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Abstract. In this paper, we obtain some common fixed point theorems in Banach spaces for two
compatible mapping of type (T)/(I) and for weakly biased mappings. Also, we give applications for the
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1. Introduction

The concept of compatible mappings of type (T) (type(I)) introduced by Pathak et al
(see [10]).

Definition 1.1. [10] Let I and T be a mappings from a normed space E into itself. The
mappings I and T are said to be compatible mappings of type (T) if

lim |[Tz, — Iz,| + lim |[[Tz, — TIz,|| < lim ||TIz, — Tx,||
n—o00 n—o00 n—00
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whenever {x,} is a sequence in E such that

lim Iz, = lim Tz, =t for some t € E.
n—oo n—oo

Definition 1.2. [10] Let I and T be a mappings from a normed space E into itself. The
mappings I and T are said to be compatible mappings of type (I) if

lim | Tz, — Tx,| + lim [[Tx, — TIz,| < lim [[[Tz, — Iz,||
n— o0 n— 00 n—00
whenever {z,} is a sequence in E such that

lim [z, = lim Tx, =t for some t € E.
n—o0 n—oo

Definition 1.3. [4, 5] Let F' and G be self-maps of a metric space (M,d). The pair {F, G}

is G-biased if and only if whenever {x,} is a sequence in X and Fx,, Gz, —t € X, then

ad(GFzy,,Gr,) < ad(FGx,, Fx,) if a =liminf and if o = limsup.

Definition 1.4. [4, 5] Let F' and G be self-maps of X. The pair {F, G} is weakly G-biased

if and only if F'p = Gp implies
d(GFp,Gp) < d(FGp, Fp).

Clearly, every biased mappings are weakly biased mappings ( see proposition 1.1 in [4]).
The paper is organized as follows: In Section 1, we explain some notations, concepts
and the results as noted earlier which can be found in [1-13] . In Section 2, we prove a
coincidence fixed point theorem for two compatible mappings of type (T)/ (I) in Banach
spaces. Finally, we apply both definitions of compatible mappings of type (T)/ (I) and
weakly G-baised to obtain solutions of nonlinear functional equations in Banach spaces

as in Section 3.
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2. A common fixed point theorem

In this section, we obtain a common fixed point theorem in Banach spaces for two
compatible mappings of type T. Now, we prove the following result. Our result is more

general the correspondence one in [6] and [11].

Theorem 2.1. Let T and I be two compatible mappings of type (T)/(I) of a Banach

space X into itself, satisfying the following conditions:

(1) (1—-K)I(X)+ET(X)CI(X), where 0<k<1,

(2)  NTe = Ty||" < (max{||lz — Ty||”, [ Iz — Tx|]", [[Iy = Ty|]", Lz — Ty,

11y — Tx|"})

for all x,y € X, where p > 0, and the function ® satisfies the following conditions:
(a)® :[0,00) — [0,00) is nondecreasing and right continuous
(b) For every t >0, ®(t) <t.

If for some xy € X, the sequence {x,} defined by
(3) Iv, 1= (1 —cy)lx, 4+ c,Txy,, forall n>0

with (i) 0 < ¢, <1 and (i) lim, o ¢, =h >0 for n=0,1,2,... converges to a point z
i X and if I is continuous at z, then T and I have a unique common fixed point. Further,
if I 1s continuous at Tx, then T and I have a unique common fixed point at which T is

continuous.
Proof. Let z € X such that

lim z, = z.
n—o0o

Now since [ is continuous at z. Then, we have that Iz, — [z as n — oo, so from (3) we
have

Ivg — (1 —cp)lz, I1z—(1—h)lz
= — -
Cn

=Jzasn— 0.

Tx,
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Now we shall show that Tz = [z. Form (2) we have
Tz, — Tz||P < ®(max{|[lz, — Iz|]°, || Iz, — Tx,||?, ||[Iz — Tz||, ||[{x, — Tz||P, |[Iz — Tx,||P}).
Taking the limit as n — oo yields
Iz —Tz||P < ®(max{0,0,|Iz—T=z|]?, |z —Tz|",0}).
If ||Tz—Iz||? > 0, then one obtains the contradiction
| Iz —T=z||P < || Iz —Tz|".

