

Available online at http://scik.org

Advances in Fixed Point Theory, 2 (2012), No. 4, 442-451

ISSN: 1927-6303

FIXED POINTS AND SOLUTIONS OF NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES

A. EL-SAYED AHMED 1,2,* AND ALAA KAMAL 3

¹Department of Mathematics, Sohag University Faculty of Science, City Sohag, Egypt

²Current Address: Taif University, Faculty of Science, Mathematics Department

Box 888 El-Hawiyah, El-Taif 5700, Saudi Arabia

³Majmaah University Faculty of Science and Humanities, Mathematics Department Box 66 Ghat 11914, Saudi Arabia

Abstract. In this paper, we obtain some common fixed point theorems in Banach spaces for two compatible mapping of type (T)/(I) and for weakly biased mappings. Also, we give applications for the solvability of certain non-linear functional equations.

Keywords: Fixed points, compatible maps of type (T)/(I), weakly biased maps, operator equation.

2010 AMS Subject Classification: 47H10; 54H25

1. Introduction

The concept of compatible mappings of type (T) (type(I)) introduced by Pathak et al (see [10]).

Definition 1.1. [10] Let I and T be a mappings from a normed space E into itself. The mappings I and T are said to be compatible mappings of type (T) if

$$\lim_{n \to \infty} ||ITx_n - Ix_n|| + \lim_{n \to \infty} ||ITx_n - TIx_n|| \le \lim_{n \to \infty} ||TIx_n - Tx_n||$$

*Corresponding author

Received April 5, 2012

whenever $\{x_n\}$ is a sequence in E such that

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = t \text{ for some } t \in E.$$

Definition 1.2. [10] Let I and T be a mappings from a normed space E into itself. The mappings I and T are said to be compatible mappings of type (I) if

$$\lim_{n \to \infty} ||TIx_n - Tx_n|| + \lim_{n \to \infty} ||ITx_n - TIx_n|| \le \lim_{n \to \infty} ||ITx_n - Ix_n||$$

whenever $\{x_n\}$ is a sequence in E such that

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = t \text{ for some } t \in E.$$

Definition 1.3. [4, 5] Let F and G be self-maps of a metric space (M, d). The pair $\{F, G\}$ is G-biased if and only if whenever $\{x_n\}$ is a sequence in X and $Fx_n, Gx_n \to t \in X$, then

$$\alpha d(GFx_n, Gx_n) \le \alpha d(FGx_n, Fx_n)$$
 if $\alpha = \liminf$ and if $\alpha = \limsup$.

Definition 1.4. [4, 5] Let F and G be self-maps of X. The pair $\{F, G\}$ is weakly G-biased if and only if Fp = Gp implies

$$d(GFp, Gp) \le d(FGp, Fp).$$

Clearly, every biased mappings are weakly biased mappings (see proposition 1.1 in [4]). The paper is organized as follows: In Section 1, we explain some notations, concepts and the results as noted earlier which can be found in [1-13]. In Section 2, we prove a coincidence fixed point theorem for two compatible mappings of type (T)/(I) in Banach spaces. Finally, we apply both definitions of compatible mappings of type (T)/(I) and weakly G-baised to obtain solutions of nonlinear functional equations in Banach spaces as in Section 3.

2. A common fixed point theorem

In this section, we obtain a common fixed point theorem in Banach spaces for two compatible mappings of type T. Now, we prove the following result. Our result is more general the correspondence one in [6] and [11].

Theorem 2.1. Let T and I be two compatible mappings of type (T)/(I) of a Banach space X into itself, satisfying the following conditions:

(1)
$$(1-k)I(X) + kT(X) \subset I(X)$$
, where $0 < k < 1$,

(2)
$$||Tx - Ty||^p \le \Phi(\max\{||Ix - Iy||^p, ||Ix - Tx||^p, ||Iy - Ty||^p, ||Ix - Ty||^p, ||Iy - Tx||^p\})$$

for all $x, y \in X$, where p > 0, and the function Φ satisfies the following conditions:

- $(a)\Phi:[0,\infty)\to[0,\infty)$ is nondecreasing and right continuous
- (b) For every t > 0, $\Phi(t) < t$.

