that

|Re〈 f (x), f (y)〉|= |Re〈x,y〉| (x,y ∈ S(H)).

Hence

|Re〈F(x),F(y)〉| = |Re〈‖x‖ f (
x
‖x‖

),‖y‖ f (
y
‖y‖

)〉|

= ‖x‖‖y‖|Re〈 f ( x
‖x‖

), f (
y
‖y‖

)〉|

= ‖x‖‖y‖|Re〈 x
‖x‖

,
y
‖y‖
〉|= |Re〈x,y〉| (x,y ∈ H).

It is clearly that F : H→K is surjective phase-isometry. In order to complete this result, we need

the unpublished paper[?], Theorem 2.1, the following we include their proof for the readers’

convenience.

Let x ∈ H and a ∈ R. Then

|a| · ‖x‖2 = |Re〈ax,x〉|= |Re〈F(ax),F(x)〉| ≤ ‖F(ax)‖ · ‖F(x)‖= |a| · ‖x‖2.

By the equality condition in the Cauchy-Schwartz inequality, it follows that F(ax) = bF(x) for

some b ∈ R. Since F is norm preserving, we have b = ±a, and so F(ax) = ±aF(x) for each

x ∈ H and each a ∈ R. By the axiom of choice, there exists a phase function ε : H → {−1,1}

such that ε ·F is a real homogeneous mapping. Indeed, there is a set L ⊂ S(H) such that for
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every nonzero vector x ∈ H, there exists uniquely determined y ∈ L and s ∈ R such that x = sy.

Define f0 : H→ K by

f0(0) = 0, f0(x) = f0(sy) = sF(y), ∀x = sy ∈ X \{0}.

Now f0 is well defined, real homogeneous and F(x) =± f0(x) for each x ∈ H. Without loss of

generality we can assume that F is real homogeneous.

Let x and y be nonzero vectors such that Re〈x,y〉= 0. Clearly, we have

|Re〈F(x+ y),F(x)〉|= |Re〈x+ y,x〉|= ‖x‖2,

|Re〈F(x+ y),F(y)〉|= |Re〈x+ y,y〉|= ‖y‖2.

Set α := ‖x‖−2(Re〈F(x+y),F(x)〉) and β := ‖y‖−2(Re〈F(x+y),F(y)〉). It is a routine matter

to show that α,β ∈ {−1,1} and

‖F(x+ y)−αF(x)−βF(y)‖2

= ‖x+ y‖2 +‖x‖2 +‖y‖2−2αRe〈F(x+ y),F(x)〉−2βRe〈F(x+ y),F(y)〉

= 0.

This means precisely that

F(x+ y) = αF(x)+βF(y), α,β ∈ {−1,1}.

Fix a unit vector e ∈ H, and set Z := {z ∈ H : Re〈z,e〉 = 0}. By the above observations, we

immediately obtain that

F(z+ e) = α(z)F(z)+β (z)F(e), α(z),β (z) ∈ {−1,1}

for each z ∈ Z \{0}. Define a mapping g : H→ K as following:

g(0) = 0, g(ae) = aF(e), g(z) = β (z)α(z)F(z), g(z+ae) = g(z)+g(ae)

for each z ∈ Z \{0} and each a ∈ R. Obviously, the restricted mapping g|Z : Z→ K is a phase-

isometry. Then

|Re〈g(z1),g(z2)〉|= |Re〈z1,z2〉|
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and

|1+Re〈g(z1),g(z2)〉|= |Re〈g(z1 + e),g(z2 + e)〉|= |Re〈z1 + e,z2 + e〉|= |1+Re〈z1,z2〉|

for all z1,z2 ∈ Z. Then the restricted mapping g|Z : Z→ K satisfies the following property:

Re〈g(z1),g(z2) = Re〈z1,z2〉, (z1,z2 ∈ Z).

