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Abstract: In this paper, we establish some common fixed point theorems for six mappings in the
framework of ordered G-metric space satisfying some generalized contractive conditions which
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Examples are presented to support our results.
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1. Introduction and preliminaries

The notion of G-metric space was introduced by Mustafa and Sims [5], [6] as a
generalization of metric spaces. Afterwards Mustafa and Sims [7] proved fixed point
theorems for mappings satisfying different contractive conditions in this space. The
study of uniqgue common fixed points of mappings satisfying strict contractive
conditions has been at the center of rigorous research activity. In [1] Abbas and
Rhoades studied common fixed point results for non-commuting mappings without
continuity in G-metric spaces. Moreover, existence of fixed points in ordered metric

spaces has been initiated by Ran and Reurings [9] and further studied by Nieto and
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Lopez [8]. Recently, Abbas et.al. [3] extended and generalized the results in [7] and
proved common fixed point theorems for three mappings in complete G-metric space.
The purpose of this article is to study common fixed point theorems for six mappings
in ordered G-metric spaces without using weakly compatible. Our result generalize
various results of Abbas et.al. [3]. Here we present the necessary definitions and
results in G-metric spaces which will be useful for the rest of the paper. However, for
details we refer to [5], [6].

Definition 1.1. [6] Let X be a nonempty set, and let G : X3 — [0, »), be a function
satisfying:

(G) G y,2)=0if x=y=z

(G,)0<G(x,x,y), forall x,y € X, with x # y,

(G3) G(x,x,y) <G(x,y,2),Vx,y,z € X, withz # vy,

(G)G(x,y,z) =G(x,2,y) = G(y,z,x) ..., (Symmetry in all three variables),

(Gs) G(x,y,z) < G(x,a,a) + G(a,y,2),Vx,y,z,a € X, (rectangle inequality).
Then the function G is called a generalized metric, or more specifically a G-metric
on X, and the pair (X, G) iscalled a G-metric space.

Definition 1.2.[6] Let (X,G) be a G-metric space, a sequence (x,,) is said to be

(i) G-convergent if for every € > 0, there exists an x € X and k € N such that
forall mn=>k, G(x, x,,x,) <€ .

(i) G-Cauchy if for every € > 0, there existsan k € N such that for all m,n,p >
k, G(xm, X xp) <¢, thatis G(xpy,xn,xp) > 0as m,n,p - .

(iii) A space (X,G)is said to be G-complete if every G-Cauchy sequence in
(X, G) is G-convergent.

Definition 1.3.[6] A G-metric space X is symmetric if G(x,y,y) = G(y,x,x) for
all x,y € X.

Lemma 1.4.[6] Let (X,G) bea G-metric space. Then the following are equivalent:
(i) (x,,) is convergent to x,

(i) G(xp, xp, x) > 0asn - oo,

(i) G(xp,x,x) > 0asn - oo,
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(iv)G(xp, xm, x) = 0asn,m — oo,
Lemma 1.5.[6] Let (X,G) be a G-metric space. Then the following are equivalent:
(i) The sequence (x,) is G-Cauchy,
(ii) for every € > 0, there exists k € Nsuch that G(x,,xmn,x,) <& for
mn = k.
Lemma 1.6.[6] Let (X,G) be a G-metric space. Then the function G(x,y,z) is
jointly continuous in all three of its variables.
Proposition 1.7.[6] every G-metric space (X,G) will define a metric space (X,d;) by
de(x,y) = G(x,y,y) +G(y,x,x),Vx,y €X.

Proposition 1.8.[6] Let (X, G)be a G-metric space. Then for any x,y,z,and a €
X, it follows that
(Dif G(x,y,z) = Othenx =y = z,
(i) G(x,y,z) <G(x,x,¥) +G(x,x,2),
(i) G(x,y,y) <2G(x,x,y),
(iv) G(x,y,z) <G(x,a,z) +G(a,y,2),
W) G(x,y,2z) < %(G(x, y,a)+G(x,a,z)+G(ay,z)),
W) G(x,y,z) <G(x,a,a)+G(y,a,a) +G(z,a,a),
Definition 1.9. [4] Let X be a nonempty set. Then (X, <, G)is called an ordered
G-metric space if (X, G) is a G- metric space and (X, <) is a partial order set.
Definition 1.10. Let (X, <) be a partial ordered set. Then two points x,y € X are
said to be comparableif x < y or y < x.

In [2] Abbas et al. introduced the following definitions:
Definition 1.11. [2] Let (X, <) be a partially ordered set. A mapping f is called weak
annihilatorof g if fgx < x forall x € X.
Definition 1.12. [2] Let (X, <) be a partially ordered set. A mapping f on X is
called dominating if x < fx forall x € X.
For examples illustrating the above definitions are given in [2].
Definition 1.13. A subset W of a partially ordered set X is said to be well ordered if

every two elements of W are comparable.
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2. Common fixed point theorems
In this section, we establish common fixed point theorems for six mappings defined
on an ordered G-metric space. We begin with the following theorem which generalize
(Theorem 2.1, [3]).
Theorem 2.1. Let (X, <,G)be an ordered G-metric space and let f,g,h,S,T and R
be self-maps on X satisfying the following condition
G(fx,gy,hz) < kM(x,y,z), (2.1)
where k € [0,) and
M(x,y,z) = max{G(Sx,Ty,Rz),G(fx, fx,5x),G(gy,gy,Ty),G(hz, hz, Rz),