If for some $x_0 \in X$, the sequence $\{x_n\}$ defined by

(3)
$$Ix_{n+1} = (1 - c_n)Ix_n + c_nTx_n, \text{ for all } n \ge 0$$

with (i) $0 < c_n \le 1$ and (ii) $\lim_{n\to\infty} c_n = h > 0$ for n = 0, 1, 2, ... converges to a point z in X and if I is continuous at z, then T and I have a unique common fixed point. Further, if I is continuous at Tx, then T and I have a unique common fixed point at which T is continuous.

Proof. Let $z \in X$ such that

$$\lim_{n \to \infty} x_n = z.$$

Now since I is continuous at z. Then, we have that $Ix_n \to Iz$ as $n \to \infty$, so from (3) we have

$$Tx_n = \frac{Ix_{n+1} - (1 - c_n)Ix_n}{c_n} \to \frac{Iz - (1 - h)Iz}{h} = Iz \text{ as } n \to \infty.$$

Now we shall show that Tz = Iz. Form (2) we have

$$||Tx_n - Tz||^p \le \Phi(\max\{||Ix_n - Iz||^p, ||Ix_n - Tx_n||^p, ||Iz - Tz||^p, ||Ix_n - Tz||^p, ||Iz - Tx_n||^p\}).$$

Taking the limit as $n \to \infty$ yields

$$||Iz - Tz||^p \le \Phi(\max\{0, 0, ||Iz - Tz||^p, ||Iz - Tz||^p, 0\}).$$

If $||Tz - Iz||^p > 0$, then one obtains the contradiction

$$||Iz - Tz||^p < ||Iz - Tz||^p.$$

Therefore, Tz = Iz i.e, z is a coincidence point of T and I. Now since T and I are compatible mappings of type (T) if

$$\lim_{n \to \infty} ||ITx_n - Ix_n|| + \lim_{n \to \infty} ||ITx_n - TIx_n|| \le \lim_{n \to \infty} ||TIx_n - Tx_n||$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} Ix_n = \lim_{n \to \infty} Tx_n = t, \text{ for some } t \in X.$$

Hence using (2),

$$(4) \|T^{2}z - Tz\|^{p} \leq \Phi(\max\{\|ITz - Iz\|^{p}, \|ITz - T^{2}z\|^{p}, \|Iz - Tz\|^{p}, \|ITz - Tz\|^{p}, \|Iz - Tz\|^{p},$$

or

$$||T^2z - Tz||^p \le ||ITz - TIz||^p \le (||TIz - Iz|| + ||ITz - Iz||)^p$$

or

$$||T^2z - Tz|| \le ||T^2z - Tz|| - ||ITz - Iz||,$$

which implies that, $||ITz - Iz|| \le 0$, and so

$$(5) ITz = Iz = Tz.$$

Substitute from (5) to (4), we obtain that

$$||T^{2}z - Tz||^{p} \leq \Phi(\max\{0, ||Iz - T^{2}z||^{p}, 0, 0, ||Iz - T^{2}z||^{p}\})$$

$$\leq \Phi(\max\{0, ||Tz - T^{2}z||^{p}, 0, 0, ||Tz - T^{2}z||^{p}\})$$

$$\leq \Phi(||T^{2}z - Tz||^{p}) \leq ||T^{2}z - Tz||^{p}$$

which is a contradiction. Therefore, we obtain that

$$T^2z = Tz = ITz,$$

i.e., Tz is a common fixed point of T and I. Let v be a another common fixed point of T and I. By (2), we have

$$||u - v||^p = ||Tu - Tv||^p \le \Phi(\max\{||Iu - Iv||^p, ||Iu - Tu||^p, ||Iv - Tv||^p, ||Iu - Tv||^p, ||Iv - Tu||^p\}),$$

$$= \Phi(\max\{||u - v||^p, 0, 0, ||u - v||^p, ||v - u||^p\})$$

which implies that u = v. This completing the proof of the theorem.

