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Abstract. In this paper, the concept of norm preserving function and b-norm preserving function are presented.

The properties and relation between norm preserving function and b-norm preserving function are discussed.

Keywords: norm preserving function; B-Banach space; B-norm preserving function; metric preserving function.

2010 AMS Subject Classification: 46B20, 46B28, 47H10.

1. INTRODUCTION

Metric space is a basic and important topological space. At the beginning of the 20th century,

French mathematician M.R. Frechet found that many analytical results, from a more abstract

point of view, involve the distance relationship between functions, thus abstracting the concept

of metric space.

Subsequently, as an extension of metric space, the concept of b-metric space was given by

Bakhtin [1]. In the framework of b-metric, we can deal with many analytical problems, and

have made many important achievements. For example, Czerwink extended the famous Banach

contraction mapping principle in b-metric spaces, M.B. Zada et al. [2] applied fixed point
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theorems in b-metric space to fractional differential equations. Typical b-metric spaces, such as

Lp[a,b](0 < p < 1) or lp(0 < p < 1), are important in theory and applications.

Since Lp[a,b](0< p< 1) and lp(0< p< 1) not only have topological structure, but also have

good linear structure, we have reasons to conduct a more detailed study on them. Recently in

[3-4], Monica etc. introduced the concept of b-Banach space, which is an extension of Banach

space, and a special case of b-metric space. We recognize that the most typical examples of this

kind of spaces are Lp[a,b](0 < p < 1) and lp(0 < p < 1).

In 1935, Wilson.W.A proposed a special class of functions, that is metric preserving func-

tions. Later Bakhtin proposed the concept of b-metric preserving functions. These two kinds of

functions are of great significance, Juza observed that real numbers can be topologized to obtain

a class of incomplete discrete metric spaces by metric preserving functions and b-metric pre-

serving functions. Recent discussions on metric preserving functions and b-metric preserving

functions can be seen in [5-9] and references therein.

Inspired by these results on metric preserving function and b-metric preserving function, we

introduce the concept norm preserving functions and b-norm preserving functions in this paper.

The properties of norm preserving functions and b-norm preserving functions are presented and

the relation of these two functions are discussed.

2. PRELIMINARIES

In this section, let’s revisit the concept of normed linear space and b-normed linear space,

in addition we also revisit some definitions related to them, such as b-metric space and metric

preserving function, see in [2-9].

Definition 2.1 Let X be a vector space over a field K (either C or R). A functional ‖ ·‖ : X →

[0,+∞) is said to be a norm if the following conditions are satisfied:

(1) ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0;

(2) ‖λx‖= |λ |‖x‖;

(3) ‖x+ y‖ ≤ ‖x‖+‖y‖.

for all x,y,z ∈ X and λ ∈ K. A pair (X ,‖·‖) is called a normed linear space.
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Example 2.2 Let Lp[a,b](p > 1) be the set of all real-valued Lebesgue measurable function

x on [a,b] for which
∫
[a,b] |x(t)|

p dt < ∞. For each x ∈ Lp[a,b], define

‖x‖=
[∫ b

a
|x(t)|p dt

] 1
p
.

Then (Lp[a,b], ‖.‖) (p > 1) is a normed linear space.

Definition 2.3 Let X be a set and we define a functional d : X×X → R+ is called a metric if

for any x,y,z ∈ X , the following conditions hold:

(1) d(x,y) = 0 if and only if x = y = 0;

(2) d(x,y) = d(y,x);

(3) d(x,y)≤ d(x,z)+d(y,z).

Then (X ,d) is called a metric space.

In a normed space (X ,‖·‖), let ∀x,y ∈ X ,d(x,y) = ‖x− y‖, then d a distance induced by ‖·‖

and (X ,d) as metric space.

Definition 2.4 Let (X ,d) be a metric space. For each f : [0,∞)→ [0,∞) define a function

d f : X2→ [0,∞) as follows d f (x,y) = f (d(x,y)) for each x,y∈X . We call a function f : [0,∞)→

[0,∞) metric preserving iff for each metric space (X ,d) the function d f is a metric on X .

Example 2.5 Define f : [0,∞)→ [0,∞) by

f (x) =


0 if x=0,

1 if x is irrational,

2 otherwise.

Then f is metric preserving.

