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Abstract. This work concerned with the following third-order three point boundary value problem

(BVP):

(P1)

 u′′′ (t) + f(t, u(t), u′(t)) = 0, 0 < t < 1

u (0) = αu (1) , u′ (1) = βu′ (η) , u′ (0) = 0,

where η ∈ (0, 1) , α, β ∈ R, f is a given function. Our main objective is to investigate the existence,

uniqueness and existence of positive solutions for the boundary value problem (P1), by using Banach

contraction principle, Leray Schauder nonlinear alternative, properties of the Green function and Guo-

Krasnosel’skii fixed point theorem in cone, in the case where the nonlinearity f is either superlinear or

sublinear.
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Boundary value problems for differential ordinary equation of third order possess wide

application in different areas of sciences such as in mechanics, physics, biology,... They

arise in modeling many phenomenes like draining or coating fluid flow problems, nonlinear

diffusion, thermal ignition of gases,...We refer the reader to [3,5,14].

Recently several papers appeared on third order boundary value problems, we can cite

the paper of Anderson and Davis [2], Graef and Yang [6,7], Guezane-Lakoud and Khaldi

[8], Sun [13], Guo and Sun [10] and Yang [15] and the excellent survey of R. Ma [11] and

Agarwal et al [1] and the references therein for related results.

However, fewer results on three-point boundary value problems of third order ordinary

differential equations can be found in the literature involving the polynomial growth

condition on f of type:

|f (t, x, x)| ≤ k (t) |x|p + g (t) |x|q + h (t) , (t, x, x) ∈ [0, 1]× R2,

p, q > 0, k, g, h ∈ L1 ([0, 1] ,R+) , (see section 3, Theorem 3.1). This condition and

the presence of the derivative u′ in the expression of f leads to extra difficulties. No

contributions exist, as far as we know, concerning the existence of positive solutions for

the boundary value problem (P1).

In [5], Graef et al gave sufficient conditions for the existence and nonexistence of positive

solutions for the following problem

u′′′ (t) + g(t)f(u(t)) = 0, 0 < t < 1

u (0) = u(p)− u (1) = u′′ (0) = 0,

In [8] Guezane-Lakoud et al investigated, by using Leray Schauder nonlinear alternative,

the existence of a nontrivial solution for the boundary value problem

u′′′ (t) + f(t, u(t)) = 0, 0 < t < 1

u (0) = αu′ (0) , u (1) = βu′ (η) , u′ (1) = 0,



EXISTENCE OF POSITIVE SOLUTIONS 475

In [12],R. Ma et al considered the fourth order right focal two point boundary value

problem

u′′′′ (t) + f(t, u(t), u′(t)) = 0, 0 < t < 1

u (0) = u′ (0) = 0 = u” (1) = u′′′ (1) = 0,

and show the existence and multiplicity of positive solutions by using a fixed point theorem

in cones. This paper is organized as follows, in the next section we cite some definitions and

Lemmas needed in our proofs. Section 3 treats the existence and uniqueness of solution

by using Banach contraction principle, Leray Schauder nonlinear alternative. Section 4

is devoted to prove the existence of positive solutions with the help of Guo-Krasnoselskii

theorem, then we give some examples illustrating the previous results.

2. Preliminaries

In this section we present some definitions lemmas and theorems we need in the proof

of the main results. Let E = C1 ([0, 1] ,R) , with the norm ||y||1 = ||y||+ ||y′|| , where ||.||

denotes the norm in C ([0, 1] ,R) defined by ||y|| = max
t∈[0,1]

|y (t)|.

E+ = {y ∈ C1 ([0, 1] ,R) , y(t) ≥ 0,∀t ∈ [0, 1]}. We assume that

ζ = (1− α) (1− βη) 6= 0. The norm in L1[0, 1] is denoted by ‖y‖L1[0,1]
=
∫ 1

0
|y(t)| dt for

all y ∈ L1[0, 1]. Now we start by solving an auxiliary problem.

