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Abstract. This paper comprises of a few fixed point theorems in the generalized b—fuzzy metric spaces. As a
significant outcome, we give an adequate condition for a sequence to be Cauchy in the generalized b—fuzzy metric
spaces. In this manner, we proved several fixed point theorems in generalized b—fuzzy metric spaces.
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1. INTRODUCTION

The fuzzy set was characterized by Zadeh [18] in 1965 which is a numerical edge to dubi-
ousness or vulnerability in a day by day life. Kramosil and Michalek [8] presented fuzzy metric
spaces and this idea was adjusted by George and Veeramani in 1994 [5]. In 2006, S. Sedghi and
N. Shobe [14] demonstrated a common fixed point theorem in .#Z — fuzzy metric spaces. Then
again, the idea of b—metric was initiated from the works of Bakhtin [2]. Czerwik [3] gave an

axiom which was weaker than the triangular inequality and formally defined a b— metric space
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with a view of generalizing the Banach contraction mapping theorem. Sedghi and Shobe [12]
joined the ideas of fuzzy set and b— metric space to present a b— fuzzy metric space.

In this paper, we deal the notation of a countable expansion of the t—norm, we demonstrate a
valuable lemma in the generalized b— fuzzy metric space setting that guarantee that a sequence
{0, } is a Cauchy sequence. Utilizing this lemma, we improve the evidences of some understand

fixed point theorem. We present some of them in the principle part of the paper.

2. PRELIMINARIES

Definition: 2.1 A binary operation  : [0, 1] — [0, 1] is a continuous t—norm on the off chance

that it fulfills the accompanying conditions:

(1) = is associative and commutative,
(i1) * is continuous,
(iii) o* 1 =aforall o € [0,1],
(iv) oxs < axp foro,¢,a, p € [0,1] with the end goal that c < @ and ¢ < f3.
Basic example of a continuous t— norm are ¢ * ¢ = min{o,G}, 0 *¢ = 0 -¢ and
oG =max{c+¢—1,0}.
Definition: 2.2 Let * be a t— norm, and let ,; [0, 1] = [0, 1], p € N be deined in the following

way
*1(6)26*67 *p+1:*p(6)*67 p€N7 66[071]-
t— norm x is said to be J#— type if the family {*,(0)}, ¢ v is equicontinuous at ¢ = 1.
A trivial example of t— norm of J# — type is 0 x ¢ = min{o,¢}.

Each t— norm * can be extended by associativity in a unique way to an p— ary operation

taking for (01,02,...,0,) € [0, 1]? the values
1 _ p . —
*12161 —Gl, *IZIGI —*lzl Gl*Gp—Gl*GZ*-Gp

A t— norm * can be extended to a countable infinite operation taking for any sequence

(0p) pen from [0,1] the value

%10 = l}g}o *{):10'1.
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The sequence (*;7,07),cn is nonincreasing and bounded from below and hence the limit
*7 07 exists.

In the fixed point theory it is of interest to investigate the classes of t— norms * and sequences

(0p,) from the interval [0,1] with the end goal that ;5130 o, = 1 and

p—ee 1P

Definition: 2.3 [6] A quadruple (¢,.# ,*,b) is called a generalized b—fuzzy metric spaces
(Gb— F #.) with b > 1 if ¢ is an arbitrary non-empty set,  is a continuous t—norm and .#
is a fuzzy set on &> x (0,), fulfill the accompanying conditions for each ¢,¢,1,a € ¢ and

t,s >0,

(’%_1) M 0'79777’5) >0,
(M-2) M (0,5,m,t)=1ifandonly if 6 = ¢ =1,

(M-4) M(0,6,N,t+5s) > M (0,6,a,¢)*AM(a,n,M,8),

(
(
(A-3) M (0,6,n,t) =4 (p(0,6,1M,),t), where p is a permutation function,
(
(A-5) #(0,6,Mm,):(0,00) —[0, 1] is continuous.

Note that generalized b— fuzzy metric spaces are a generalized fuzzy metric spaces if b = 1, but
the converse does not hold in general.
Definition: 24 A function ¢ : #Z — % is called b—non-decreasing if

a>bB= 7(a)> 7(B)foralla,pcZ.
Definition: 2.5 [6] Let (¢, .# ,+,b) be a Gb — .7 .# ., then

(i) A sequence {o,} in ¥ is said to be convergent to o if for each t > 0,
M (6,0,0p,t) = 1as p— oo,
(i) A sequence {0,} in ¢ is said to be a Cauchy sequence if for each 0 < € < 1 and t > 0,
there exists pp € N with the end goal that .# (o), 0),,0,,t) > 1 — € for each p,q > po.
(iii) A generalized b—fuzzy metric spaces are said to be complete if every Cauchy sequence is

convergent.

