
Available online at http://scik.org

Advances in Fixed Point Theory, 3 (2013), No. 1, 93-104

ISSN: 1927-6303

PRESIC TYPE HYBRID CONTRACTION AND FIXED POINTS IN
CONE METRIC SPACES

RENY GEORGE1,2

1Department of Mathematics, College of Science, Salmanbin Abdulaziz University, Al-Kharj, Kingdom

of Saudi Arabia

2Department of Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarh, India

Abstract. A generalised common fixed point theorem of Presic type for a pair of hybrid mappings

f : X → X and T : Xk → CB(X) in a cone metric space is proved. Our result generalises many well

known results.

Keywords: Coincidence and common fixed points; cone metric space; set valued contraction; weakly

compatible

2000 AMS Subject Classification: 47H10

1. Introduction

Nadler[18] introuced set valued contractive mappings in metric spaces and proved ex-

istence of fixed points for such mappings. Later many authors extended and generalised

the work of Nadler in different directions. Huang and Zang [3] generalising the notion of

metric space by replacing the set of real numbers by ordered normed spaces, defined a

cone metric space and proved some fixed point theorems of contractive mappings defined

on these spaces. Rezapour and Hamlbarani [4], omitting the assumption of normality,
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obtained generalisations of results of [3]. In [5], Di Bari and Vetro obtained results on

points of coincidence and common fixed points in non-normal cone metric spaces. Further

results on fixed point theorems in such spaces were obtained by several authors, see [5-15].

Recently Wardowski[17] introduced set valued contraction of Nadler type in cone metric

space and proved a fixed point theorem for this type of mappings.

Considering the convergence of certain sequences, Presic [1] proved the following :

Theorem 1.1. Let (X, d) be a metric space, k a positive integer, T : Xk −→ X be a

mapping satisfying the following condition :

(1.1) d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) ≤


q1.d(x1, x2) + q2.d(x2, x3)

+ · · ·+ qk.d(xk, xk+1)

where x1, x2, . . . , xk+1 are arbitrary elements in X and q1, q2, . . . , qk are non-negative

constants such that q1 + q2 + · · · + qk < 1. Then, there exists some x ∈ X such

that x = T (x, x, . . . , x). Moreover if x1, x2, . . . , xk are arbitrary points in X and for

n ∈ N xn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence < xn > is convergent and

lim xn = T (lim xn, lim xn, . . . , lim xn).

Note that for k = 1 the above theorem reduces to the well-known Banach Contraction

Principle. Ciric and Presic [2] generalising the above theorem proved the following:

Theorem 1.2. Let (X, d) be a metric space, k a positive integer, T : Xk −→ X be a

mapping satisfying the following condition :

(1.2)

d(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1)) ≤ λ.max{d(x1, x2), d(x2, x3), . . . d(xk, xk+1)

where x1, x2, . . . , xk+1 are arbitrary elements in X and λ ∈ (0, 1). Then, there exist-

s some x ∈ X such that x = T (x, x, . . . , x). Moreover if x1, x2, . . . , xk are arbitrary

points in X and for n ∈ Nxn+k = T (xn, xn+1, . . . , xn+k−1), then the sequence < xn >

is convergent and lim xn = T (lim xn, lim xn, . . . , lim xn). If in addition T satisfies
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D(T (u, u, . . . u), T (v, v, . . . v)) < d(u, v), for all u, v ∈ X then x is the unique point satis-

fying x = T (x, x, . . . , x).

In [16], R. George et al. generlising Theorems (1.1) and (1.2) above proved the existence

of common fixed points of two mappings satisfying Presic type contractions in a cone

metric space and applied this result in proving the existence of stationary distribution in

Markov Process. The purpose of this work is to introduce set valued hybrid contraction of

Presic type and prove fixed point theorem for this type of mappings in cone metric space

without using normality condition for the cone. Our results provide a proper extension

and generalisation of Theorems 3.1 of [17] which in turn will extend and generalise the

results of [3, 4].

2. Preliminaries

Let E be a real Banach space and P a subset of E. Then, P is called a cone if

(i) P is closed, non-empty, and satisfies P 6= {θ}, θ is the zero vector of E.

(ii) ax+ by ∈ P for all x, y ∈ P and non-negative real numbers a, b

(iii) x ∈ P and −x ∈ P ⇒ x = 0, i.e. P ∩ (−P ) = θ

Given a cone P ⊂ E, we define a partial ordering � with respect to P by x � y if and

only if y − x ∈ P. We shall write x ≺ y if x � y and x 6= y, and x � y if y − x ∈ intP ,

where intP denote the interior of P . The cone P is called normal if there is a number

K > 0 such that for all x, y ∈ E, θ � x � y implies ‖ x ‖≤ K ‖ y ‖ .