(9y,9y,5%),G(Ty, hz,hz),G(Rz, fx, fx)}
for all comparable elements x,y,z € X. Suppose that
@Of X)) € TX),g(X) € RX),h(X) < SX),
(ii)dominating maps f, g, h are weak annihilators of T,R,S respectively,
(iii) one of S(X),T(X) or R(X) isa G-complete subspace of X.
If, for a non-decreasing sequence {x,} with x, <y, for all n>0 and y, - q
implies that x,, < q, then f,g,h,S,T and R have a common fixed point. Moreover,
the set of common fixed points of f,g,h,S,T and R is well ordered if and only if
f,9,h,S,T and R have one and only one common fixed point.
Proof. Let x, be an arbitrary point in X. Since f (X) € T(X), g(X) € R(X), h(X) ©
S(X), we can choose x;, x5, x5 € X such that y, = fxo = Tx;,¥; = gx; = Rx,, and
y, = hx, = Sx3. Continuing this process, we define the sequences x,, and y,, in X by
Yan = f X3n = TX3n41, Yan+1 = 9X3n+1 = RXani2, Yant2 = WXzpio = SXanys,
forn = 0. By given assumptions, we get

X3n S fX3n = TX3p41 S fTX3n41 < X3n41

X3n+1 N 9X3n+1 = RXzpi2 S GRX3p42 < Xzpa2)
X3n+2 S MXapiz = SXzpez S ASX3ni3 S Xzpys

So, for all n > 0 we have x, < x,41. Suppose that G(Vy,, Yn+1, Yns2) > 0 for all
n = 0. If not, then for some m >0, y,, = Ym+1 = Yms2 and the sequence

{y,,} becomes constant for n > m.
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Indeed, let m = 3k then ys;;, = V3x41 = Vsks2 and from (2.1) we obtain

G(V3k+3: Yak+1 Yak+2) = G(f X343, 9X3pr1, MX3p42) < KM (X3p43, X3k4+15 X3k 42)
where

M (X3k+3) X3K+1) X3K+2)

= max{G (Sx3x 43, TX341, RX342), G(f X3k43) [ X31043, SX3K043),

G(9x3k+1 9X3k41 TX31041)) G(RX3142, AX 3142, RX31042), G(9X3K041) 9X3K4+1, SX3K43))
G(Tx3p41, hX3p 42, hX3k12), G(RX31042, [ X3043) [ X31043)}

= max{G (Vsx+2) Y3k Y3k+1) G V3k+3 Var+3 Vak+2)) G V3kt1 Yaka1 V3k)»

G(YVaks2 Vak+2 Vak+1) CVara1 Varer Vare2)) G Vs Yaka2r Yaka2) G (Vaks1 Vak+3r Yak+3) }
< max{0, G (V3k+1, Y3k+2: Y3k+3),0,0,0,0, G Y3k 41, Y3k +2) Y3k+3)}

= G(V3k+1 V3k+2 Y3k+3)-

Hence

G(Y3k+1Y3k+20 V3k+3) < KG(YV3kr1) Vak+2 V3k+3)-

Therefore G(Vag+1, Vak+2 Yar+3) = 0, that IS yzp41 = Yagsa = Yares. Similarly, if

m = 3k + 1 one obtain that ys;;.2 = Y3k+3 = Vak+a and if m =3k + 2 we have

Y3k+3 = Vak+a = Vak+s- Thus {y,} becomes a constant sequence and y;, Is the

common fixed point of f, g,h,S, T and R. Now, suppose that G (¥, Yn+1, Vna2) > 0
foralln > 0. Since x,, < x,4, foralln > 0, then by (2.1) we have
G(V3n Yan+1 Yan+2) = G(fXzn, 9X3n41, WXsni2) < kM (X3p, Xan41) Xans2)
for n =0,1,2,---, where
M (X3n, X341, X3n+2)
= max{G(Sx3n, TX3n+1, RX3n42), G(fX30, fX30, SX30), G(9X30041, 9X3n+1, T X3041),
G (hX3n+42, hX3042, RX3042), G(9X3n4+1, X341, SX30),
G(Tx3n+1, hX3n42, WX3042), G(RX3n42, f X300, [X30)}
= max{G(Yzn-1, Y3 Y3n+1)» G V3 Y3 Y3n-1)» G V3n+1, Y3n+1, Yan),
G (V3n+2: Yan+2 Yan+1), GVant1, Van+ 1, Yan-1), G (Van Yan+2 Yan+2)) G Van+1, Yan Y3nd}
< max{G (Yzn-1, Y3 Y3n+1)» G V3n-1, Y3n, Y3n+1), G (Van-1, Yan Yan+1),
G (V3 Yan+1 Yan+2)) G V3n-1, Y3 Y3n+1), G Van Yant1 Yan+2)) G (Van-1, Yan Yan+1)}
= max{G(Ysn-1,Y3n Yan+1)) G V3n, Yan+1, Yan+2) -