Definition: 2.6 A Gb—.F .4 S (4, .# ,*,b) is said to be symmetric if # (0,0,6,t) =.#(0,6,6,t)

for all 0,6 € ¢ and for each t > 0.
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3. MAIN RESULTS

Lemma 3.1 Let {o,} be a sequence in a symmetric Gb — F . # ./ (4,.# ,+,b). Let’s keep

that there are 7 € (0, b) with the end goal that

t
(311) %<Gp76p+17cp+27t) Z%<Gp7176p76p+17%>7 p€N7 t>07
and there exists 0p, 0] € ¢ and p € (0, 1) with the end goal that

t
(3.1.2) lim 3 p//<c70,c71,61,—.> =1, t>0.
p—reo p!

Then {o,} is a Cauchy sequence.

Proof. Let © € (b, 1). At that point the sum Z ¥’ is convergent, and there exists py € N with
i=1

the end goal that Z ¥ < 1 for every p > po. Let p > s > po. Because of being .# is b—non-
i=p
decreasing, for each t > 0, we have

tzP'H 1191
%(Gp76p76p+s’t) 2 %(Gp,cp,6p+s7 b )
pts—1 qi
t9P t) 0
p+1
> %(Gpvcp; Gp—Hv?) *%<GP‘H76P+S’ Op-ts: T)
ps—1 4i
tor tzz p+1 v
= %(Gp76p,6p+1, v ) *J/Z(Gp+1,0p+170p+s, B R
tﬁp tﬁp-ﬁ*l

tﬁp—i-s—l
* --*%(Gp—Q—S—l;Gp—O—s—l,GPﬂLS’ bs—O—l )

By (3.1.1) we get,

t
%(Gpacp—klaop-i-%t) > «%(607617627§>7 pE N7 t>0.
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Because of being p > s and b > 1, we have

to” tor !
%(Gpa Op, Gp+S7t) > %(607 00, O1, W) * %<607 00,01, W)
t@p%—s—l
*---*.//(G(),GQ,CH,W>
pt+s—1 to!
> ¥, ///(007007017W>
51 t!
>, //(607607617131-_14)
- t bt
M (Cp,0p,Opys,t) > *i:p.//<60,00,61,l7>, where p = 5
Because of being p € (0,1), by (3.1.2) for this reason {0, } is a Cauchy sequence. O

Corollary 3.2 Let {0,} be a sequence in a Gb — .# .# .7 and let  be of 7 — type. If there

are 7 € (0, £) with the end goal that
t
//(GP,GP_H,GIH_Q,'E) > //(GP_I,GP,GP_H, E), pc N, t>0.

Then {0, } is a Cauchy sequence.

Lemma 3.3 If for few 7 € (0,1) with o,5,n € ¥,

(3.3.1) //(G,g,n,t)z///(c,g,n,%),t>0.
Then 60 =¢=1.

Proof. By(3.3.1) we get,

t
M(0,6,M,1t) 2///(6,(5,17,5), peN, t>0.

. t
o AM(0,6,1m,t) zplgg//l(c,g,n,ﬁ) =1,t>0.
Hence 6 = ¢ =n. U

Theorem 3.4 Let (,.# ,*,b) be a symmetric complete Gb —.#.# .7 with let 7 19 — 4.

Let’s keep that there are 7 € (0, £ ) with the end goal that

t
(34.1) M I 0, 6, 7N,t) 2///<6,g,n,;), 0,6,N€Y, t>0,
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and there exists op € ¢4 and p € (0, 1) with the end goal that

. oo t
(3.4.2) lim *i:p.//[(co,c()?/Go?E) —1,t>0.

p—re

Then _#Z has a unique fixed point on ¢.

Proof. Let oy € ¢ with 6,11 = # 0,, p € N. Take 6 = 6,,_1, ¢ = 0,,_1 and 1] = 0, for every

p € N with each t > 0 we have
t
M (6p,0p,0py1,t) > //l(dp,l,ap,l,cp, E>'

Using Lemma (3.1) we get {0, } is a Cauchy sequence. Because of being (¥, .7 ,*,b) is com-

plete, there exists o € ¢ with the end goal that

(3.4.3) limo,=0 and lim.#(0,0,0,t)=1, t>0.
p—reo p—reo

Consider,

M50, 50.0.0)>M( 50, 70,05 ) vl (0,,0.0.5)

> ///(G,G,Gp,l, 2%) *//(Gp,c,o, 2%)

>1x1 as p—oo

M Jo, fo,0,t)>1.