Definition 2.1. [3] Let X be a non empty set. Suppose that the mapping d : X ×X → E

satisfies:

(d1)θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y

(d2)d(x, y) = d(y, x) for allx, y ∈ X

(d3)d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X

Then, d is called a cone metric on X and (X,d) is called a cone metric space.
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Definition 2.2. [3] Let (X, d) be a cone metric space . The sequence {xn} in X is said

to be:

(a) A convergent sequence if for every c ∈ E with θ � c, there is n0 ∈ N such that for

all n ≥ n0, d(xn, x)� c for some x ∈ X. We denote this by limn→∞xn = x.

(b) A Cauchy sequence if for all c ∈ E with θ � c, there is n0 ∈ N such that

d(xm, xn)� c, for all m,n ≥ n0.

(c) A cone metric space (X, d) is said to be complete if every Cauchy sequence in X is

convergent in X.

(d) A self-map T on X is said to be continuous if limn→∞xn = x implies that

limn→∞T (xn) = T (x), for every sequence {xn}in X.

A set A ⊂ X is said to be closed if for any sequence {xn} ⊂ A convergent to x we have

x ∈ A. We denote by C(X) the collection of all non empty closed subsets of X.

In this paper let E be a real Banach space, P be a cone in E with non empty interior

and � be a partial ordering with respect to P .

Definition 2.3. [17] Let (X, d) be a cone metric space and A be the collection of all non

empty subsets of X. Map H : A×A → E is called a H-cone metric with respect to d if

for any A1, A2 ∈ A the following conditions hold :

(H1) H(A1, A2) = θ ⇒ A1 = A2;

(H2) H(A1, A2) = H(A2, A1);

(H3) ∀ε ∈ E θ � ε, ∀x ∈ A1 ∃y ∈ A2 such that d(x, y) � H(A1, A2) + ε;

(H4) One of the following holds :

(i) ∀ε ∈ E θ � ε, ∀y ∈ A2 ∃x ∈ A1 such that H(A1, A2) � d(x, y) + ε

(ii) ∀ε ∈ E θ � ε, ∀y ∈ A1 ∃xA2 ∈ such that H(A1, A2) � d(x, y) + ε

For examples of H-cone metric see [17].
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Lemma 2.4. [17] Let (X, d) be a cone metric space and A be the collection of all non

empty subsets of X. If H : A×A → E is a H-cone metric with respect to d then the pair

(A, H) is a cone metric space.

Definition 2.5. Let (X, d) be a metric space, k a positive integer, T : Xk → C(X) and

f : X → X be mappings.

(a) An element x ∈ X is said to be a coincidence point of f and T if and only if

f(x) ∈ T (x, x, . . . , x). If x = f(x) ∈ T (x, x, . . . , x), then we say that x is a common

fixed point of f and T . If w = f(x) ∈ T (x, x, . . . , x), then w is called a point of

coincidence of f and T .

(b) Mappings f and T are said to be commuting if and only if f(T (x, x, . . . x)) ⊆

T (fx, fx, . . . fx) for all x ∈ X.

(c) Mappings f and T are said to be weakly compatible if and only if they commute

at their coincidence points.

Remark 2.6. For k = 1, the above definitions reduce to the usual definition of commuting

and weakly compatible hybrid mappings in a metric space.

The set of coincidence points and common fixed points of f and T is denoted by C(f, T )

and Fix(f, T ) respectively.

3. Main results

Consider a function φ : Ek → E such that

(a) φ is an increasing function, i.e x1 � y1, x2 � y2, . . . , xk � yk implies φ(x1, x2, . . . , xk) �

φ(y1, y2, . . . , yk).

(b) φ(t, t, t, . . .) � t, for all t ∈ E

Now, we present our main results as follows :

Theorem 3.1. Let (X, d) be a cone metric space with solid cone P contained in a real

Banach space E, A be the collection of all non empty subsets of X and H : A×A → E

be a H-cone metric with respect to d . For any positive integer k, let T : Xk → C(X) and
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f : X → X be mappings satisfying the following conditions:

(3.1) T (Xk) ⊆ f(X)

(3.2)


H(T (x1, x2, . . . , xk), T (x2, x3, . . . , xk+1))

� λφ(d(fx1, fx2), d(fx2, fx3), . . . , (fxk, fxk+1))

where x1, x2, . . . , xk+1are arbitrary elements in X, λ ∈ (0, 1)

(3.3) f(X) is complete

(3.4)


there exist elements x1, x2, . . . , xk, xk+1 in X and R in E such that

fxk+1 = T (x1, x2, . . . , xk), θ � R and R is the upper bound

of the set
{
d(fx1,fx2)

α
, d(fx2,fx3)

α2 , . . . , d(fxk,fxk+1)

αk

}
, α = λ

1
k

Then, f and T have a coincidence point, i.e. C(f, T ) 6= ∅.