If max{G(V3n-1,Y3n Y3n+1)» G V3 Yan+1, Yan+2)} = G(Vans Yan+1, Yan+2) then we
get
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G(V3n Yan+1 Yan+2) < kG (Y3n, Yan+1, Yan+2)

which implies that G (Y35, Y3n+1, Yans2) = 0, acontradiction. Hence

max{G(Ysn—1, Y3n» Yan+1), G Van, Yan+1, Yan+2)} = G(Van—1, Y3n Yan+1)

and
G(V3n Yans1 Yan+2) < kG(Van—1, Yan, Yan+1)-
Similarly by replacing x = x3,,43, ¥ = X341, Z = X3p42, N (2.1) we obtain
G(V3n+1 Yant2 Yane3) < kG(Van Yans1, Yantz)-
Also, replacing x = X343, ¥ = X3p44, Z = X3p42, 1IN (2.1) we have
G(V3n+2,Yan+3 Yan+a) < kG (V3ni1, Yans2 Yan+s)-
Therefore for all n we obtain
G (Vns Y+ Ynv2) < KG(Yn-1, Yoo Yn+1)
< S k"G Y1 Y2)
Now, for all [,m,n with | >m > n,
G Yo Y1) < GV Va1 Yna1) + G nats Vv Yne2)
+o+ CO-n Ve V1)
< GWn Ynt1 Yne2) + GOnirs Yntz, Ynss)
+o+ GOz, Vim0
< (k™ + kM 4+ k6o, v, v2)

n
1-k
Also,if l=m >n and [ > m = n we obtain

< G(Yo, Y1, Y2)-

kn
GV Ymo Y1) < 7. G0, Y1, ¥2)-
Hence G (Y, Vi, Y1) = 0 as n,m,l — oo. Therefore {y, } is a G-Cauchy sequence.

Suppose that S(X) is a G-complete subspace of X, then there exists a point g € S(X)

such that limys,,, = lim Sx;,,3 = q. Also, we can find a point p € X such that
n—-oo n—-oo
Sp = q. Since {y,} is a G-Cauchy sequence then lim y;,, = lim y;,,; = q. We claim
n—-oo n—oo

that fp = q. Since

X3n42 N MX3pip = Yangp and Tlll_l)ff.}o)’3n+2 = q then x3,4, < g,

and since dominating map h is weak annihilators of S we have
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X3n+2 S q = Sp < hSp < p,
we conclude that x5,,1 < X342 < p, hence from (2.1) we get

G(fP, Y3n+1, Vanez) = G(fD, 9X3n41, hxzny2) < KM (D, X341, X3n42)

where

M(p, X3n+1, X3n+2)

= max{G(Sp, Txzn41, RX3n42), G(fD, fD, SP), G(9X3n+1, 9X3n+1, TX3041),

G (hX3n42, MX3n42, RX3042), G(9X3041, 9X3n41, SD),

G(Tx3n41, WX3n12, WX3042), G(RX3n42, fD, D)}

= max{G(q, Ysn Yan+1) G(fP, P, 1), GV3n+1, Yan+1, Yan)»

G (Van+2 Yant2 Yan+1) GVans1, Yansr O G Van Yansz Yant2) G Vane1, 0, fD)}-
Letting n — oo we have

lim M(p, X341, X3n42) = max{0,G(fp, fp,q),0,0,0,0,G(q, fp,fr)} = G(fp, fp, 9.

n—co
Hence
G(fpr,q,q) < kG(fp.fp,q) < 2kG(fp,q,q).

Then G(fp,q,q) <0. Hence fp=gq=3Sp. Since f is dominating map,
p=<fp=gq, and from (2.2) we have p =gq. Therefore fq =q = Sq. Since
fq=q and f(X) € T(X), there exists u € X such that Tu = q. We claim that
gu = q. Since x3,,, < g, and since dominating map f is weak annihilators of T
we obtain

X3ne2 S q=Tu < fTu<u, implies x3,,» <q

N

u,

so using (2.1) we get

G(q, gu, :V3n+2) = G(qu gu, hx3n+2) < kM(q,u, x3n+2)

where

M(q,u, x3n42)
= max{G(5q, Tu, Rx3n42), G(fq,fq,59), G(gu, gu, Tu), G (hxzni2, hX3p42, RX3042),
G(gu, gu,5q), G(Tu, hxzpyz, hx3ny2), G(RX3n42, fq, fq)}
= max{G(q, 4, Y3n+1),0, G(gu, gu, q), G (Y3n+2, Yan+2, Y3n+1), G(gU gu, q),
G(q,Y3n+2: Y3n+2), G(Van+1, 9, 9) }-

Letting n —» o we have

limM(q,u, x3n+2) = max{0,0,G(gu, gu,q),0,G(gu, gu, q),0,0} = G(gu, gu, 9).

Hence

(2.2)

(2.3)
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G(q,9u.q) < kG(gu, gu,q) < 2kG(q, gu, q).