Lemma 2.1. Let y ∈ E. The problem

(P2)

 u′′′ (t) + y(t) = 0, 0 < t < 1

u (0) = αu (1) , u′ (1) = βu′ (η) , u′ (0) = 0.

has a unique solution

u(t) = −1

2

∫ t

0

(t− s)2 y(s)ds− β

2ζ

(
t2 (1− α) + α

) ∫ η

0

(η − s) y (s) ds

(2.1) +
1

2ζ

∫ 1

0

(1− s)
(
t2 (1− α) + αβη (1− s) + αs

)
y(s)ds
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Proof. Rewriting the differential equation as u′′′(t) = −y(t) and integrating three times,

we obtain u(t) = −1
2

∫ t
0

(t− s)2 y(s)ds+At2 +Bt+C, the constants A, B and C are given

by the three point boundary conditions.

Definition 2.2. A function f : [0, 1]× R2 → R is called carathéodory if

(i)The map t→ f(t, x, y) is measurable for all x, y ∈ R.

(ii) The map (x, y)→ f(t, x, y) is continuous on R2 for almost all t ∈ [0, 1].

To prove the existence of nontrivial solution we apply the Leray Schauder nonlinear

alternative:

Lemma 2.3. [4]. Let F be a Banach space and Ωa bounded open subset of F 0 ∈ Ω.

T : Ω → F be a completely continuous operator. Then, either there exists x ∈ ∂Ω λ > 1

such that T (x) = λx or there exists a fixed point x∗ ∈ Ω.

We recall the definition of positive solution:

Definition 2.4. A function u(t) is called positive solution of (P1) if u(t) ≥ 0, ∀t ∈ [0, 1] .

We expose the well known Guo-Krasnosel’skii fixed point Theorem in cone:

Theorem 2.5. [9] Let E be a Banach space, and let K ⊂ E, be a cone. Assume Ω1 and

Ω2 open subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2 and let

A : K ∩
(
Ω2\Ω1

)
→ K

be a completely continuous operator such that

(i) ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω2; or

(ii) ||Au|| ≥ ||u|| , u ∈ K ∩ ∂Ω1, and ||Au|| ≤ ||u|| , u ∈ K ∩ ∂Ω2.

Then Ahas a fixed point in K ∩
(
Ω2\Ω1

)
.

3. Existence and uniqueness results

First we investigate the existence of nontrivial solution by employing Lemma 2.3.
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Theorem 3.1. Assume that f is Carathéodory function, f (t, 0, 0) 6= 0 and there exist

nonnegative functions k, g, h ∈ L1 ([0, 1] ,R+) such that

(3.1) |f (t, x, x)| ≤ k (t) |x|p + g (t) |x|q + h (t) , (t, x, x) ∈ [0, 1]× R2,

(3.2) 0 <

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)(
‖k‖L1[0,1]

+ ‖g‖L1[0,1]

)
<

1

2

(3.3)

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)
‖h‖L1[0,1]

<
1

2

Then the BVP (P1)has at least one nontrivial solution u∗ ∈ E.

Proof. Define the integral operator T : E → E by

Tu(t) = −1

2

∫ t

0

(t− s)2 f (s, u (s) , u′(s)) ds

− β

2ζ

(
t2 (1− α) + α

) ∫ η

0

(η − s) f (s, u (s) , u′(s)) ds

+
1

2ζ

∫ 1

0

(1− s)
(
t2 (1− α) + αβη (1− s) + αs

)
f (s, u (s) , u′(s)) ds,

Set

M =

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)(
‖k‖L1[0,1]

+ ‖g‖L1[0,1]

)
and

N =

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)
‖h‖L1[0,1]

.