Then, by the above equation and the norm-preserving property of g, we get that

‖g(z1 + z2)−g(z1)−g(z2)‖2 = ‖(z1 + z2)− z1− z2‖2 = 0

which yields that g is additive. Given z ∈ Z \{0} and a ∈ R\{0}, we get

|a‖z‖2 +1|= |Re〈z+ e,az+ e〉|= |Re〈g(z+ e),g(az+ e)〉|

= |1+Re〈g(z),g(az)〉|= |1+aα(tz)β (tz)β (z)α(z)‖z‖2|,

which implies that α(az)β (az) = β (z)α(z), and thus g|Z is real homogeneous. This shows that

g|Z : Z→ K is a real linear isometry, and so also is the mapping g : H→ K.

It suffices to prove that g(x) =±F(x) for every x ∈ H. Given z ∈ Z \{0} and a ∈ R\{0},

F(z+ae) = aF(a−1z+ e) = α(a−1z)F(z)+β (a−1z)aF(e)

where α(a−1z),β (a−1z) ∈ {−1,1}. Since g and F are real homogeneous, it follows that

α(a−1z)β (a−1z) = β (z)α(z)

as desired. This completes the proof. �

Lemma 2.2. Let X and Y be complex Banach spaces. Suppose that f : S(X)→ S(Y ) is a

surjective mapping satisfying equation (1). Then f (−x) =− f (x) for all x ∈ X.

Proof: Fix 0 6= x ∈ S(X) and we can find y ∈ S(X) such that f (y) = − f (x). Since f satisfies

equation (1),

{‖x+ y‖,‖x− y‖}= {‖ f (x)+ f (y)‖,‖ f (x)− f (y)‖}= {0,2},

which implies y =±x. In the case y = x, we obtain f (x) = 0, which is impossible.

�
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Now we can state the result that every phase-isometry between two unit spheres of complex

`p(Γ)-type spaces for p ∈ (1,∞)\{2} preserves orthogonal elements in both directions.

Lemma 2.3. Let X = `p(Γ), Y = `p(∆) with p > 1, p 6= 2, and f : S(X)→ S(Y ) be a phase-

isometry. Then x⊥y ∈ S(X)⇔ f (x)⊥ f (y) ∈ S(Y ).

Proof: Select x,y ∈ S(X). It is known that x⊥y if and only if

‖x+ y‖p +‖x− y‖p = 2(‖x‖p +‖y‖p) = 4,

and f (x)⊥ f (y) if and only if

‖ f (x)+ f (y)‖p +‖ f (x)− f (y)‖p = 2(‖ f (x)‖p +‖ f (y)‖p) = 4.

This completes the proof, since f is a phase-isometry. �

We continue our study with a specific version of [16, Lemma 2.4] for the behaviour of a sur-

jective phase-isometry between two unit spheres on a complex number who’s model 1 multiple

of some element of the canonical basis.

Lemma 2.4. Let X = `p(Γ), Y = `p(∆) with p > 1, p 6= 2, and f : S(X)→ S(Y ) be a surjective

phase-isometry. Then for each γ0 ∈ Γ, we have ∆ f (αeγ0)
= ∆ f (eγ0)

is a singleton for each α ∈ T.

Moreover, one the following statements holds:

(a) f (αeγ0) =±α f (eγ0) for every α ∈ T;

(b) f (αeγ0) =±ᾱ f (eγ0) for every α ∈ T.

Proof: Take γ0 ∈ Γ and α ∈ T. If there are two distinct points δ1,δ2 ∈ ∆ f (αeγ0)
, we can find

x1,x2 ∈ S(X) such that f (x1) = eδ1 and f (x2) = eδ2 . By Lemma 2.3 we have f (αeγ0)⊥ f (eγ)

for all γ ∈ Γ\{γ0}. By applying Lemma 2.3 to f−1 we deduce that x1⊥x2,x1⊥eγ and x2⊥eγ for

all γ 6= γ0, which is impossible. Therefore, we get ∆ f (αeγ0)
is a singleton, and hence ∆ f (αeγ0)

=

∆ f (eγ0)
.
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Next, we show that f (αeγ0) = β f (eγ0) for some β ∈ {±α,±ᾱ}. Let us write f (αeγ0) =

β f (eγ0) for some |α|= |β |. Now we get

{|1+α|, |1−α|}= {‖eγ0 +αeγ0‖,‖eγ0−αeγ0‖}

= {‖ f (eγ0)+ f (αeγ0)‖,‖ f (eγ0)− f (αeγ0)‖}

= {|1+β |, |1−β |},

which assures that s ∈ {±α,±β̄} as desired.