Remark 2.1. Similar result of Theorem 2.1, can be obtained if we used the concept of weakly G-biased mappings instead of compatible mappings of type (T)/(I).

3. Application to operator equations

By using a contraction condition more general than that used in [11] and replacing weakly compatible mappings by compatible mappings of type (T)/(I), we investigate the solvability of certain nonlinear functional equations in Banach spaces.

Theorem 3.1. Let $\{f_n\}$ be sequence of elements in a Banach space X. Let ν_n be the unique solution of the equation $u-TIu=f_n$, where $T,I:X\to X$ satisfying the following conditions

 (h_1) T and I are compatible mapping of type (T)

(h₂) $T^2 = I^2 = \mathbf{I}$, where \mathbf{I} denotes the identity mapping,

(h₃) $||Tx - Ty||^2 \le q \max\{||Ix - Iy||^2, ||Ix - Tx||^2, ||Iy - Ty||^2, ||Ix - Ty||^2, ||Iy - Tx||^2\}$ for all $x, y \in X$, where $q \in (0, 1)$. If $||f_n|| \to 0$ as $n \to \infty$, then the sequence $\{\nu_n\}$ converges to the solution of the equation

$$u = Tu = Iu$$
.

Proof. We will show that $\{\nu_n\}$ is a Cauchy sequence.

$$\begin{split} &\|\nu_{n}-\nu_{m}\|^{2} \leq \left[\|\nu_{n}-TI\nu_{n}\|+\|TI\nu_{n}-TI\nu_{m}\|+\|TI\nu_{m}-\nu_{m}\|\right]^{2} \\ &\leq \left[\|\nu_{n}-TI\nu_{n}\|+\|TI\nu_{m}-\nu_{m}\|\right]^{2}+2\left[\|\nu_{n}-TI\nu_{n}\|+\|TI\nu_{m}-\nu_{m}\|\right] \\ &\times \left[\|TI\nu_{n}-\nu_{n}\|+\|\nu_{n}-\nu_{m}\|+\|\nu_{m}-TI\nu_{m}\|\right]+\|TI\nu_{n}-TI\nu_{m}\|^{2} \\ &\leq \left[\|\nu_{n}-TI\nu_{n}\|+\|TI\nu_{m}-\nu_{m}\|\right]^{2}+2\left[\|\nu_{n}-TI\nu_{n}\|+\|TI\nu_{m}-\nu_{m}\|\right] \\ &\times \left[\|TI\nu_{n}-\nu_{n}\|+\|\nu_{n}-\nu_{m}\|+\|\nu_{m}-TI\nu_{m}\|\right] \\ &+q\max\left\{\|I^{2}\nu_{n}-I^{2}\nu_{m}\|^{2},\|I^{2}\nu_{n}-TI\nu_{n}\|^{2},\|I^{2}\nu_{m}-TI\nu_{m}\|^{2},\\ &\|I^{2}\nu_{n}-TI\nu_{m}\|^{2},\|I^{2}\nu_{m}-TI\nu_{n}\|^{2}\right\} \\ &\leq \left[\|\nu_{n}-TI\nu_{n}\|+\|TI\nu_{m}-\nu_{m}\|\right]^{2}+2\left[\|\nu_{n}-TI\nu_{n}\|+\|TI\nu_{m}-\nu_{m}\|\right] \\ &\times \left[\|TI\nu_{n}-\nu_{n}\|+\|\nu_{n}-\nu_{m}\|+\|\nu_{m}-TI\nu_{m}\|\right]^{2} \\ &+q\max\left\{\|\nu_{n}-\nu_{m}\|^{2},\|\nu_{n}-TI\nu_{n}\|^{2},\|\nu_{m}-TI\nu_{m}\|^{2},\left[\|\nu_{n}-\nu_{m}\|+\|\nu_{m}-TI\nu_{m}\|\right]^{2},\\ &\left[\|\nu_{m}-\nu_{n}\|+\|\nu_{n}-TI\nu_{n}\|\right]^{2}\right\}. \end{split}$$