By hypothesis (3.2) we know that 0 < M < 1
2
. Since f (t, 0, 0) 6= 0 , then there ex-

ists an interval [σ, τ ] ⊂ [0, 1] such that min
σ≤t≤r

|f (t, 0, 0)| > 0 hence N > 0. Set ‖u‖σ1 =

max(‖u‖p1 , ‖u‖
q
1), (σ = p or σ = q), n the entire part of σ and m =

(
N

M

) 1
n

. Define the

bounded open set Ω by Ω = {u ∈ C[0, 1] : ‖u‖1 < m}.

First, we prove that T is completely continuous operator in Ω.

(i) T is continuous.

Indeed, let (un) be a sequence that converges to u in E. Then

(3.4) |Tun(t)− Tu(t)|
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≤ 1

2

∫ 1

0

(1− s)2 |f (s, un (s) , u′n (s))− f (s, u (s) , u′ (s))| ds

+
1

2

∣∣∣∣βζ
∣∣∣∣ (1 + 2 |α|)

∫ 1

0

(1− s) |f (s, un (s) , u′n (s))− f (s, u (s) , u′ (s))| ds

+
1

2 |ζ|

∫ 1

0

(1 + 2 |α|+ |αβ| (1− s))

|f (s, un (s) , u′n (s))− f (s, u (s) , u′ (s))| ds

≤
(

1 +
(|β|+ 1) (1 + 2 |α|) + |αβ|

|ζ|

)
‖f (., un (.) , u′n (.))− f (., u (.) , u′ (.))‖

Moreover, we have

(3.5) |T ′un(t)− T ′u(t)| ≤

(
1 +

(|β|+ 1) (1 + |α|)
|ζ|

)
× ‖f (., un (.) , u′n (.))− f (., u (.) , u′ (.))‖

Consequently,

‖Tun − Tu‖1 ≤
(

2 +
(|β|+ 1) (2 + 3 |α|) + |αβ|

|ζ|

)
×‖f (., un (.) , u′n (.))− f (., u (.) , u′ (.))‖ .

Condition (ii) on f implies ‖Tun − Tu‖1 → 0, as n→∞.

(ii)Let Br = {u ∈ E; ‖u‖1 ≤ r} be a bounded subset. We shall prove that T (Ω ∩Br)

is relatively compact:

a)For some u ∈ Ω ∩Br and using (3.1) we have

‖Tu‖1 ≤
(

2 +
(|β|+ 1) (2 + 3 |α|) + |αβ|

|ζ|

)
(
‖u‖p1 ‖k‖L1[0,1]

+ ‖u‖q1 ‖g‖L1[0,1]

)
+N

≤ M max(‖u‖p1 , ‖u‖
q
1) +N,

then

‖Tu‖1 ≤Mrσ +N

yielding that T (Ω ∩Br) is uniformly bounded.
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b) T (Ω ∩Br) is equicontinuous. Indeed for all t1, t2 ∈ [0, 1] , t1 < t2, u ∈ Ω, we have

by applying (3.1)

|Tu(t1)− Tu(t2)|

≤ 1

2

∫ t1

0

(
(t2 − s)2 − (t1 − s)2

)
|f (s, u (s) , u′(s))| ds

+
1

2

∫ t2

t1

(t2 − s)2 |f (s, u (s) , u′(s))| ds

+
|β (1− α)|

2 |ζ|
(
t22 − t21

) ∫ η

0

(η − s) |f (s, u (s) , u′(s))| ds

+
(1− α) (t21 − t22)

2 |ζ|

∫ 1

0

(1− s) |f (s, u (s) , u′(s))| ds,

Let us consider the function Φ(x) = x2 − 2x, we see that Φ is decreasing on [0, 1], conse-

quently

(t2 − s)2 − (t1 − s)2 ≤ 2 (t2 − t1) , for s ∈ (0, t1) from which we deduce

|Tu(t1)− Tu(t2)|

≤ 2 (t2 − t1)
∫ 1

0

|f (s, u (s) , u′(s))| ds

+

∫ t2

t1

|f (s, u (s) , u′(s))| ds

+
|β + 1| |(1− α)|

|ζ|
(
t22 − t21

) ∫ 1

0

|f (s, u (s) , u′(s))| ds

when t1 → t2, then |Tu(t1)− Tu(t2)| tends to 0, consequently T (Ω ∩Br) is equicontinu-

ous. From Arzela-Ascoli Theorem we deduce that T is completely continuous operator.