Proof: Let {εn} ⊂ E be a sequence satisfying

(3.5) θ � εn and εi � Rαk+i ∀ i ∈ N

By (3.1), (3.4) and (H3) there exist yk+2 = fxk+2 ∈ T (x2, . . . , xk+1) such that

d(yk+1, yk+2) = d(fxk+1, fxk+2)

� H(T (x1, x2, . . . , xk), T (x2, . . . , xk+1) + ε1

� λφ(d(fx1, fx2), d(fx2, fx3), . . . , (fxk, fxk+1)) + ε1

� λφ(Rα,Rα2, . . . , R.αk) + ε1

� λRα + ε1 � Rαk+1 + ε1 � 2Rαk+1.

Similarly there exist yk+3 = fxk+3 ∈ T (x3, . . . , xk+2) such that

d(yk+2, yk+3) = d(fxk+2, fxk+3)

� H(T (x2, . . . , xk+1), T (x3, . . . , xk+2) + ε2

� λφ(d(d(fx2, fx3), . . . , (fxk+1, fxk+2)) + ε2

� λφ(Rα2, . . . , 2Rαk+1) + ε2

� λ2Rαk+1 + ε2
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� 3Rαk+2.

Also from (3.4) we see that d(y1, y2) � Rα, d(y2, y3) � Rα2 .... d(yk, yk+1) � Rαk.

Thus we can define sequence < yn > in f(X) as yn = fxn for n = 1, 2, . . . , k and

yk+n = f(xk+n) ∈ T (xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . such that

(3.6) d(yn, yn+1) � (n+ 1)Rαn ∀ n

Now for p, n ∈ N , we have

d(yn, yn+p) � d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yn+p−1, yn+p),

� (n+ 1)Rαn + (n+ 2)Rαn+1 + · · ·+ (n+ p)Rαn+p−1

= nRαn
∑p−1

i=0 α
i +Rαn

∑p
i=1 iα

i−1

Let θ � c be arbitrary . Choose δ > 0 such that c−Nδ(0) ⊆ P where Nδ(0) = {y ∈ E; ‖

y ‖< δ}. Also choose a natural number N1 such that nRαn
∑p−1

i=0 α
i + Rαn

∑p
i=1 iα

i−1 ∈

Nδ(0), for all n ≥ N1. Then, nRαn
∑p−1

i=0 α
i + Rαn

∑p
i=1 iα

i−1 � c for all n ≥ N1. Thus,

d(yn, yn+p) �� c for all n ≥ N1. Hence, sequence < yn > is a Cauchy sequence in f(X),

and since f(X) is complete, there exists v, u ∈ X such that limn→∞yn = v = f(u).

Choose a natural number N2 such that d(yn, yn+1) � c
λk

and d(fu, yn+1) � c
λk

for all

n ≥ N2. Then for all n ≥ N2

H(T (xn, xn+1, . . . xn+k−1), T (u, u, . . . u))

� H(T (u, u, . . . u), T (u, u, . . . xn)) +H(T (u, u, . . . xn), T (u, u, . . . xn, xn+1))

+ · · ·H(T (u, xn, . . . xn+k−2), T (xn, xn+1 . . . xn+k−1)

� λφ{d(fu, fu), d(fu, fu), . . . , d(fu, fxn)}

+λφ{d(fu, fu), d(fu, fu), . . . , d(fu, fxn), d(fxn, fxn+1)}+ · · ·

+λφ{d(fu, fxn), d(fxn, fxn+1), . . . d(fxn+k−2, fxn+k−1)}.

= λφ(θ, θ, . . . , d(fu, fxn))

+λφ(θ, θ, . . . , d(fu, fxn), d(fxn, fxn+1)) + · · ·

+λφ(d(fu, fxn), d(fxn, fxn+1), . . . d(fxn+k−2, fxn+k−1)).

� λφ( c
λk
, c
λk
, . . . , c

λk
) + λφ( c

λk
, c
λk
, . . . , c

λk
)
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+ · · ·+ λφ( c
λk
, c
λk
, . . . , c

λk
)

� λ c
λk
. . .+ λ c

λk
= c.

Thus, H(T (xn, xn+1, . . . xn+k−1), T (u, u, . . . u))� c
m

for all m ≥ 1.