Hence o =o0.

Let’s keep that o and v are fixed point for _#. Now,
t
M(G,6,0,t)=M(Fc, 76, Fo.t) 2///(6,0,0,;) by (3.4.1)

Using Lemma (3.3) implies that o = v. O

Example 35 Let ¥ = [0,1] and . #(0,5,m,t) = e t ,
0,6,M €Y, t>0issymmetric Gb — . 4. with b =2.
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Let 0=k c,k<\/§,ce%.

1
(K2 (6-¢)2+k2 (¢—m)>+k2 (n—0)?]2
t

//1(/07/9/777026_

2+t (n-0)?

D=

_lt(6-9)%+1(c-m)
>e t

t
///(fc,/g,/n,w2///(6,911,;), 0,6,NEY, t>0

for % > 7 > k%. So condition (3.4.1) of Theorem 3.4 is satisfied. Therefore ¥ has a unique
fixed point in ¥.
Theorem 3.6 Let (¢,.#,*,b) be a symmetric complete Gb —.% .# ./ and let ¢ : 9 — 4.

Let’s keep that there are 7 € (0, %) with the end goal that

(3.6.1)
M(J0o, 76 Fnt) 2min{///(c,g,n,%),«///(6,6,/67%),///(9@,/9%),

///(n,n,/n,%)}

forall o,6,m € ¥, t > 0, and there exists 6y € ¢ and p € (0, 1) with the end goal that

. t
(3.6.2) lim .2/ (Go,cm /GmE) —1,t>0.

p—eo

Then ¢ has a unique fixed point in ¢.

Proof. Let 6y € 4 with 6,1 = _#0,, p€ N. Take 6 = 0,1, ¢ = 6,1 and 1) = 0, for every

p € Nand each t > 0 we have

M (Cp,0p,0py1,t) =M (7 0p1, ¥ Op_1, 7 Op,t)
. t t
> mln{%<6p—176p—176p,2>,%(Gp—bgp—];/Gp—h;)v
t t
%<Gp7176p717/6p*17%)7'%(6]736]75/0-[)7;)}
. t t
> mln{%<6p—lacp—176pa;>7%<Gp—l7cp—176pa;);
t t
%<Gp—l76p—156paE)a%(clhap?Gp-l-la;)}

. t t
M (Cp,0p,0p1,t) > mm{///((fp,l,crp,l,cp,E),///(GP,GP,G,,H,E) }
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Case (i) .#(0),0p,0,41,t) > %(Gp,6p76p+1, %)

By Lemma (3.1) we get 6, = G4 1.

Case (ii) .#(0),0,,0p41,t) > ///(GP_],GP_],CFP, %)

Using Lemma (3.1) we get {6, } is a Cauchy sequence. Because of being (¢/,.# , *) is complete,

there are o € ¢ with the end goal that

(3.6.3) limo,=0 and lim.#(0,0,0,t)=1, t>0.
p—° p—roo

Let ¥ € (tb,1) and ¥, =1 — V.

///(G,G,/O‘,t)2//(0‘,6,/61),%)*///(/0-[”/6’/6,%)

> //(o,a, J o, %) *min{%(Gp,G,G,%>,

///(GP,G,,,/G,,,%),//(o,a,/c,%>,
(o)
zl*min{l,l,//l<6,6,/c,%>}, as p—oo

Z///(G,G,/G,%)

M (0,0, 70,t) Z///(G,G,/G,%), where p = %

Using Lemma (3.3) we get, o is a fixed point of ¢ . Let’s keep that ¢ and v are fixed point of
F . Now
M(o,0,0t)=M(F0, J0, Fo,t)
> min{//l(c,c,b,%),//(o,c,/c,%),
%(o,a,/o,%),/[(n,u,/n,%)}
2min{///<c,6,n,%>,l,1,l}

M (0,0,0,t) > ///(G,G,U,%)

Using Lemma (3.3) we get, 0 = v. UJ
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Theorem 3.7 Let (¢,.# ,*,b) be a symmetric complete Gb — % .# ./ withlet 7 : 94 — 9.

1
Let’s keep that that there are 7 € (0, §> with the end goal that

(37.1) A(Fo, 75, FN.t) 2min{%(G,g,n,%),/[(mc,/c,%),
M(sere )t (nn ) a(oe ) (o ren )}
forall o,6,m €%, t>0. Then ¢ has a unique fixed point in 4.