Suppose now that f (θeγ0)=±θ f (eγ0) and f (λeγ0)=±λ f (eγ0) for some θ ,λ ∈T\{±1,±i}.

Then we have

2+2|Re(θλ )|= ‖θeγ0 +λeγ0‖
2∨‖θeγ0−λeγ0‖

2

= ‖ f (θeγ0)+ f (λeγ0)‖
2∨‖ f (θeγ0)− f (λeγ0)‖

2

= |θ +λ |2∨|θ −λ |2 = 2+2|Re(θλ )|.

It can be easily deduced that

|Re(θ)Re(λ )+ Im(θ)Im(λ )|= |Re(θ)Re(λ )− Im(θ)Im(λ )|

which is impossible since θ ,λ ∈ T\{±1,±i}. It follows that either f (θeγ0) =±θ f (eγ0) for all

θ ∈ T or f (θeγ0) =±θ f (eγ0) for all θ ∈ T. �

The next result is given the representation theorem of surjective mapping satisfying equation

(1) between two unit spheres of complex `p(Γ)-type spaces.

Proposition 2.5. Let X = `p(Γ), Y = `p(∆) with p > 1, p 6= 2, and f : S(X)→ S(Y ) be a surjec-

tive phase-isometry. Then for each x = ∑γ∈Γ xγeγ ∈ S(X), we have f (x) = ∑γ∈Γx |xγ | f (
yγ

|xγ |eγ),

where yγ =±xγ for each γ ∈ Γx.

Proof: According to Lemma 2.4, we note

Γ1 := {γ ∈ Γ : f (αeγ) =±α f (eγ),∀α ∈ T}

Γ2 := {γ ∈ Γ : f (αeγ) =±α f (eγ),∀α ∈ T},
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where Γ = Γ1∪Γ2 and Γ1∩Γ2 = /0. Let us take x ∈ S(X). By Lemma 2.3, we can write

f (x) = ∑
γ∈Γx

yγ f (eγ) = ∑
γ∈Γx∩Γ1

yγ f (eγ)+ ∑
γ∈Γx∩Γ2

yγ f (eγ).

Fixed γ ∈ Γx∩Γ1. Since f is a phase-isometry, then

1−|xγ |p +(1+ |xγ |)p = ‖x+
xγ

|xγ |
eγ‖p∨‖x−

xγ

|xγ |
eγ‖p

= ‖ f (x)+ f (
xγ

|xγ |
eγ)‖p∨‖ f (x)− f (

xγ

|xγ |
eγ)‖p

= (1−|yγ |p + |yγ +
xγ

|xγ |
|p)∨ (1−|yγ |p + |yγ −

xγ

|xγ |
|p)

≤ 1−|yγ |p +(1+ |yγ |)p,

which shows that (1+ |xγ |)p−|xγ |p≤ (1+ |yγ |)p−|yγ |p. Since the function ϕ(t) = (1+t)p−t p

is strictly increasing on (0,+∞) for p > 1, it follows that |xγ | ≤ |yγ | for each γ ∈ Γx ∩ Γ1.

Similarly, it is also true for each γ ∈ Γx∩Γ2,

1−|xγ |p +(1+ |xγ |)p = ‖x+
xγ

|xγ |
eγ‖p∨‖x−

xγ

|xγ |
eγ‖p

= ‖ f (x)+ f (
xγ

|xγ |
eγ)‖p∨‖ f (x)− f (

xγ

|xγ |
eγ)‖p

= (1−|yγ |p + |yγ +
xγ

|xγ |
|p)∨ (1−|yγ |p + |yγ −

xγ

|xγ |
|p)

≤ 1−|yγ |p +(1+ |yγ |)p.