We get G(q,gu,q) < 0. Thus gu = q = Tu. Also, Since g is dominating map,
u< gu=gq, and from (2.3) we have u = q. Therefore gq = q = Tq. Further,
since gqg =q and g(X) € R(X), there exists v € X such that Rv = q. We claim
that hv = q. Since dominating map g is weak annihilators of R ones gets

q = Rv < gRv <v implies q <, (2.4)
by (2.1) we obtain
G(q,9,hv) = G(fq, 99, hv) < kM(q,q,v)

where

M(q,q,v) =max{G(Sq,Tq,Rv),G(fq,fq,59),G(99,94,Tq),G(hv, hv,Rv),
G(99,99,59),G(Tq, hv, hv), G(Rv, fq, fq)}
= max{0,0,0, G(hv, hv, q),0,G(q, hv, hv),0} = G(q, hv, hv).

Hence
G(q,q,hv) = G(fq,9q, hv) < kG(q, hv, hv) < 2kG(q, q, hv),

which gives that G(q,q,hv) =0, and hv = q = Rv. Since h is dominating map,
v < hv = g, and from (2.4) we have v = q. Therefore hq = q = Rq. We conclude
that g isa common fixed pointof f,g,h,S,T and R.

Now, suppose that the set of common fixed points of f,g,h,S,T and R is well
ordered. We show that a common fixed points of f,g,h,S,T and R is unique. Let
w is another common fixed point of f,g,h,S,T and R. Thus from (2.1) it follows
that

G(q.q,w) = G(fq,9q9, hw) < kM(q,q,w)

where

M(q,q,w) =max{G(Sq,Tq,Rw),G(fq,fq,5q),G(94,94,Tq),G(hw, hw, Rw),

G(99,949,59),G(Tq, hw,hw),G(Rw, fq, fq)}
= max{G(q,q,w),0,0,0,0,G(q,w,w),G(w,q,q)}

< max{G(q,q,w),0,2G(q,q,w)} = 2G(q,q, w).
Hence
G(q,q,w) < 2kG(q,q,w),

so we have G(q,q,w) =0 and g = w. Therefore, g is a unique common fixed

point of f,g,h,S,T and R. Conversely, if f,g,h,S,T and R have one and only
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one common fixed point then it is singleton set, so it is well ordered. The proof is

similar when T(X) or R(X) isa G-complete subspace of X.

If we put S=T =R =1 (where [ is the identity mapping) we have the following
Corollary.
Corollary 2.2 Let (X,<,G) be a complete ordered G-metric space and let f, g
and h be self-maps on X satisfying the following condition

G(fx,gy,hz) < kM(x,y,z),
where k € [0, i) and

M(x,y,z) = max{G(x,y,2),G(fx, fx,x),G(gy,gy,y), G(hz, hz,z),
(9y,9y,%),G(y,hz,hz),G(z, fx, fx)}

for all comparable elements x,y,z € X. Suppose that f,g and h are dominating
maps. If, for a non-decreasing sequence {x,} with x,, = q implies that x,, < q for
all n. Then f,g and h have a common fixed point. Moreover, the set of common
fixed points of f,g and h is well ordered if and only if f,g and h have one and
only one common fixed point.
Proof. Let x, be an arbitrary point in X. We define the sequence x,, by

fX3n = X3p+1, 9X3n+1 = X3n+2, WX3n42 = X3n43 for n 2 0.

By given assumptions, we get

X3n S fX3n = X3n41 S GX3n41 = X3pt2 S AXzngz = X3pas.

So, forall n >0 we have x, < x,,,. Return the same proof of Theorem 2.1 in [3]
we conclude that {x,} is a G-Cauchy sequence and x, - q as n — c. Since
Xp < Xpqpq for all n>0 and x, >q as n—- o then x, <gq for all n>0.
Hence from the proof of Theorem 2.1 in [3] we conclude that g is a common fixed of
f,g and h. Also, similarly as the proof of Theorem 2.1 we have the set of common
fixed points of f,g and h is well ordered if and only if f,g and h have one and
only one common fixed point.

Example 2.3 Let X = [0,00) with the G-metric defined by
G(x,y,z) = max{|x —y|, |y — z|, |z — x|}, and suppose that < be the usual

ordering on X. We define a new ordering < on X as follows
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xXSXyey<x, Vx,y € X.
It is clearly that (X,<,G) is an ordered G-metric space. Let f,g,h,S,T,R:X = X
be defined by
fx=In(A+x), gx=In(1+2), hx=In(1+3),
Tx =e*—1, Rx=e**—-1, and Sx =e* —1.
It is obvious that f(X) =TX) =g(X) =R(X) = h(X) = S(X) = X. For each
x € X, we have
1+ x <e*, 1+§Sex, 1+§Sex.
Hence
fr=mA+x)<x gx=In(1+)<x hx=In(1+) <x.
Then x<fx,x<gx, and x < hx. Therefore f,g and h are dominating
mappings. Also, for each x € X we obtain
fT(x)=f(e*—1)=Ine* =x > x,

3+e2% x3e

gR() = g€ — 1) = In(E) = In(e* X9 = x + mn(E—) > x,

1+e** e X4e3

RS(x) = h(e* — 1) = In(*E0) = In(e* <) = x + 1n(e'x;‘33x) > x.