Second, we apply Leray Schauder nonlinear alternative for T : Ω → E. Assume that

u ∈ ∂Ω, λ > 1 such Tu = λu. First we have

|Tu(t)| ≤
(

1 +
(|β|+ 1) (1 + 2 |α|) + |αβ|

|ζ|

)
×[

max |u (t)|p ‖k‖L1[0,1]
+ max |u′ (t)|q ‖g‖L1[0,1]

+ ‖h‖L1[0,1]

]

(3.6) ≤
(

1 +
(|β|+ 1) (1 + 2 |α|) + |αβ|

|ζ|

)
×
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‖u‖σ1

(
‖k‖L1[0,1]

+ ‖g‖L1[0,1]

)
+ ‖h‖L1[0,1]

]
and

(3.7) |T ′u(t)| ≤
(

1 +
(|β|+ 1) (1 + |α|)

|ζ|

)
[
||u||σ1

(
‖k‖L1[0,1]

+ ‖g‖L1[0,1]

)
+ ‖h‖L1[0,1]

]
From (3.6) and (3.7) we get

λm = λ ||u||1 = ||Tu||1 = max
0≤t≤1

|(Tu) (t)|+ max
0≤t≤1

|(T ′u) (t)| ≤(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)
[
||u||σ1

(
‖k‖L1[0,1]

+ ‖g‖L1[0,1]

)
+ ‖h‖L1[0,1]

]
= M ‖u‖σ1 +N.

Then

λ ≤ M
((n+1)−σ)

n N
(σ−1)
n +M

1
nN1− 1

n

<

(
1

2

) ((n+1)−σ)
n

(
1

2

) (σ−1)
n

+

(
1

2

) 1
n
(

1

2

)1− 1
n

= 1,

consequently λ < 1, this contradicts the fact that λ > 1. By Lemma 2.3 we conclude that

the operator T has a fixed point u∗ ∈ Ω2 and then the BVP (P1) has a nontrivial solution

u∗ ∈ E. The proof is complete.

The following Theorem deals with the uniqueness of solution

Theorem 3.2. Assume that f is carathéodory function and there exists nonnegative

functions k1, k2 ∈ L1 ([0, 1] ,R+) such that

(3.8) |f(t, x, x)− f(t, y, y)| ≤ k1(t) |x− y|+ k2(t) |x− y| ,∀x, y ∈ R, t ∈ [0, 1] .

and

(3.9)

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)(
‖k1‖L1[0,1]

+ ‖k2‖L1[0,1]

)
< 1

then the BVP (P1) has a unique solution u in E.
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Proof. We shall prove that T is a contraction. Let u, v ∈ E, then

|Tu(t)− Tv(t)|

≤ 1

2

(
1 +

(|β|+ 1) (1 + 2 |α|) + |αβ|
|ζ|

)
∫ 1

0

|f (s, u (s) , u′(s))− f (s, v (s) , v′(s))| ds

Using (3.8) we obtain

(3.10) |Tu(t)− Tv(t)|

≤
(

1 +
(|β|+ 1) (1 + 2 |α|) + |αβ|

|ζ|

)
max |u (t)− v (t)|

∫ 1

0

k1(s)ds+ max |u′ (t)− v′ (t)|
∫ 1

0

k2(s)ds

]
≤

(
1 +

(|β|+ 1) (1 + 2 |α|) + |αβ|
|ζ|

)
‖u− v‖1

∫ 1

0

(k1(s) + k2(s)) ds

On the other hand we have

T ′u(t) = −
∫ t

0

(t− s) f (s, u (s) , u′(s)) ds

−βt (1− α)

ζ

∫ η

0

(η − s) f (s, u (s) , u′(s)) ds

+
t (1− α)