On letting $n \to \infty$ and using the hypothesis, we obtain

$$\|\nu_n - \nu_m\|^2 \le q \|\nu_n - \nu_m\|^2$$

which is a contradiction. It follows therefore that $\{\nu_n\}$ is a Cauchy sequence in X. Hence it converges, say to ν in X. Also

$$\|\nu - TI\nu\| \le \|\nu - \nu_n\| + \|\nu_n - TI\nu_n\| + \|TI\nu_n - TI\nu\|$$

$$\le \|\nu - \nu_n\| + \|\nu_n - TI\nu_n\| + \{q \max\{\|\nu_n - \nu\|^2, \|\nu_n - TI\nu_n\|^2, \|\nu - TI\nu\|^2, \|\nu_n - \nu\| + \|\nu - TI\nu\|^2, \|\nu_n - \nu\| + \|\nu_n - TI\nu_n\|^2\}\}^{\frac{1}{2}}.$$

Hence taking the limit as $n \to \infty$, we get $\nu = TI\nu$, which from (h_2) implies that $T\nu = I\nu$. Since T and I are compatible mapping of type (T), we have

$$\lim_{n \to \infty} ||ITx_n - Ix_n|| + \lim_{n \to \infty} ||ITx_n - TIx_n|| \le \lim_{n \to \infty} ||TIx_n - Tx_n||$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n\to\infty} Ix_n = \lim_{n\to\infty} Tx_n = t, \text{ for some } t\in X.$$

Using (h_2) and (h_3) , we obtain that

$$\begin{split} \|v - Tv\|^2 &= \|T^2v - Tv\|^2 \le q \max\{\|ITv - Iv\|^2, \|ITv - T^2v\|^2, \\ &\|Iv - Tv\|^2, \|ITv - Tv\|^2, \|Iv - TIv\|^2\} \\ &= q \max\{\|v - Tv\|^2, 0, 0, \|v - Tv\|^2, \|v - Tv\|^2\}, \end{split}$$

which implies that $\nu = T\nu$. Then $I\nu = IT\nu = TI\nu = \nu$, and ν is also a fixed point of I. Now, for the class of weakly G-biased mappings, we obtain the following theorem:

Theorem 3.2. Let $\{f_n\}$ and $\{g_n\}$ be sequences of elements in a Banach space X. Let $\{\nu_n\}$ be the unique solution of the system of equations $u-FGu=f_n$ and $u-HGu=g_n$, where F, G and $H:X\to X$ satisfying the following conditions:

- (I) $\{F,G\}$ and $\{H,G\}$ are weakly G-biased pairs,
- (II) $F^2 = G^2 = H^2 = \mathbf{I}$, where \mathbf{I} denotes the identity mapping,
- (III) $||Fx-Hy||^2 \le q \max\{||Gx-Gy||^2, ||Gx-Fx||^2, ||Gy-Hy||^2, ||Gx-Fy||^2, ||Gy-Hx||^2\}$ for all $x, y \in X$, where $q \in (0,1)$. If $||f_n||, ||g_n|| \to 0$ as $n \to \infty$, then the sequence $\{\nu_n\}$ converges to the solution of the equation

$$u = Fu = Gu = Hu$$
.