We conclude that fT(x) < x,gR(x) <x and hS(x) < x. Thus f,g,h are weak

annihilators of T,R,S respectively. Moreover, for all x,y,z € X one obtain the

following:

G(fx, gy, hz) = max{|fx — gy|,|gy — hz|, |hz — fx|}

= max{|In(1 + x) — In(1 + )|, [In(1 +2) — In(1 +>)|,
lIn(1 +2) = In(1 +x)[}

< max{lx =115 =515~ x[}

= imax{|4x -y, |y — 2z|,|2z — 4x|}

< imaxﬂe“‘x —e”|,|e¥ — e?|, |e?? — e**|}

= imax{|5x —Ty|, |Ty — Rz|, |Rz — Sx|}

= i G(Sx,Ty,Rz)
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< %M(x, v, Z),

where

M(x,y,z) = max{G(Sx,Ty,Rz),G(fx, fx,5x),G(gy, gy, Ty),G(hz, hz, Rz),
(9y,9y,5x),G(Ty, hz, hz), G(Rz, fx, fx)}.

The hypotheses of Theorem 2.1 are holds with contractive factor equal to i. Also, 0

is a unique common fixed pointof f,g,h,S,T and R.
Theorem 2.4 Let (X,<,G) be an ordered G-metric space and let f,g,h,S,T and
R be self-maps on X satisfying the following condition
G(fx,9y,hz) < kM(x,y,z),
where k € [0, %) and

M(x,y,z) = max{G(Ty, fx, fx)+ G(Sx,gy,9y),G(Rz, gy, gy) + G(Ty, hz, hz),
G(Rz, fx,fx)+ G(Sx,hz, hz)}

for all comparable elements x,y,z € X. Suppose that

(@) f(X) € T(X), g(X) € R(X), h(X) & S5(X),

(it)dominating maps f, g, h are weak annihilators of T,R,S respectively,
(iii) oneof S(X) , T(X) or R(X) isa G-complete subspace of X.

If for a non-decreasing sequence {x,} with x, <y, for all n and y, = ¢q
implies that x,, < q, then f,g,h,S,T and R have a common fixed point. Moreover,
the set of common fixed points of f,g,h,S,T and R is well ordered if and only if
f,9,h,S, T and R have one and only one common fixed point.

Proof. Let x, be an arbitrary point in X. Since f(X) € T(X),g(X) € R(X),h(X) <
S(X), we can choose x4, x,,x3 € X such that y, = fx, = Tx;, y1 = gx;, = Rx,,and
y, = hx, = Sx3. Continuing this process, we define the sequences x,, and y, in X by
Van = fX3n = TX3n41, Yant1 = 9X3n+1 = RXzpi2, Vansz = MXzpyn =
SXx3n43 forn = 0.
By given assumptions, we get
X3n S fX3n = Txgner S f TXznen < X3ng
X3n+1 N 9X3n+1 = RXzpiz S GRX3n42 < X3ny2,

X3nsz N WXgpip = SX3p43 S MSX3n43 S X3pys.

(2.5)
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Hence, for all n > 0 we have x,, < x,,41. Suppose that G (Y, Yn+1 Yns2) > 0 for
all n> 0. If not, then for some m >0, ¥, = Ym+1 = Yms2 the sequence {y,} is
constant for n > m. Indeed, let m = 3k then ys; = y3x41 = V342 and from (2.5)
we obtain

G(V3k+3 Yak+1 V3ak+2) = G(f X3k43, 9X3k41, MX3k42) < KM (X35043, X3k41) X3K+2)

where

M (X3143) X3K41) X3k 42)

= max{G(Txzp41, [ X343, [ X343) + G(SX3k43, X3k 41, X300 41))
G(RX3k+2, 9X3k41, 9X3k41) T G(TX3p41, AX3142, MX35c42),
G(Rx3k+2) X314, [ X3k43) T G(SX3p43, Mg 42, AX3R42)}

= max{G (Vzr, Y3k+3 Y3k+3) T G342, Y3kt1 Y3k+1)s
G(Vak+1 Vak+1 Yak+1) T CVar Yare2 Yar+2)s
G(Vak+1 Vak+3 Yak+3) T GCVarez Vakrz Vakr2)}

= max{G (Vzr+1, Vak+3 Yak+3),0}

< max{G (Var+1, Vak+2 V3k+3),0} = G(Vars1, Varez Vak+3)-

Hence

G(V3k+1 V3k+20 V3k+3) < kG (V3k41) Yak+2, V3k+3)-

Therefore G(Vsk+1,Y3k+2Yak+3) = 0, that IS Ysri 1 = Yags2 = Yar3. Similarly,

if m=3k+1 one obtain that y;i,2 = V3x+3 = Y3ks+a and if m =3k +2 we
have ysii3 = Vaksa = Vakss- 1hus, {y,} becomes a constant sequence and ys,, is
the common fixed point of f,g,h,S,T and R. Now, suppose that
G(Yn Yns1) Yna2) >0 for all n>0. Since x, < x,44 for all n >0, from (2.5)
we have

G (V3 Van+1 Yan+2z) = G(f X3n, 9X3n41, hX3n12) < KM (X300, X341, X3042)

for n=0,1,2,---, where
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M (X3n, X3n+1, X3n+2)

= max{G(Txzn+1, fX3n, [X30) + G(SX3n, 9X3041, G X3041),

G (RX3n+2, 9%3n+1 9%3n+1) + G(TX3n41, AXzn42, AX3n42),
G(RX3n42) [ X3n, [X3n) + G(SX3p, AX3012, hX3n42)}