ζ

∫ 1

0

(1− s) f (s, u (s) , u′(s)) ds,∀t ∈ [0, 1]

then

(3.11) |T ′u(t)− T ′v(t)|

≤
(

1 +
(|β|+ 1) (1 + |α|)

|ζ|

)
[∫ 1

0

k1(s) |u(s)− v (s)| ds

+

∫ 1

0

k2(s) |u′(s)− v′ (s)| ds
]

≤
(

1 +
(|β|+ 1) (1 + |α|)

|ζ|

)
‖u− v‖1

∫ 1

0

(k1(s) + k2(s)) ds
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adding (3.10) and (3.11), then taking the supremum after applying (3.9) it yields ‖Tu− Tv‖1 <

‖u− v‖1 . Consequently T is a contraction, so, it has a unique fixed point which is the

unique solution of the BVP (P1). The proof is complete.

4. Existence of positive solutions

In this section we investigate the positivity of solution for the boundary value problem

(P1), for this rewrite the operator T as

(4.1) Tu(t) =

∫ 1

0

G1(t, s)f(s, u(s), u′(s))ds

+
βt2

2 (1− βη)

∫ 1

0

G2(η, s)f(s, u(s), u′(s))ds

+
α

2ζ

∫ 1

0

G3(η, s)f(s, u(s), u′(s))ds

where Gi(t, s), i = 1, 2, 3, are defined respectively by

(4.2) G1(t, s) =

 1
2

[
t2 (1− s)− (t− s)2

]
, s ≤ t

1
2
t2 (1− s) , t ≤ s

G2(t, s) = ∂G1(t,s)
∂t

 s (1− t) , s ≤ t

t (1− s) , t ≤ s

G3(t, s) =

 βs (1− t) + s (1− s) (1− βt) , s ≤ t

βt (1− s)2 + s(1− s), t ≤ s.

Now we give the properties of the functions Gi(t, s):

Lemma 4.1. If α > 1 and β < 1
η
, then the functions Gi(t, s), have the following properties

i) Gi(t, s) ∈ C ([0, 1]× [0, 1]) , i = 1, 2, 3, Gi(t, s) ≥ 0, i = 1, 2, and G3(t, s) ≥ 0 for all

t, s ∈ ]0, 1[ .

ii) If t, s ∈ [τ1, τ2], 0 < τ1 < τ2 < 1, then

(4.3) τ 21G1(1, s) ≤ G1(t, s) ≤ G1(1, s)

(4.4) τG2(s, s) ≤ G2(t, s) ≤
1

τ1
G2(s, s)
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where τ = max(τ1, (1− τ2)).

Proof. It is obvious that Gi(t, s) ∈ C ([0, 1]× [0, 1]) , moreover we have for all t, s ∈ ]0, 1[ ,

G1(t, s) and G2(t, s) are nonnegative and if α < 1 and β < 1
η

then G3(t, s) is nonnegative.

ii) Let t, s ∈ [τ1, τ2], 0 < τ1 < τ2 < 1, it is easy to see that G1(1, s) 6= 0 and G2(s, s) 6= 0.

If 0 < τ1 ≤ s ≤ t ≤ τ2 < 1, then

G1(t, s) =
s

2

[
t2 (1− s)− (t− s)2

]
=

s

2

[
(1− s)− (t− 1)2)

]
≤ s (1− s)

2
= G1(1, s)

G1(t, s) =
s

2
[t (1− s) + (t− s) (1− t)]

≥ t
s (1− s)

2
≥ τ 21G1(1, s)

and if 0 < τ1 ≤ t ≤ s ≤ τ2 < 1, then

G1(t, s) =
1

2
t2 (1− s) ≤ 1

2
s (1− s) = G1(1, s),

G1(t, s) =
1

2
t2 (1− s) =

1

2

[
t2s (1− s) + t2 (1− s)

]
≥ t2s (1− s)