Proof. We will show that $\{\nu_n\}$ is a Cauchy sequence

$$\|\nu_{n} - \nu_{m}\|^{2} \leq [\|\nu_{n} - FG\nu_{n}\| + \|FG\nu_{n} - HG\nu_{m}\| + \|HG\nu_{m} - \nu_{m}\|]^{2}$$

$$\leq \{\|\nu_{n} - FG\nu_{n}\| + \|HG\nu_{m} - \nu_{m}\|\}^{2} + 2[\|\nu_{n} - FG\nu_{n}\| + \|HG\nu_{n} - \nu_{m}\|]$$

$$\times [\|FG\nu_{n} - \nu_{n}\| + \|\nu_{n} - \nu_{m}\| + \|\nu_{m} - HG\nu_{m}\|] + \|FG\nu_{n} - HG\nu_{n}\|^{2}$$

$$\leq \{\|\nu_{n} - FG\nu_{n}\| + \|HG\nu_{m} - \nu_{m}\|\}^{2} + 2[\|\nu_{n} - FG\nu_{n}\| + \|HG\nu_{n} - \nu_{m}\|]$$

$$\times [\|FG\nu_{n} - \nu_{n}\| + \|\nu_{n} - \nu_{m}\| + \|\nu_{m} - HG\nu_{m}\|] + q \max\{\|G^{2}\nu_{n} - G^{2}\nu_{m}\|$$

$$\|G^{2}\nu_{n} - FG\nu_{n}\|, \|G^{2}\nu_{n} - HG\nu_{m}\|^{2}, \|G^{2}\nu_{n} - FG\nu_{m}\|^{2}, \|G^{2}\nu_{m} - HG\nu_{m}\|^{2}\}$$

$$\leq [\|\nu_{n} - FG\nu_{n}\| + \|HG\nu_{m} - \nu_{m}\|]^{2} + 2[\|\nu_{n} - FG\nu_{n}\| + \|FG\nu_{m} - \nu_{m}\|]$$

$$\times [\|FG\nu_{n} - \nu_{n}\| + \|\nu_{n} - \nu_{m}\| + \|\nu_{m} - HG\nu_{m}\|]$$

$$+q \max\{\|\nu_{n} - \nu_{m}\|^{2}, \|\nu_{n} - FG\nu_{n}\|^{2}, \|\nu_{m} - HG\nu_{m}\|^{2}, [\|\nu_{n} - \nu_{m}\| + \|\nu_{m} - FG\nu_{m}\|]^{2}\}.$$

Letting $n \to \infty$ with m > n, we have

$$\lim_{m \to \infty} \|\nu_n - \nu_m\|^2 \le q \lim_{m \to \infty} \|\nu_n - \nu_m\|^2,$$

which implies that

$$\lim_{m,n\to\infty} \|\nu_n - \nu_m\|^2 = 0.$$

Thus $\{\nu_n\}$ is a Cauchy sequence in X. And converges to a point ν in X. Further;

$$\|\nu - HG\nu\| \le \|\nu - \nu_n\| + \|\nu_n - FG\nu_n\| + \|FG\nu_n - HG\nu\|$$

$$\le \|\nu - \nu_n\| + \|\nu_n - FG\nu_n\| + \{q \max\{\|\nu_n - \nu\|^2, \|\nu_n - FG\nu_n\|^2, \|\nu - HG\nu\|^2, \|\nu_n - \nu\| + \|\nu - FG\nu\|^2, \||\nu_n - \nu\| + \|\nu_n - HG\nu_n\|^2\}\}^{\frac{1}{2}}$$

Hence taking the limit as $n \to \infty$, we get $\nu = HG\nu$, which from (I) implies that $H\nu = G\nu$. Similarly, $G\nu = F\nu$. From (I), we have

$$d(GFz, Gz) \le d(FGz, Fz)$$
 and $d(GHz, Gz) \le d(HGz, Hz)$,

which implies

$$d(G^2z, Gz) \le d(F^2z, Fz)$$
 and $d(G^2z, Gz) \le d(H^2z, Hz)$,

so we obtain

$$H^2z = Hz = F^2z = Fz$$
 and $FGv = GFv = v = HGv = GHv$.