Therefore, Tz = Iz i.e, z is a coincidence point of T and I. Now since T and [ are

compatible mappings of type (T) if
lim |[[Tx, — [z,| + lim |[[Tx, — TIz,| < lim ||T1z, — Tx,||
n—oo n—o0 n—oo
whenever {z,} is a sequence in X such that
lim [z, = lim Tx, =t, for somet € X.
n—oo n—oo

Hence using (2),

(D || T?2 — Tz||P < ®(max{||[ITz — Iz||P, |[ITz — T?z|]P, || [z — Tz|]?, |ITz — Tz|"”,

17z = T2|17}),

or

T2z — Tz||P < |ITz —TIz|P < (|T1z — Iz|| + |[ITz — Iz])P

or
IT% = T2 < ||T% — Ta|| - |IT= - I,
which implies that, ||I[Tz — Iz|| < 0, and so

(5) ITz=1z=T-x.
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Substitute from (5) to (4), we obtain that
IT?2 = T2|]P < ®(max{0, [[Iz — T*|]%,0,0, |1z — T*2|[})
< ®(max{0, ||Tz — T?z|,0,0,||Tz — T?z||’})

< O(||T% = T2|") < | T2 — Tz|P
which is a contradiction. Therefore, we obtain that
T2 =Tz = 1Tz,

i.e., Tz is a common fixed point of 7" and I. Let v be a another common fixed point of T’
and I. By (2), we have
[u—o|P = [|Tu—"Tov||" < ®(max{[|Ju — L[], [[Iu — Tul/", |[Tv — Tvl”,
||]U - TUHpv “IU - Tqu})a

= ®(max{[ju —[[",0,0, [[u = v[]”, [|v — u["})

which implies that © = v. This completing the proof of the theorem.

Remark 2.1. Similar result of Theorem 2.1, can be obtained if we used the concept of

weakly G-biased mappings instead of compatible mappings of type (T)/(I).
3. Application to operator equations

By using a contraction condition more general than that used in [11] and replacing
weakly compatible mappings by compatible mappings of type (T)/ (I), we investigate the

solvability of certain nonlinear functional equations in Banach spaces.

Theorem 3.1. Let {f,} be sequence of elements in a Banach space X. Let v, be the
unique solution of the equation u—"T1Iu = f,, where T, I : X — X satisfying the following

conditions
(h1) T and I are compatible mapping of type (T)

(hy) T? = I? =1, where I denotes the identity mapping,
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(hs) |ITw =Ty||* < gmax{|[lx = Iy|, [[x — Te|*, |1y = Ty|* Lz = Ty|* |1y — Tx|*}
for all z,y € X, where ¢ € (0,1). If |[fu]] = 0 as n — oo, then the sequence {v,}

converges to the solution of the equation

u="Tu= Ilu.

Proof. We will show that {v,} is a Cauchy sequence.

2
|l — 1/m||2 < [Hyn —Tlv,|| + || T1Tv, — Tlvy,| + | T vy, — Vm||:|
2
< {Hl/n —Tlv,|| + || T1vy, — I/m||:| + 2{“1/” —Tlv,|| + | T1Tvy, — l/m||:|
X [HTII/n — Ul + V0 — Vil + Vi — T]l/m||:| + ||T1v, — T]ym||2
2
< {Hyn —Tlv,|| + || T 1, — l/mH] + 2{“1/,1 —Tlv,|| + || T1vp, — I/mH:|
e R P R P |
+q max{H[QVn — Pup||? 1 Pv, — Tlo |, || Pv, — Tlun||?,
HP%—W%WJP%—TMW}
2
< {Hun —Tlv,|| + || T1v, — l/mH] + 2{“1/,1 —Tlv,|| + || T1v, — l/mH:|
2
o R e e e |
2
+qmax {HVn — U2 1 = TIvn ||, ||V — T1vml?, [HVH — Up| + |V — TIl/m||] :
2
=l + = 71| .
On letting n — oo and using the hypothesis, we obtain

v — Vm”2 <qllvn - VmHQv
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which is a contradiction. It follows therefore that {v,} is a Cauchy sequence in X. Hence

it converges, say to v in X. Also
lv=TIv|| <|lv—uvu|+ |vn—TIv,|| + ||T1v, — TIv|
< v = vall + llvn = TIvall + {gmax{[vn — v|I*, lvn — TTvall?, v — TIv|?,
[l = vl + v =TIV, [l = v + [ = TIP3}

Hence taking the limit as n — oo, we get v = T'Iv, which from (hs) implies that Tv = Tv.