2
≥ τ 21G1(1, s),

Now we look for bounds for G2(t, s)

G2(t, s)

G2(s, s)
=

(1− t)
(1− s)

≤ 1 ≤ 1

τ1

G2(t, s)

G2(s, s)
≥ (1− τ2) , 0 < τ1 ≤ s ≤ t ≤ τ2 < 1,

and

G2(t, s)

G2(s, s)
=

t

s
≤ 1

τ1
,

G2(t, s)

G2(s, s)
≥ τ1, 0 < τ1 ≤ t ≤ s ≤ τ2 < 1,

since G2(s, s) are nonnegative then

τG2(s, s) ≤ G2(t, s) ≤
1

τ1
G2(s, s).

The proof is complete.

We make the following hypotheses:
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H1) f(t, u, v) = a(t)f1(u, v) where a ∈ C((0, 1), (0,∞)) and f1 ∈ C(R+ × R,R+).

H2) 0 <
∫ 1

0
G1(s, s)a(s)ds <∞.

Lemma 4.2. If u ∈ E+, α > 1, 0 < β < 1
η
, then the solution of the BVP (P1) is positive

and satisfies

min
t∈(τ1,τ2)

(u(t) + u′(t)) ≥ δ ‖u‖1

where δ = max

(
τ 21 ,
(
τ + βτ1

(1−βη)

)(
1
τ1

+ β
(1−βη)

)−1)
.

Proof. From hypothesis H1, we can write

(4.5) u(t) =

∫ 1

0

G1(t, s)a(s)f1(u(s), u′(s))ds

+
βt2

2 (1− βη)

∫ 1

0

G2(η, s)a(s)f1(u(s), u′(s))ds

+
α

2ζ

∫ 1

0

G3(η, s)a(s)f1(u(s), u′(s))ds

Applying the right hand side of inequality (4.3) we get

(4.6) u(t) ≤
∫ 1

0

G1(1, s)a(s)f1(u(s), u′(s))ds

+
β

(1− βη)

∫ 1

0

G2(η, s)a(s)f1(u(s), u′(s))ds

+
α

ζ

∫ 1

0

G3(η, s)a(s)f1(u(s), u′(s))ds.

Thus

(4.7)

∫ 1

0

G1(1, s)a(s)f1(u(s), u′(s))ds

+
β

(1− βη)

∫ 1

0

G2(η, s)a(s)f1(u(s), u′(s))ds

+
α

ζ

∫ 1

0

G3(η, s)a(s)f1(u(s), u′(s))ds ≥ ‖u‖

On the other hand, (4.4) gives

(4.8) u′(t) =

∫ 1

0

G2(t, s)a(s)f1(u(s), u′(s))ds
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+
βt

(1− βη)

∫ 1

0

G2(η, s)a(s)f1(u(s), u′(s))ds

≤
(

1

τ1
+

β

(1− βη)

)∫ 1

0

G2(s, s)a(s)f1(u(s), u′(s))ds.

Hence

(4.9)

∫ 1

0

G2(s, s)a(s)f1(u(s), u′(s))ds ≥ δ1 ‖u′‖

where δ1 =
(

1
τ1

+ β
(1−βη)

)−1
. In view of the left hand side of (4.4) and (4.7), we obtain

for all t ∈ (τ1, τ2)

u(t) ≥ τ 21

[∫ 1

0

G1(1, s)a(s)f1(u(s), u′(s))ds

+
β

(1− βη)

∫ 1

0

G2(η, s)a(s)f1(u(s), u′(s))ds

+
α

ζ

∫ 1

0

G3(η, s)a(s)f1(u(s), u′(s))ds

]

(4.10) ≥ τ 21 ‖u‖

Taking into account (4.9), it yields

u′(t) ≥
(
τ +

βτ1
(1− βη)

)∫ 1

0

G2(s, s)a(s)f1(u(s), u′(s))ds

(4.11) ≥
(
τ +

βτ1
(1− βη)

)
δ1 ‖u′‖

Combining (4.10) and (4.11) we get

min
t∈(τ1,τ2)

(u(t) + u′(t)) ≥ τ 21 ‖u‖+

(
τ +

βτ1
(1− βη)

)
δ1 ‖u′‖

≥ δ ‖u‖1

where δ = max
(
τ 21 ,
(
τ + βτ1

(1−βη)

)
δ1

)
. The proof is complete.