So, c
m
− H(T (xn, xn+1, . . . xn+k−1), T (u, u, . . . u)) ∈ P for all m ≥ 1. Since c

m
→ θ as

m→∞ and P is closed, −H(T (xn, xn+1, . . . xn+k−1), T (u, u, . . . u)) ∈ P , but P
⋂

(−P ) =

{θ}. Therefore, H(T (xn, xn+1, . . . xn+k−1), T (u, u, . . . u)) = θ for all n ≥ N2 and so the se-

quence {T (xn, xn+1, . . . xn+k−1)} converges to T (u, u, . . . u) with respect to the cone metric

H. Since yk+n = f(xk+n) ∈ T (xn, xn+1, . . . , xn+k−1), n = 1, 2, . . . we have Limn→∞yk+n ∈

Limn→∞T (xn, xn+1, . . . , xn+k−1), i.e. Limn→∞yn = v = fu ∈ T (u, u, ...u). Thus C(f, T ) 6=

∅ and Limn→∞yn = v is a point of coincidence.

Theorem 3.2. Let (X, d) be a cone metric space with solid cone P contained in a real

Banach space E. For any positive integer k, let T : Xk → X and f : X → X be mappings

satisfying (3.1), (3.2) with λ ∈ (0, 1
k
),(3.3), (3.4) and

(3.7) u ∈ C(T, f)⇒ T (u, u, ...u) = {fu}.

Then T andf have a unique point of coincidence. Further if f and T are weakly compatible,

then f and T have a unique common fixed point. Moreover if x1, x2, . . . , xk are arbitrary

points in X and for n ∈ N, yn+k = f(xn+k) = T (xn, xn+1, . . . xn+k−1), n = 1, 2, . . ., then

the sequence < yn > is convergent and lim yn = f(lim yn) = T (lim yn, lim yn, . . . , lim yn).

Proof: By Theorem 3.1, there exists v, u ∈ X such that Limn→∞yn = v = f(u) ∈

T (u, . . . u). We will prove that v is the unique point of coincidence. Suppose there

exists another point of coincidence v′ ∈ X such that v′ = fu′ ∈ T (u′, . . . u′) for some

u′ ∈ C(T, f). Then by (3.6) {v} = {fu} = T (u, . . . u) and {v′} = {fu′} = T (u′, . . . u′).

By (3.2) we have,

d(v′, v) = H({v′}, {v}) = H(T (u′, u′, . . . u′), T (u, u, . . . u))

≤ H(T (fu′, u′, . . . u′), T (u′, u′, . . . u′, u)) +H(T (u′, u′, . . . fu, u),

T (u′, u′, . . . , u, u)) + · · ·+H(T (u′, u, . . . u, u), T (u, u, . . . u))

≤ λφ(d(fu′, fu′), . . . d(fu′, fu′), d(fu′, fu)) + λφ(d(fu′, fu′), . . . d(fu′, fu),
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d(fu, fu)) + · · ·λφ(d(fu′, fu), . . . d(fu, fu), d(fu, fu))

= λφ(θ, θ, θ, . . . d(fu′, fu)) + λφ(θ, θ . . . θ, d(fu′, fu), θ) + · · · .λφ(d(fu′, fu), θ, θ . . . θ) =

kλd(fu′, fu) = kλd(v′, v).

Repeating this process n times we get, d(v′, v) ≤ knλnd(v′, v). So knλnd(v′, v) −

d(v′, v) ∈ P for all n ≥ 1. Since knλn → 0 as n → ∞ and P is closed, −d(v′, v) ∈ P ,

but P
⋂

(−P ) = {θ}. Therefore, d(v′, v) = θ and so v′ = v i.e. Limn→∞yn = v is the

unique point of coincidence . Also since f and T are weakly compatible f(T (u, u, . . . u) ∈

T (fu, fu, fu . . . fu) i.e.fv ∈ T (v, v, . . . v). But since Limn→∞yn = v is the unique point

of coincidence, we have,Limn→∞yn = v = fv ∈ T (v, v, . . . v). Thus Limn→∞yn = v is the

unique common fixed point of f and T .

Remark 3.3. For k = 1 and f = Id(identity mapping), Theorem 3.2 becomes set valued

contraction of Nadler type in cone metric space as introduced by Wardowski[16]. However

we dont require normality condition for the cone.

Example 3.4. Let E = R2, P = {(x, y) ∈ E\x, y ≥ 0}, X = [0, 2] and d : X × X → E

such that d(x, y) = (| x − y |, | x − y |). Then, d is a cone metric on X. Let A be the

collection of all non empty subsets of X of the form A = {[0, x] : x ∈ X}

We define H-cone metric H : A×A → E with respect to d as follows :

H(A,B) = (| x− y |, | x− y |) for A = [0, x] and B = [0, y].