Since T and I are compatible mapping of type (T'), we have
lim |[[Tx, — [z,| + lim |[[Tx, — TIz,| < lim ||T1z, — Tx,||
n—oo n—o0 n—oo

whenever {z,} is a sequence in X such that

lim Iz, = lim Tz, =t, for some t € X.
n—oo n—oo

Using (hs) and (h3), we obtain that
|lv —Tw|]? =||T* — Tv||* < gmax{||ITv — Iv|]? |[ITv — T?v|?
| Tv — Tl |[ITv — Tv|)?, | Iv — TTv|*}
= qmaX{HU - TUH27 07 07 HU - TU”27 HU - TU||2}7
which implies that v = Tv. Then v = I[Tv = TIv = v, and v is also a fixed point of I.
Now, for the class of weakly G-biased mappings, we obtain the following theorem:
Theorem 3.2. Let {f,} and {gn} be sequences of elements in a Banach space X. Let

{vn} be the unique solution of the system of equations u—FGu = f, and u—HGu = g,,
where F, G and H : X — X satisfying the following conditions:

(I) {F,G} and {H,G} are weakly G-biased pairs ,

(Il) F? = G? = H?> =1, where I denotes the identity mapping,

(1) | Fr—Hy|]* < gmax{||Gz—Gyl* || Gz—Fz| || Gy—Hy|*, | Gz—Fyl|*, | Gy— Hz|*}
for all x,y € X, where ¢ € (0,1). If ||full,llgn]] = 0 as n — oo, then the sequence {v,}

converges to the solution of the equation

u=Fu=Gu= Hu.
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Proof. We will show that {v,} is a Cauchy sequence

v = vll® < [lve = FGUull + [|FGrvn — HGrm|| + | HGrm — v
< (v = FGull + | HGm — viall}2 + 2l — FGa + [ HG, — vy
X[IF G = vall + 10 — vl + lm — HGm ]| + | FG — HG
< {lvn = FGupl + | HGvn — vill1? + 2l — FGrill + | HG, — vy
X[|FGvy — vl + [|[vn — Vinl| + |Vm — HGV|] + qmax{||G*vy, — G|
G?v,, — FGuy ||, |G*rvp — HGun ||, |Gy — FGun||*, ||G? v — HGrp|?}
< Il — PGl + 1H GV — v + 2l — FGul| + | PG — vl
X[IF G — vall + 10 — vl + 17 — HG ]
+qmax{||vn, — vinll*, v — FGall?, [ — HGU|, [I[va — vl

+|vm — FGVm“]Qv v = vall + (v — HGVn|”2}'
Letting n — oo with m > n, we have

m ||t — vpll* < q lim ||v, — vnl?
m,n—00 m,n—00

which implies that

lim v, — vn|)* = 0.
m,n— 00

Thus {v,} is a Cauchy sequence in X. And converges to a point v in X. Further;
lv— HGv| < |v—uva|| + ||vn — FGv,| + || FGr, — HGV||
< |l = vall + [lvn — FGuy || + {gmax{||v,, — v|1%, [y, — FGv, |, |lv — HGv|]%,

v = VIl + [lv = FG(I%, [lvn — vl + llvn — HG [} }2

Hence taking the limit as n — oo, we get v = HGv, which from (1) implies that Hv = Gv.

Similarly, Gv = Fv. From (I), we have

d(GFz,Gz) < d(FGz,Fz) and d(GHz,Gz) < d(HGz,Hz),
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which implies
d(G?2,Gz) < d(F?*z,Fz) and d(G?z,Gz) < d(H?z, Hz),
so we obtain
H?2=Hz=F?2=Fz and FGv=GFv=v=HGv=GHv.
Using (IT) and (III),

lv— Hol?> = [[F* — Hvl]*
< gmax{||GFv — Gv|?, ||GFv — F?v|?,
IGv — Hol*, |[GFv — Fu|]*, |Gv — HFv||*}

= qmax{”v - HUH270707 ||U - HU||27 ||U - HUH2}7
which implies that v = Hv. Then
Gv=GFv=FGv=v,Gv=GHv=HGv =,

this completing the proof of the theorem.

Corollary 3.1. Let {f,} be sequence of elements in a Banach space X. Let v, be the
unique solution of the equation w — FGu = f,, where F,G : X — X satisfying the

following conditions:

(dy)  F and G are weakly G-biased mappings

(dy) F? = G* =1, where 1 denotes the identity mapping,

(ds) |[Fa—Fy|* < gmax{||Gz—Gy|]?, |Gz —Fx|?, |Gy —Fy|* |Gz — Fy|*, |Gy — Fx |}
forallx,y € X, whereq € (0,1). If|| full = 0 asn — oo, then the sequence {v,} converges

to the solution of the equation

u = Fu= Gu.
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