= max{G(Yzn Y3n Yan) + C(V3n—1, Yan+1 Yan+1)s
G(V3n+1 Yansr Yans1) T C(Van Yant2 Yane2),

G(Vans1 Y3 Yan) + G(Van—1, Yan+2) Yan+2)}

< max{G(Yzn—1, Y3n Y3n+1)» G V3n Yan+1, Yans2)s

G(V3n-1 Y3 Yan+1) + GVan—1, Y3n Yan) + G(Van Yant2 Yan+2)}
< max{G(Yzn—1, Y3n Y3n+1)» G V3 Yan+1 Yans2)»

G(Van-1 Y3 Yan+1) + GVan-1, V3 Yan+1) + G(Van Vant1, Yana2)}
= max{G(Yzn—1, Y3n Yan+1)» G V3 Yan+1, Yan+2)»

26(Y3n—1Y3n Yans1) T G(V3n Yan+1, Yans2)}

= 26(V3n-1,Y3n Yan+1) T C(Van Yan+1 Vant2)-

Then
G (Y3 Van+1 Yan+2) < KQ2G(YV3n—1,Y3n Yan+1) + C(V3n Yan+1, Yan+2))-
Hence
2k
GC(V3n Yan+1 Yantz) < EG(%n—l:)@n' Y3n+1)-

Put 1 = % clear 0 < A < 1. Therefore

G(Y3n Van+1, Yan+2z) < AG(Yan—1,V3n, Yan+1)-

Similarly we obtain

G(Y3n+1 Yan+2 Yan+3) < AG(Van, Van+1, Yant2)-

Also, we have

G(V3n+20 Y3n+3: Yan+a) < AG(V3n+1, Yan+2: Yan+3)-
Therefore, for all n,
G(an Yn+1» Yn+2) < AG(yn—llyn; yn+1)
< - S AGYo Y1 Y2)-

Following similar arguments to those given in Theorem 2.1 , G (¥, Ym,y;) — 0 as
n,m,l - co. Therefore {y,} is a G-Cauchy sequence. Suppose that S(X) is a

G -complete subspace of X, then there exists a point q € S(X) such that

lim ys,,., = limSx5,,,3 = q. Also, we can find a point p € X such that Sp = q.
n—->oo n—->oo

We claim that fp = q. Since
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X3n+2 N MX3pip = Y3neo and rlli_{?oy“” = q then x3,,, < g,

and since dominating map h is weak annihilators of S we have
X3ne2 S 4 = Sp < hSp < p, (2.6)

we conclude that x3,,1 < X3,42 < p, thus by (2.5) we obtain

G(fD,Y3n+1,Yan+2) = G(f P, 9X3n41, hX3n42) < KM(D, X341, X3042)
where

M, X3n+1, X3n+2)
= max{G(Txzn41, f0, fP) + G(SP, 9X3n+1, 9X3n+1),
G (RX3n42 9X3n+1 9%3n+1) + G(TX3n41, AX3p42, KX3ny2),
G(Rx3n42, [P, fP) + G(SP, X342, hX3n42)}
= max{GYzn, [P, fP) + G(q, Y3n+1, Y3n+1),
G(Van+1 YVant1 Yan+1) + GCVan YVant2) Yant2),
GYVans1, [0, fP) + G(q, Yans2 Vans2)}-
Letting n — oo we have
limM(p, X3n+1, X3n+2) = max{G(q, fp,fp).0,G(q,fp.fp)}

n—c0
=G(fp, . D).
Hence
G(fr,a,q) < kG(fp.fp.q) < 2kG(fp,q,q).

That is G(fp,q,q) =0. Hence fp=q =Sp. Since f is dominating map,
p=<fp=gq, and from (2.6) we have p =gq. Therefore fq =q = Sq. Since
fq=q and f(X) € T(X), there exists u € X such that Tu = q. We claim that
gu = q. Since x3,,, < g, and since dominating map f is weak annihilators of T
we obtain

Xzns2 S q=Tu < fTu < u, implies x3,;, < g U (2.7)
Using (2.5) we have

G(q, 9u, Y3n+2) = G(fq, gu, hxznyz) < kM(q, U, X3n42)

where

M(q, u, x3n+2) = max{G(Tu, fq' fq) + G(Sq, gu, QU),
G(Rx3p42, gu, gu) + G(Tu, hxzpiz, hxsnyz),
G(Rx3n+2,fq, fq) + G(Sq, hxXzpi2, hxzny2)}
= max{G(q, gu, gu)l G(y3n+1l gu, gu) + G(q' YV3n+2, y3n+2)!
G(RX3n+2,9,9) + G(q, Y3n+2 Yan+2}
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Letting n —» o we have
TZL%M(CI' u, x3n+2) = max{G(q, gu, gu)' G(q, gu, QU),O} = G(gu' gu, q)

Hence
G(q,9u.q) < kG(gu, gu,q) < 2kG(q, gu, q).