Let T : X2 → X and f : X → Xbe defined as follows:

T (x, y)=[0, (x
2+y2)
4

+1
2
] if (x, y) ∈ [0, 1)× [0, 1)

T (x, y)=[0, (x+y)
4

+1
2
] if (x, y) ∈ [1, 2]× [1, 2]

T (x, y)=[0, (x
2+y)
4

+1
2
] if (x, y) ∈ [0, 1)× [1, 2]

T (x, y)=[0, (x+y
2)

4
+1

2
] if (x, y) ∈ [1, 2]× [0, 1)

f(x) = x2 if x ∈ [0, 1)

f(x)=x if x ∈ [1, 2]
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T and f satisfies condition (3.2) as follows:

Case 1. x, y, z ∈ [0, 1)

d(T (x, y), T (y, z))= (| T (x, y)− T (y, z) |, | T (x, y)− T (y, z) |)

= (| x2−z2
4
|, | x2−z2

4
|)

≤ (| x2−y2
4
| + | y2−z2

4
|, | x2−y2

4
| + | y2−z2

4
|)

≤ 1
2
.max{d(fx, fy), d(fy, fz)}

Case 2. x, y ∈ [0, 1) and z ∈ [1, 2]

d(T (x, y), T (y, z))= (| x2+y2
4
− y2+z

4
|, | x2+y2

4
− y2+z

4
|)

≤ (| x2−y2
4
| + | y2−z

4
|, | x2−y2

4
| + | y2−z

4
|)

≤ 1
2
.max{(fx, fy), d(fy, fz)}

Case 3. x ∈ [0, 1) and y, z ∈ [1, 2]

d(T (x, y), T (y, z))= (| x2+y
4
− y+z

4
|, | x2+y

4
− y+z

4
|)

=(| x2−z
4
|, | x2−z

4
|)

≤ (| x2−y
4
| + | y−z

4
|, | x2−y

4
| + | y−z

4
|)

≤ 1
./2
.max{d(fx, fy), d(fy, fz)}

Case 4. x, y, z ∈ [1, 2]

d(T (x, y), T (y, z))= (| x+y
4
− y+z

4
|, | x+y

4
− y+z

4
|)

≤ (| x−y
4
| + | y−z

4
|, | x−y

4
| + | y−z

4
|)

≤ 1
2
.max{(fx, fy), d(fy, fz)}.

Similarly in all other cases d(T (x, y), T (y, z)) ≤ 1
2
.max{(fx, fy), d(fy, fz)}. Thus, f and

T satisfy condition (3.2) with φ(x1, x2) = max{x1, x2}. We see that C(f, T ) = {0, 1}, f

and T commute at 0 and 1 so weakly compatible. Finally, Fix(f, T ) = {0, 1}. However

f and T do not satisfy condition (3.6) and so the common fixed point of f and T is not

unique.
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Example 3.5. Let E = R2, P = {(x, y) ∈ E\x, y ≥ 0}, X = [0, 2] and d : X × X → E

such that d(x, y) = (| x − y |, | x − y |). Then, d is a cone metric on X. Let A be the

collection of all non empty subsets of X of the form A = {[0, x] : x ∈ X}
⋃
{{x} : x ∈ X}

We define H-cone metric H : A×A → E with respect to d as follows :

(3.8)

H(A,B) =



(| x− y |, | x− y |) for A = [0, x] and B = [0, y]

(| x− y |, | x− y |) for A = {x} and B = {y}

(max{y, | x− y |},max{y, | x− y |)} for A = [0, x] and B = {y}

(max{x, | x− y |},max{x, | x− y |}) for A = {x} and B = [0, y]

Let T : X2 → X and f : X → Xbe defined as follows:

(3.9) T (x, y) =



[0, x
2+y2

8
] if (x, y) ∈ [0, 1)× [0, 1)

[0, x+y
8

] if (x, y) ∈ [1, 2]× [1, 2]

[0, x
2+y
8

] if (x, y) ∈ [0, 1)× [1, 2]

[0, x+y
2

8
] if (x, y) ∈ [1, 2]× [0, 1)

f(x) =


x2

2
if x ∈ [0, 1)

x if x ∈ [1, 2]

As in the previous example we can show that f and T satisfy condition (3.1) with φ(x1, x2) =

max{x1, x2} and λ = 1
4
. Clearly C(f, T ) = {0} and T (0, 0) = {0}. Thus all conditions of

Theorem 3.2 are satisfied and Fix(f, T ) = {0}.
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