The equation ‖ f (x)‖= ‖x‖= 1 assures that |xγ |= |yγ | for each γ ∈ Γx. This establishes

(|yγ +
xγ

|xγ |
|)∨ (|yγ +

xγ

|xγ |
|) = 1+ |yγ |,

and hence yγ = ±xγ for each γ ∈ Γx ∩Γ1. A similar argument holds for γ ∈ Γx ∩Γ2, we get

yγ = ±xγ for each γ ∈ Γx ∩Γ2. We deduce from the definition of Γ1 and Γ2 that yγ f (eγ) =

|xγ | f (±
xγ

|xγ |eγ) for each γ ∈ Γx. �

Lemma 2.6. Let X = `p(Γ), Y = `p(∆) with p > 1, p 6= 2, and f : S(X)→ S(Y ) be a surjective

phase-isometry. Let x and y be nonzero orthogonal vectors in S(X). Then there exist two real

number α(Ax,By),β (Ax,By) ∈ {−1,1} such that

f (Ax+By) = Aα(Ax,By) f (x)+Bβ (Ax,By) f (y)
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where |A|p + |B|p = 1,A,B ∈ R.

Proof: Since f (−x) = − f (x) for all x ∈ S(X), we can assume that A,B > 0. By Proposition

2.5, we write

f (x) = ∑
γ∈Γx

|xγ | f (
x′γ
|xγ |

eγ), f (y) = ∑
γ∈Γy

|yγ | f (
y′γ
|yγ |

eγ),

f (Ax+By) = A ∑
γ∈Γx

|xγ | f (
x′′γ
|xγ |

eγ)+B ∑
γ∈Γy

|yγ | f (
y′′γ
|yγ |

eγ)

where x′γ ,x
′′
γ ∈ {xγ ,−xγ} for every γ ∈ Γx and y′γ ,y

′′
γ ∈ {yγ ,−yγ} for every γ ∈ Γy. It is easy to

check that

{(1+A)p +Bp,(1−A)p +Bp}

= {‖Ax+By+ x‖p,‖Ax+By− x‖p}

= {‖ f (Ax+By)+ f (x)‖p,‖ f (Ax+By)− f (x)‖p}

= {
∥∥ ∑

γ∈Γx

|xγ |[ f (
x′γ
|xγ |

eγ)±A f (
x′′γ
|xγ |

eγ)]
∥∥p

+Bp}.

This shows that

(1+A)p ∈ {
∥∥ ∑

γ∈Γx

|xγ |[ f (
x′γ
|xγ |

eγ)±A f (
x′′γ
|xγ |

eγ)]
∥∥p}.

Suppose that

(1+A)p =
∥∥ ∑

γ∈Γx

|xγ |[ f (
x′γ
|xγ |

eγ)+A f (
x′′γ
|xγ |

eγ)]
∥∥p

≤ ∑
γ∈Γx

|xγ |p(1+A)p = (1+A)p,

which implies that ‖ f (
x′γ
|xγ |eγ)+A f (

x′′γ
|xγ |eγ)‖= ‖ f (

x′γ
|xγ |eγ)‖+‖A f (

x′′γ
|xγ |eγ)‖ for all γ ∈ Γx. Further-

more, it is not hard to check that f (
x′γ
|xγ |eγ) = f (

x′′γ
|xγ |eγ) for all γ ∈ Γx since X is strictly convex.

Similarly, we cliam that for all γ ∈Γx, f (
x′γ
|xγ |eγ)=− f (

x′′γ
|xγ |eγ) . It means that ∑γ∈Γx |xγ | f (

x′′γ
|xγ |eγ)=

± f (x). Similar conclusion yields ∑γ∈Γy |yγ | f (
y′′γ
|yγ |eγ) =± f (y), which concludes the proof. �

Corollary 2.7. Especially, we take A = B = 1
‖x+y‖ = 2−

1
p . It means that we can write

f (Ax+Ay) = Aα(x,y) f (x)+Aβ (x,y) f (y).
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As a consequence of the above result, we will show the main conclusion of this paper.