Definition 2.6 Let X be a vector space over a field K (either C or R) and let s≥ 1 be a given

real number. A functional ‖ · ‖ : X → [0,+∞) is said to be a b-norm if the following conditions

are satisfied:

(1) ‖x‖ ≥ 0, and ‖x‖= 0 if and only if x = 0;

(2) ‖λx‖= |λ |‖x‖;

(3) ‖x+ y‖ ≤ s(‖x‖+‖y‖).

for all x,y,z ∈ X and λ ∈ K. A pair (X ,‖·‖) is called a b-normed linear space.
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Example 2.7 Let Lp[a,b](0 < p < 1) be the set of all real-valued Lebesgue measurable func-

tion x on [a,b] for which
∫
[a,b] |x(t)|

p dt < ∞. For each x ∈ Lp[a,b], define

‖x‖=
[∫ b

a
|x(t)|p dt

] 1
p
.

Then (Lp[a,b], ‖.‖) (0 < p < 1) is a b-normed linear space with s = 2
1
p−1.

Definition 2.8 : Let X be a set and we define a functional d : X×X→R+ is called a b-metric

if for any x,y,z ∈ X , and s≥ 1, the following conditions hold:

(1) d(x,y) = 0 if and only if x = y = 0;

(2) d(x,y) = d(y,x);

(3) d(x,y)≤ s[d(x,z)+d(y,z)].

Then (X ,d) is called a b-metric space.

Definition 2.9 Let (X ,d) be a b-metric space. For each f : [0,∞)→ [0,∞) define a function

d f : X2→ [0,∞) as follows d f (x,y) = f (d(x,y)) for each x,y∈X . We call a function f : [0,∞)→

[0,∞) b-metric preserving iff for each b-metric space (X ,d) the function d f is a b-metric on X .

Example 2.10 Define f : [0,∞)→ [0,∞) by

f (x) = x2

Then f is b-metric preserving.

Also, we know that f defined in Example 2.10 is not metric preserving.

3. NORM PRESERVING FUNCTION

Definition 3.1 f : [0,∞)→ [0,∞) is called a norm preserving function if for each normed

linear space (X ,‖·‖) , f (‖·‖) is a norm on X .

Theorem 3.2 A norm preserving function f : [0,∞)→ [0,∞) has the following properties,

(1) positive homogeneous: f (λa) = λ f (a) for λ ≥ 0,a≥ 0;

(2) subadditivity: f (a+b)≤ f (a)+ f (b) for a,b≥ 0;

(3) positive definiteness: f (a)≥ 0 equality holds if and only if a = 0.

Corollary 3.3 All norm preserving function f : [0,∞)→ [0,∞) is convex.



NORM PRESERVING FUNCTION AND b-NORM PRESERVING FUNCTION 5

Proof. For all norm preserving function f : [0,∞)→ [0,∞), λ ≥ 0, a,b ≥ 0 by the Theorem

3.2(2), we have

f [λa+(1−λ )b]≤ f (λa)+ f [(1−λ )b].

According to Theorem 3.2(1) , we have

f (λa)+ f [(1−λ )b]≤ λ f (a)+(1−λ ) f (b).

Therefore f is convex.

Example 3.4 Assume a,b ∈ R satisfy a < 0 < b, A = [a,b]. Then the Minkowski function of

A is

p(x) = inf{λ > 0| x
λ
∈ A}=


x
a if x≤ 0,

x
b if x≥ 0.

It easy to verify that p(x) is a norm preserving function.

Especially, when a =−1,b = 1, p(x) =| x |.

Definition 3.5 If a nonnegative real number triple (a,b,c) satisfies a ≤ b+ c,b ≤ a+ c and

c≤ a+b, then (a,b,c) is called a triangle triple, and ∆ is the set of all triangle triples.

Definition 3.6 For function f : [0,∞)→ [0,∞), if ∃a > 0, such that for ∀x > 0 we have

f (x) ∈ [a,2a] , so f is said to be tightly bounded.

In what follows, we’ll present some necessary and sufficient conditions for norm preserving

functions.

Theorem 3.7 If f : [0,∞)→ [0,∞) is positive homogeneous, subadditivity and positive defi-

nite. Then the following conclusions are equivalent

(1) f is a norm preserving function.

(2) For ∀(a,b,c) ∈ ∆, we have ( f (a), f (b), f (c)) ∈ ∆.

Proof.

(1)⇒(2) Because of f is norm preserving function, ‖·‖ and f (‖·‖) are norm. According to

the triangle inequality of norm, ∃x,y,z ∈ X such that

‖x‖+‖y‖ ≥ ‖x+ y‖ , f (‖x‖)+ f (‖y‖)≥ f (‖x+ y‖),
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Choose a = ‖x‖ ,b = ‖y‖ ,c = ‖x+ y‖, we obtain

f (a)+ f (b)≥ f (c),

that is ( f (a), f (b), f (c)) ∈ ∆.