Define the quantities A0 and A∞ by

A0 = lim
(|u|+|v|)→0

f1 (u, v)

|u|+ |v|
, A∞ = lim

(|u|+|v|)→∞

f1 (u, v)

|u|+ |v|
.

The case A0 = 0 and A∞ =∞ is called superlinear case and the case A0 =∞ and A∞ = 0

is called sublinear case.
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The main result of this section is the following

Theorem 4.3. Under the hypotheses H1-H2 and if α > 1, 0 < β < 1
η
then (P1) has at

least one positive solution in the both cases superlinear as well as sublinear.

To prove Theorem 4.3 we apply the well known Guo-Krasnosel’skii fixed point Theorem

in cone ( see th.2.5).

Proof. Define the cone K by

K =

{
u ∈ E+, min

t∈(τ1,τ2)
(u(t) + u′(t)) ≥ δ ‖u‖1

}
It is easy to check that K is a nonempty closed and convex subset of E, so it is a cone.

Using Lemma 4.1 we see that TK ⊂ K. From the prove of Theorem 3.1, we know that T

is completely continuous in E.

We prove the superlinear case.Since A0 = 0, for any ε > 0, there exists R1 > 0, such

that

f1 (u, v) ≤ ε (|u|+ |v|)

for 0 < |u|+ |v| ≤ R1. Letting Ω1 = {u ∈ E, ‖u‖1 < R1} , for any u ∈ K ∩ ∂Ω1, it yields

(4.12) Tu(t) ≤ ε ‖u‖1
[∫ 1

0

G1(1, s)a(s)ds

+
β

τ1 (1− βη)

∫ 1

0

G2(s, s)a(s)ds+
α

ζ

∫ 1

0

G3(η, s)a(s)ds,

]
Moreover, we have

(4.13) Tu′(t) ≤ ε ‖u‖1
(

1

τ1
+

β

(1− βη)

)∫ 1

0

G2(s, s)a(s)ds

From (4.12) and (4.13) we conclude

(4.14) ‖Tu‖1 ≤ ε ‖u‖1
[∫ 1

0

G1(1, s)a(s)ds+

(
1 + 2β

τ1 (1− βη)

)∫ 1

0

G2(s, s)a(s)ds+
α

ζ

∫ 1

0

G3(η, s)a(s)ds

]
In view of Lemma 4.1, one can choose ε such

(4.15) ε ≤
(∫ 1

0

[
G1(1, s) +

(
1 + 2β

τ1 (1− βη)

)
G2(s, s) +

α

ζ
G3(η, s)

]
a(s)ds

)−1
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The inequalities (4.14) and (4.15) imply that ||Tu||1 ≤ ||u||1 , ∀u ∈ K ∩ ∂Ω1. Second,

in view of A∞ = ∞, then for any M > 0, there exists R2 > 0, such that f1 (u, v) ≥

M (|u|+ |v|) for |u| + |v| ≥ R2. Let R = max
{

2R1,
R2

δ

}
and denote by Ω2 the open set

{u ∈ E/ ||u|| < R} . If u ∈ K ∩ ∂Ω2 then

(4.16) min
t∈(τ1,τ2)

(u(t) + u′(t)) ≥ δ ‖u‖1 = δR ≥ R2

Using the left hand sides of (4.3) and (4.4) we obtain

Tu(t) ≥ τ 21

[∫ 1

0

G1(1, s)a(s)f1(u(s), u′(s))ds

+
βτ

(1− βη)

∫ 1

0

G2(s, s)a(s)f1(u(s), u′(s))ds

+
α

ζ

∫ 1

0

a(s)f1(u(s), u′(s))ds

]
,

thus

(4.17) Tu(t) ≥ τ 21M ||u||1
∫ 1

0

(
G1(s, s) +

βτ

(1− βη)
G2(s, s) +

α

ζ
G3(η, s)

)
a(s)ds.