Using (II) and (III),

$$\begin{split} \|v - Hv\|^2 &= \|F^2v - Hv\|^2 \\ &\leq q \max\{\|GFv - Gv\|^2, \|GFv - F^2v\|^2, \\ &\|Gv - Hv\|^2, \|GFv - Fv\|^2, \|Gv - HFv\|^2\} \\ &= q \max\{\|v - Hv\|^2, 0, 0, \|v - Hv\|^2, \|v - Hv\|^2\}, \end{split}$$

which implies that v = Hv. Then

$$Gv = GFv = FGv = v, Gv = GHv = HGv = v,$$

this completing the proof of the theorem.

Corollary 3.1. Let $\{f_n\}$ be sequence of elements in a Banach space X. Let ν_n be the unique solution of the equation $u - FGu = f_n$, where $F, G : X \to X$ satisfying the following conditions:

- (d_1) F and G are weakly G-biased mappings
- (d_2) $F^2 = G^2 = \mathbf{I}$, where \mathbf{I} denotes the identity mapping,
- $(d_3) \|Fx Fy\|^2 \le q \max\{\|Gx Gy\|^2, \|Gx Fx\|^2, \|Gy Fy\|^2, \|Gx Fy\|^2, \|Gy Fx\|^2\}$ for all $x, y \in X$, where $q \in (0, 1)$. If $\|f_n\| \to 0$ as $n \to \infty$, then the sequence $\{\nu_n\}$ converges to the solution of the equation

$$u = Fu = Gu$$
.

References

- [1] A. El-Sayed Ahmed, Common fixed point theorems for m-weak** commuting mappings in 2-metric spaces, Applied Mathematics and Information Science, 1(2)(2007), 157-171.
- [2] Lj. B. Ciric and J. S. Ume, Common fixed points via "weakly biased Gregus type mappings", Acta Math. Univ. Comenianae, 2(2003), 185-190.
- [3] Lj. B. Ciric and J. S. Ume, Some common fixed point theorems for weakly compatible mappings, J. Math. Anal. Appl. 314 No. 2 (2006), 488-499.
- [4] G. Jungck and H. K. Pathak, Fixed points via "biased maps", Proc. Amer. Math. Soc. 123 (1995), 2049-2060.
- [5] G. Jungck, Common fixed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci. 4 No.2(1996), 199-215.
- [6] M.S. Khan, M. Imdad and S. Sessa, A coincidence theorem in linear normed spaces, Libertas Mathematica 6(1986), 83-94.
- [7] P. P. Murthy, Important tools and possible applications of metric fixed point theory, Nonlinear Analysis, 47(2001), 3479-3490.
- [8] H. K. Pathak, On a fixed point theorem of Jungck, proceedings of the first world congress and Nonlinear Analysis, (1992), 19-26.
- [9] H. K. Pathak, Applications of fixed point technique in solving certain dynamic programming and vaiational inequalities, Nonlinear Analysis, 63(2005), 309-319.
- [10] H.K. Pathak, S.M. Kang and Y.J. Cho, Gergus type common fixed point theorems for compatible mappings of type (T) and variational inequalities, Publ. Math. Debrecen 46(3-4)(1995), 285-299.
- [11] R. A. Rashwan and A. M. Saddeek, Some fixed point theorems in Banach space for weakly compatible mappings, Stud. Cercet. Stiint., Ser. Mat., Univ. Bacau, 8(1998), 119-126.
- [12] N. Shahzad and S. Sahar, Some common fixed point theorems for biased mappings, Arch. Math. Brno, 36 No. 3(2000), 183-194.
- [13] N. Shahzad and S. Sahar, Fixed points of biased mappings in complete metric spaces, Rad. Mat. 11 No. 2(2003), 249-261.