(2)⇒(1) For ∀(a,b,c) ∈ ∆, we have ( f (a), f (b), f (c)) ∈ ∆. Choose a = ‖x‖ ,b = ‖y‖ ,c =

‖x+ y‖, we have f (‖x‖)+ f (‖y‖)≥ f (‖x+ y‖), i.e., f (‖·‖) satisfies the norm triangle inequal-

ity. Because f is positive definite and positive homogeneous, then f (‖·‖) is also positive definite

and positive homogeneous.

To sum up, f is a norm preserving function.

Theorem 3.8 If f : [0,∞)→ [0,∞) is positive definite, positive homogeneous, sub-additive

and increasing, then f is a norm preserving function.

Proof. Firstly, for ∀λ > 0, by the positive homogeneous of f we have

f (‖λx‖) = f (λ ‖x‖) = λ f (‖x‖),

so f (‖·‖) satisfied the positive homogeneous.

Secondly, let a = ‖x‖ ,b = ‖y‖ ,c = ‖x+ y‖, then from the subadditivity of f we know that

f (a)+ f (b)≥ f (a+b) is true, notice that c < a+b then according to the incremental of f , we

have f (a+b)≥ f (c), such that

f (‖x‖)+ f (‖y‖)≥ f (‖x+ y‖),

Finally, by the definition of f and f (‖0‖) = f (0) = 0, we know f (‖·‖) is positive definite.

In conclusion, f is a norm preserving function.

Theorem 3.9 If f : [0,∞)→ [0,∞) is positive definite, positive homogeneous, tightly bounded,

then f is a norm preserving function.

Proof. By the tightly boundedness of f , we know that ∃a > 0, such that for ∀x ≥ 0 have

f (x) ∈ [a,2a]. So for a triplet (a,a,a) we have

f (a)≤ 2a = a+a = f (b)+ f (c),

such that

( f (a), f (b), f (c)) ∈ ∆.
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According to theorem 3.8, f is a norm preserving function.

4. b-NORM PRESERVING FUNCTION

In this section, we’ll establish the definition of b-norm preserving function, and discuss some

properties of b norm preserving function.

Definition 4.1 Let f : [0,∞)→ [0,∞). f is called a b-norm preserving function if for each

b-normed linear space (X ,‖·‖) , f (‖·‖) is a b-norm on X .

To prove the main results in this section, the following Lemma is crucial.

Lemma 4.2 A b-norm preserving function f : [0,∞)→ [0,∞) has the following properties,

(1) positive homogeneous, f (λa) = λ f (a) for λ ,a≥ 0;

(2) quasi-subadditivity, f (a+b)≤ s[ f (a)+ f (b)] for a,b≥ 0, s≥ 1;

(3) positive definiteness, f (a)≥ 0 for a≥ 0 and equality holds if and only if a = 0.

Definition 4.3 If a nonnegative real number triple (a,b,c) satisfies ∃s≥ 1, such that we have

a≤ s(b+ c),b≤ s(a+ c) and c≤ s(a+b), then (a,b,c) is called a quasi triangle triple, and ∆s

is the set of all quasi triangle triples.

Theorem 4.4 If f : [0,∞)→ [0,∞) is positive homogeneous, quasi-subadditivity and positive

definite. Then the following conditions are equivalent

(1) f is a b-norm preserving function.

(2) For ∀(a,b,c) ∈ ∆s, we have ( f (a), f (b), f (c)) ∈ ∆s.

Theorem 4.5 If f : [0,∞)→ [0,∞) is positive definite, positive homogeneous, quasi-subadditive

and increasing, then f is a b-norm preserving function.

Theorem 4.6 If f : [0,∞)→ [0,∞) is a norm preserving function, then f is a b-norm preserv-

ing function.

Proof. Let ‖·‖ be a b-norm. Since f is a norm preserving function, f (‖·‖) satisfies (1) and

(2) of the definition of b-norm.

Let a = ‖x+ y‖ ,b = ‖x‖ ,c = ‖y‖ , we have a≤ s(b+c). Take n > s, we have a≤ n(b+c) =

nb+nc, so

(a,nb+nc,nb+nc) ∈ ∆.
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Therefore,

f (a)≤ f (nb+nc)+ f (nb+nc) = 2 f (nb+nc).

Moreover, due to the subadditivity and positive homogeneity of f , we have

2 f (nb+nc)≤ 2[ f (nb)+ f (nc)] = 2n[ f (b)+ f (c)].

Let s′ = 2n, then f (‖x+ y‖)≤ s′[ f (‖x‖)+ f (‖y‖)]. Hence f (‖·‖) satisfied (3) of the defini-

tion of b-norm, i.e., f is a b-norm preserving function.
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