Proof. Let oy € 4 with o,y = _#0,, pcN.Letc =0,_1, ¢ =0,_1and 1 = 0,.in (3.7.1)

and assume that @ * 8 = min{a, B}, we get
M (Cp,0Op,0Op11,t) = M ( J Op-1, F Op-1, 7 Op,t)
. t t
Z mln{%<cp7176p*176p7E)v'%((yp*hcp*l?/(yp*h;)a
t t
«%(Gp—lacp—lvjcp—h;)?%(Gvapa/Gp?%)?
2t t
%<Gp*176p*17/6p77)7%(j6p*17/6p*176p72>}
. t t
> mln{,///(Gp_l,Gp_l,Gp,;),,//(Gp_l,dp_l,Gp,;),
t t
%(prlacpflao-pa;>7%<Gpacpa6p+17%>a
2t t
%<Gp—lvop—1,cp+la7)7%<6p76p76p7;>}
. t t
> mln{%<6p7176p7176p7%)7%<Gp76p76p+17%>7
2t
e%<Gp—176p—136p+177)}
. t t
> mm{///(Gp_l,op_l,Gp,7L_),//[<Gp,op,6p+1,%),
t t
///(prhprl,Gp, E> *%(prcerl»Gerlu ﬁ)}
. t t
> mln{%<6p—176p—l7dp7%)7%<6p76p7cp+17;)7

t t
%<Gp7116p717 Op, E)v'%(Gpa Op+1; Gp+laﬁ> }
t

. t
A (Op,0p, Gpi1,t) > mln{%(dp_l,cp_l,op,E),///(Gp,cp,cpﬂ,E) },

peN t>0.
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As in the proof of Theorem (3.6) by Lemma (3.3) and Corollary (3.2) we get,
t
%(G[%G[ho-]ﬂrlat)Z'%(prlacpflacpaE)a p€N7t>0

and {o,} is a Cauchy sequence. So there are ¢ € ¢ with the end goal that
limo, =0 and lim.#(c,0,0,t)=1, t>0.Let ¥ € (tb? 1) and ¥ = 1 — V.

p—roo p—roo

Consider,

M (o,0, J0,t)> (60/@, ﬁ:f) (/Gp Jo, 7o, T)

> (G o, /cp b )*mm{ <cp,6,c,%) ///(Gp 6y, 7 Op, 132;),

<G,G,/G —) ///(G o, 7o, %)

//f(GpG/G?) </Gp/66_t>}
Zmin{//<c o, 70, ﬁ[]) ),//l(dp,c,c,%> ///(Gp Op, 7 Op; ?;)

,///(G,G,/G —) ///(GG/G %)
///(GPG/G %) </Gp /O‘G@>}

2min{.///<6 o, 7 0y, ﬁtl) > ///(GI,,G,G,%) %(Gp Op, 7 Op, izft),

///(G,c,/6,F),///(G,G,/G,%>,m1n{///<ap o,0, ?t)
o0, 50,2} #( sop 700 0))

2min{///<6,6 c %),M/(G 0,0 ?—;) //(G,G,G,%),

///(GG/G %) <G,G,/G,W>,min{%<666%>

(o, 70,70, gzzt>} (07/6,0,?_;)} as p s
>mln{1 1,1 //z(o o, 7. %)

w1 (s.ro. 70,5} (o s )
2

.//(G,G,/G,fi—i) =.//<G,G,/G,I£)>, wherepz%e(o,l).
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By Lemma (3.3) we get _7 0 = ©.

Let’s keep that o and v are fixed point of ¢ . Now
M(o,0,0,t)=M(F0, 70, J0,t)
t t t
2min{%(c,d,b,;),%<6,6,/6,;),%(6,6,%6,;),
t 2t t
///(U,U,/n,;),///(G,G,/n,7),///(/6,/6,0,;)}
. t 2t t
2mln{%<6,6,0,;),1,1,1,///(6,6,0,7),///(6,6,0,;)}
2t
2%(6,6,0,7)

Z///(G,G,G,ﬁ) *%(6,0,0,%)

Z///(G,U,D,%)

M (06,0,0,t) > .//(G,G,U,ﬁ)

Using Lemma (3.3) we get, 0 = v. 0

4. CONCLUSION

In this paper, we utilize a countable extension of the t— norm . Utilizing this development
and contraction condition to demonstrate the sequence in generalized fuzzy b— metric spaces is
a Cauchy sequence. Some fixed point theorems are additionally demonstrated by applying our

outcomes.
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