Thus gu = q = Tu. Also, Since g is dominating map, u < gu = ¢, and from (2.7)

we have u =q. Therefore gq = q = Tq. Further, since gqg=q and g(X) <

R(X), there exists v € X such that Rv=gq. We claim that hv =gq. Since

dominating map g is weak annihilators of R ones gets

q = Rv < gRv < v,impliesq < v. (2.8)
From (2.5) we have
G(q,9,hv) = G(fq, 99, hv) < kM(q,q,v)

where

M(q,q,v) =max{G(Tq,fq,fq)+ G(Sq,99,99),G(Rv,9q,9q9) + G(Tq, hv, hv),
G(Rv,fq,fq) + G(Sq, hv, hv)}
= max{0, G(q, hv, hv), G(q, hv, hv)} = G(q, hv, hv).

Hence

G(q,q,hv) =G(fq,9q9 hv) < kG(q, hv, hv) < 2kG(q, q, hv),
which gives that G(q,q,hv) =0, and hv = q = Rv. Since h is dominating map,
v < hv = g, and from (2.8) we have v = q. Therefore hq = q = Rq. We conclude
that g isa common fixed pointof f,g,h,S,T and R.
Now, suppose that the set of common fixed points of f,g,h,S,T and R is well
ordered. We show that a common fixed points of f,g,h,S,T and R is unique. Let
w is another common fixed point of f,g,h,S,T and R. Thus from (2.5) one obtain

G(q,q,w) =G(fq,99, hw) < kM(q,q,w)

where

M(q,q,w) =max{G(Tq,fq,fq)+ G(Sq,99,99),G(Rw,g9q,9q) + G(Tq, hw, hw),
G(Rw,fq,fq) + G(Sq, hw, hw}
= max{0,G(w,q,q) + G(q,w,w),G(w,q,q) + G(q,w,w}
=Gw,q,q9)+G(q,w,w).

Hence

G(q,q,w) <k(Gw,q,q) + G(q,w,w)) < 3kG(q,q,w).
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Thus we have G(q,q,w) =0 and q = w. Therefore, g is a uniqgue common fixed
point of f,g,h,S,T and R. Conversely, if f,g,h,S,T and R have one and only
one common fixed point then it is singleton set, so it is well ordered. The proof is

similar when T(X) or R(X) isa G-complete subspace of X.

If we put S=T=R=1 (where [ is the identity mapping) we have the
following corollary.
Corollary 2.5 Let (X,<,G) be a complete ordered G-metric space and let f,g and
h be self-maps on X satisfying the following condition
G(fx,9y,hz) < kM(x,y,z),
where k € [0, %) and

M(x,y,z) = max{G(, fx,fx)+ G(x,9y,9Y),G(z, 9y,9y) + G(¥, hz, hz),
G(z, fx,fx)+ G(x,hz, hz)}

for all comparable elements x,y,z € X. Suppose that f,g and h are dominating
maps. If, for a non-decreasing sequence {x,} with x,, = q implies that x,, < q for
all n. Then f,g and h have a common fixed point. Moreover, the set of common
fixed points of f,g and h is well ordered if and only if f,g and h have one and
only one common fixed point.
Proof. Let x, be an arbitrary point in X. We define the sequence x,, by

fX3n = X3n41, 9X3n+1 = X3n+2) hxzn4z2 = X3p43 forn = 0.

By given assumptions, we get

X3n N fX3n = X3ng1 S GX3n41 = Xansz S AXznyz = Xzpye3 forn = 0.
So, for all n >0 we have x, < x,,.,. Return the same proof of Theorem 2.4 in [3]
we conclude that {x,} is a G-Cauchy sequence and x, - q as n — c. Since
Xp, < Xpqpq for all n>0 and x, >q as n—- o then x, <gq for all n>0.
Hence from the proof of Theorem 2.4 in [3] we conclude that g is a common fixed of
f,g and h. Also, similarly as the proof of Theorem 2.4 we have the set of common
fixed points of f,g and h is well ordered if and only if f,g and h have one and
only one common fixed point.

Example 2.6 Let X = [0,00) with the G-metric defined by
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G(x,y,2) = max{|x — y|, |y — z|, |z — x|},
and suppose that < be the usual ordering on X. We define an ordering < on X as
follows
xXyey<x VxyelX.
It is clearly that (X,<,G) is an ordered G-metric space. Let f,g,h,S,T,R:X - X
be defined by

X X
o Z X
o= )12 ifx€[0.1) gr=)? ifx €[0.1) hx—{i ifx € [0,1)
- X ) - X ) - )
3 ifx € [1, 00) ‘ ifx € [1,00) x ifx €[1,)

4x ifx€[0,1) T _{12x ifx € [0,1) R _{24x ifx € [0,1)
6x ifx€[l,0) " 18x ifxe[l,o)’ X7 48x ifx € [1,00)

We see that f,g,h,S,T and R are discontinuous maps. It is obvious that f(X) =

sx={

TX)=9gX)=R(X)=h(X)=SX)=X. Foreach x € X, we have
fx<x, gx<x, hx<x.
Then x<fx,x<gx, and x < hx. Therefore f,g and h are dominating

mappings. Also, for each x € X we obtain

6x = x ifx€[0,1)

8x > x ifx €[1,00)
_(2x=x ifx€[0,1)

hS(x) = {6x >x ifxe[1,m)

We conclude that fT(x) < x,gR(x) <x and hS(x) < x. Thus f,g,h are weak

fT(x)=x=>x, gRkx) = {

annihilators of T,R,S respectively. Now, for all x,y,z € X we check the following
cases:

(1) If x,y,z €[0,1) we have

X y y zZ zZ X
G(fx,gy,hz)=max{|ﬁ—z|,|z—§|'|§_ﬁ|}
1
= qg max{|4x — 12y|, |12y — 242|,|24z — 4x|}
< ax =2+ 12y — =]+ | = =2
_48max{|x 4| |12y 12| |12 4|’

12 Z+24 y+y224 x+4 Z+Zx

1 X y
= Emax{G(Sx, 9y,9y) + G(Ty, fx, fx) + | 12 1 l,

y Z
G(Ty,hz,hz) + G(Rz, gy, gy) + |Z -3 l,
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Z X
G(Rz, fx,fx) + G(Sx, hz, hz) + | 5 = 5 1}

< 4—18max{G(Sx, 9y, 9y) +G(Ty, fx,fx)+ G(fx, gy, hz),

G(Ty,hz,hz) + G(Rz, gy, gy) + G(fx,gy, hz),
G(Rz, fx,fx)+ G(Sx,hz,hz) + G(fx, gy, hz)}

1
= 18 M(x,y,z) + G(fx, gy, hz)).
Hence, G(fx, gy, hz) < %M(x, y,z), Where

M(x,y,z) = max{G(Sx, gy, gy) + G(Ty, fx, fx),
G(Ty,hz,hz) + G(Rz,gy,9Y),G(Rz, fx, fx) + G(Sx,hz, hz)}
(2) If x,y,z € [1,00) we have

G(fx,gy,hz) = max{15 =115 -2l 12— 31}

= —max{|6x — 8yl, |8y — 482|148z — 6x|}

< o max{G(Sx, gy, gy) + G(Ty, fx, fx) +15 = 2|,
G(Ty, hz,hz) + G(Rz, gy, gy) + 1% — 2|,

G(Rz fx, fx) + G(Sx, hz, hz) + |z — g I}

< —(M(x,y,2) + G(fx, gy, h2)).
Hence, G(fx, gy, hz) < —M(x,,2).
(3) If x,y €[0,1) and z € [1, ), one gets
Y,y

X
113 =21z == 1)

x
G(fx, gy, hz) = max{| 2

12 4
— 4—18max{|4x — 12y|, |12y — 48z|, |48z — 4x|}

< 4—18max{G(Sx, gv,9y) + G(Ty, fx, fx) + I% — % |,
G(Ty,hz,hz) + G(Rz, gy, gy) + |%— z|,

G(Rz, fx, fx) 4+ G(Sx, hz, hz) + |z — % I}

< - (M(x,y,2) + G(fx, gy, hz)).

Therefore, G(fx, gy, hz) < %M(x,y, z).
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(4)If x,z€[0,1) and y € [1, ), then
G hz) = x y. .y X

= ——max{|4x — 8y|, |8y — 24z|,|24z — 4x|)

< —(M(x,,2) + G(fx, gy, hz)).
Thus, G(fx,gy, hz) < —M(x,y, 7).
(B)If y,z€[0,1) and x € [1, ), we obtain
X y 'y z z
G(fx,gy,h2) = max{ls =2 117 =515~ 51}

= —max{|6x — 12y|, |12y — 24z|,|24z — 6x|}

1
< P M(x,y,z) + G(fx, gy, hz)).
Hence, G(fx, gy, hz) < %M(x, Y, Z).

(6) If x €[0,1) and y,z € [1, ), then

AT

X X
G(fx,gy,hz) = max{| 5 —¢L1z =zl 12—}

= émax{|4x — 8y|, |8y — 48z|, |48z — 4x|}

< émax{G(Sx, gy, 9y) + G(Ty, fx, fx) + |1x—2 - % B
G(Ty, hz,hz) + G(Rz, gy, gy) + | % — z|,

G(Rz fx, fx) + G(Sx,hz,hz) + |z — = |}

< —(M(x,y,2) + G(fx, gy, h2)).
Therefore, G(fx, gy, hz) < -M(x,,2).
(1) If y €[0,1) and x,z € [1, ), one obtains
Y2
v

x x
G(fx, gy, hz) = max{| 3 — —zllz—gl

8 4
= L max{|6x — 12y],|12y — 4821, |48z — 6x|}

< —(M(x,y,2) + G(fx, gy, hz)).

Thus, G(fx,gy, hz) < 4—17M(x,y,2)-

123
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(8)If z€[0,1) and x,y € [1, ), we get

x ¥y oy
G(fx,gy hz) =max{|———|,|g_5|,|§_§|}

= ﬁmax{|6x — 8y|, |8y — 24z|, |24z — 6x|}

1
< —max{G(Sx, 9y, gy) + G(Ty, fx,fx) + |> - 2|,
G(Ty,hz,hz) + G(Rz, gy, gy) + |% _ g l

G(Rz, fx, fx) + G(Sx, hz, hz) + |§ — g I}

< —(M(x,,2) + G(fx, gy, hz)).
S0, G(fx,gy,hz) < —M(x,y,2).

The hypotheses of Theorem 2.4 are holds with constant k = ﬁ. Also, 0 is a unique

common fixed point of f,g,h,S,T and R.
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