Theorem 2.8. Let X = `p(Γ), Y = `p(∆) with p > 1, p 6= 2, and f : S(X)→ S(Y ) be a surjective

phase-isometry. Then its positive homogeneous extension F of f is phase equivalent a real

linear isometry.

Proof: The previous arguments show that when p = 2 by Theorem 2.1, thus we only need

to consider the case p > 0, p 6= 2. Fixed γ0 ∈ Γ, as a consequence of Lemma 2.4, we can

assume that f (αeγ0) = α f (eγ0) for each α ∈ T, the other statement’s proof is very similar. Set

Z := {x ∈ `p(Γ) : x⊥eγ0} and W := {y ∈ `p(∆) : y⊥ f (eγ0)}. It is not hard to prove S(X) =

{az+ teγ0 : z ∈ S(Z), |a|p + |t|p = 1,a ∈ R, t ∈ C}.

By considering the Proposition 2.5 that the restricted mapping f |Z : S(Z)→ S(W ) is a surjec-

tive phase-isometry. By Corollary 2.7 we can therefore write

f (Az+Aeγ0) = Aα(z,eγ0) f (z)+Aβ (z,eγ0) f (eγ0), α(z,eγ0),β (z,eγ0) ∈ {−1,1}

where A = 1
‖z+eγ0‖

= 2−
1
p for each z ∈ S(Z). Define a mapping g : S(Z)→ S(W ) given by

g(z) = α(z,eγ0)β (z,eγ0) f (z),

for each z ∈ S(Z). It is easily seen that g(z) = ± f (z) for each z ∈ S(Z). Since f is a phase-

isometry, for each z ∈ S(Z),

1
2
{2p}= 1

2
{‖(z+ eγ0)+(−z+ eγ0)‖

p,‖(z+ eγ0)− (−z+ eγ0)‖
p}

= {‖ f (Az+Aeγ0)+ f (−Az+Aeγ0)‖
p,‖ f (Az+Aeγ0)− f (−Az+Aeγ0))‖

p}

=
1
2
{‖g(z)+ f (eγ0)+g(−z)+ f (eγ0)‖

p,‖g(z)−g(−z)‖p}

=
1
2
{|α(z,eγ0)β (z,eγ0)−α(−z,eγ0)β (−z,eγ0)|

p +2p,

|α(z,eγ0)β (z,eγ0)+α(−z,eγ0)β (−z,eγ0)|
p}

which implies that α(z,eγ0)β (z,eγ0) = α(−z,eγ0)β (−z,eγ0). This means that g(−z) = −g(z),

and so g : S(Z)→ S(W ) is a surjective phase-isometry. Next we show that g : S(Z)→ S(W ) is

a surjective isometry. For z1,z2 ∈ S(Z), since g is a phase-isometry, we have

{‖g(z1)+g(z2)‖p,‖g(z1)−g(z2)‖p}= {‖z1 + z2‖p,‖z1− z2‖p}
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and

1
2
{‖z1 + z2‖p +2p,‖z1− z2‖p}

= {‖ f (Az1 +Aeγ0)+ f (Az2 +Aeγ0)‖
p,‖ f (Az1 +Aeγ0)− f (Az2 +Aeγ0)‖

p

= {‖β (z1,eγ0) f (Az1 +Aeγ0)±β (z2,eγ0) f (Az2−Aeγ0)‖
p}

=
1
2
{‖g(z1)+g(z2)‖p +2p,‖g(z1)−g(z2)‖p}.

Hence we obtain that ‖g(z1)− g(z2)‖ = ‖z1− z2‖, which implies g is a surjective isometry.

From Yi’s result[12], the restriction of G to Z is a real linear isometry, where G : Z→W is the

natural positive homogeneous extension of g. It means that for z1,z2 ∈ S(Z), and a1,a2 ∈R, we

have

‖a1g(z1)−a2g(z2)‖= ‖G(a1z1)−G(a2z2)‖= ‖a1z1−a2z2‖.