Moreover, we get with the help of (4.11)

(4.18) T ′u(t) ≥M ||u||
(
τ +

βτ1
(1− βη)

)∫ 1

0

G2(s, s)a(s)ds

In view of (4.17) and (4.18) we can write

(4.19) Tu(t) + T ′u(t)

≥ M ||u||1
[∫ 1

0

τ 21

(
G1(s, s) +

α

ζ
G3(η, s)

)
a(s)ds

+
τ (1 + τ 21β − βη) + βτ1

(1− βη)

∫ 1

0

G2(s, s)a(s)ds

]
≥ M ||u||1 τ

2
1

∫ 1

0

G1(s, s)a(s)ds

Let us choose M such that

M ≥
(
τ 21

∫ 1

0

G1(s, s)a(s)ds

)−1
,
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then we get Tu(t) + T ′u(t) ≥ ||u||1 . Hence,

||Tu||1 ≥ ||u||1 , ∀u ∈ K ∩ ∂Ω2.

The first part of Theorem 2.5 implies that T has a fixed point in K ∩
(
Ω̄2�Ω1

)
such

that R2 ≤ ||u|| ≤ R. To prove the sublinear case we apply similar technics. The proof is

complete.

Example 4.4. The three point BVP

(4.20)

 u′′′ = (1 + t)−10 (sinu+ e−tu′(t)) + ln(1 + t), 0 < t < 1

u (0) = 10−2u (1) , u′ (1) = 10−4u′
(
1
2

)
, u′ (0) = 0

has a unique solution u ∈ E.

Proof. We have α = 10−2, β = 10−4, η = 1
2
, ζ = 0.989 95 and

|f(t, x, x)− f(t, y, y)| ≤ k(t) |x− y|+ g(t) |x− y|

where k(t) = (1 + t)−10 , g(t) = (1 + t)−10 e−t, k, g ∈ L1 ([0, 1] ,R+) . Using Theorem 3.2,

it yields

M =

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)(
‖k‖L1[0,1]

+ ‖g‖L1[0,1]

)
= 0.209 76× 4.0508 = 0.849 70 < 1

then, we conclude that the BVP (4.20) has a unique solution u in E.

Example 4.5. The three point BVP

(4.21)

 u′′′ = 10−2
(

u
4+u2

sin t+ u′e−u
2

ln(1 + t) + tan t
)
, 0 < t < 1

u (0) = −2u (1) , u′ (1) = 3u′
(
1
2

)
, u′ (0) = 0

has at least a nontrivial solution u in E.

Proof. We have α = −2, β = 3, η = 1
2
, ζ = −3

2
,

f(t, x, y) = 10−2
(

x

4 + x2
sin t+ ye−x

2

ln(1 + t) + tan t

)
f(t, 0, 0) = 10−2 tan t 6= 0, t ∈ (0, 1) and

|f(t, x, y)| ≤ k(t)|x|+ g(t)|y|+ h(t),
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where k(t) = 10−2 sin t, g(t) = ln(1+t)
100

, h(t) = 10−2 tan t, k, g, h ∈ L1 ([0, 1] ,R+) . The

hypotheses of Theorem 3.1 hold, indeed:

M =

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)(
‖k‖L1[0,1]

+ ‖g‖L1[0,1]

)
= 27.333× 8.4599× 10−3 = 0.23123 <

1

2

N =

(
2 +

(|β|+ 1) (2 + 3 |α|) + |αβ|
|ζ|

)
‖h‖L1[0,1]

= 27.333× 0.61563× 10−2 = 0.16827 <
1

2

Then BVP (4.21) has at least one nontrivial solution u in E.
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