Now we shall fristly show a function f̃ : S(X)→ S(Y ) is a surjective isometry, which is given

by the following for every z ∈ S(Z), |a|p + |t|p = 1, a ∈ R and t ∈ C:

f̃ (az+ teγ0) = ag(z)+ t f (eγ0),

Choose x1,x2 ∈ S(X), where x1 = a1z1 + t1eγ0 , x2 = a2z2 + t2eγ0 , a1,a2 ∈ R and t1, t2 ∈ C, we

can obtain

‖ f̃ (x1)− f̃ (x2)‖p = ‖a1g(z1)+ t1 f (eγ0)− (a2g(z2)+ t2 f (eγ0))‖
p

= ‖a1z1−a2z2‖p + |t1− t2|p = ‖x1− x2‖p,

which implies that f̃ is a isometry. Obviously, f̃ (−x) =− f̃ (x) for all x ∈ S(X).

As we commented above, it follows to prove that f (x) = ± f̃ (x) for every x ∈ S(X). In the

case of a = 0 or t = 0, we have f̃ (teγ0) = t f (eγ0) or f̃ (az) = ag(z) respectively. So we only

need to consider a ∈ R\{0}, t ∈ C\{0}. Given z ∈ S(Z). By the above result and Lemma 2.6,

we can write

f̃ (az+ teγ0) = aα(z,eγ0)β (z,eγ0) f (z)+ t f (eγ0), α(z,eγ0),β (z,eγ0) ∈ {−1,1},

f (az+ teγ0) = aα(az, teγ0) f (z)+β (az, teγ0)t f (eγ0), α(az, teγ0),β (az, teγ0) ∈ {−1,1}.
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It is equivalent to check that

α(az, teγ0)β (az, teγ0) = α(z,eγ0)β (z,eγ0).

Since f is a phase-isometry,

{|a+A|p + |t +A|p, |a−A|p + |t−A|p}

= {‖az+ teγ0 +Az+Aeγ0‖
p,‖az+ teγ0− (Az+Aeγ0)‖

p}

= {‖ f (az+ teγ0)+ f (Az+Aeγ0)‖
p,‖ f (az+ teγ0)− f (Az+Aeγ0)‖

p}

= {‖β (az, teγ0) f (az+ teγ0)±β (z,eγ0) f (Az+Aeγ0)‖
p}

= {|aα(az, teγ0)β (az, teγ0)+Aα(z,eγ0)β (z,eγ0)|
p + |t +A|p,

|aα(z, teγ0)β (z, teγ0)−Aα(z,eγ0)β (z,eγ0)|
p + |t−A|p}.

If |t +A| 6= |t−A| or t 6= ib for some b ∈ R\{0}, then we get the desired equation

α(az, teγ0)β (az, teγ0) = α(z,eγ0)β (z,eγ0).

Now assume that t = ib for some b ∈ R \ {0}. Choose α ∈ T \ {±1,±i}. Following a similar

argument as above, we get

{|a+A|p + |t +Aα|p, |a−A|p + |t−Aα|p}

= {‖az+ teγ0 +Az+Aαeγ0‖
p,‖(az+ teγ0)− (Az+Aαeγ0)‖

p}

= {‖ f (az+ teγ0)+ f (Az+Aαeγ0)‖
p,‖ f (az+ teγ0)− f (Az+Aαeγ0)‖

p}

= {‖β (az, teγ0) f (az+ teγ0)±β (z,αeγ0) f (Az+Aαeγ0)‖
p}

= {|aα(az, teγ0)β (az, teγ0)+Aα(z,αeγ0)β (z,eγ0)|
p + |t +Aα|p,

|aα(az, teγ0)β (az, teγ0)−Aα(z,αeγ0)β (z,αeγ0)|
p + |t−Aα|p}

Since |t−Aα| 6= |t +Aα|, we obtain

α(az, teγ0)β (az, teγ0) = α(z,αeγ0)β (z,αeγ0) = α(z,eγ0)β (z,eγ0).

It is clearly that F(x) = ±F̃(x) for all x ∈ X . By Yi’s result [12] again, we show the natural

positive homogeneous extension F̃ of f̃ is a real linear isometry from X onto Y .
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This completes the proof. �
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