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Abstract. In this note a well known result of Khamsi [Proc. Amer. Math. Soc. 132 (2004), 365-373]

on approximate fixed points for asymptotically nonexpansive mappings on bounded hyperconvex spaces

is generalized to the setting of q-hyperconvex T0-quasi-metric spaces.
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1. Introduction

Let (X, d) be a metric space. A mapping T : X → X is called nonexpansive if

d(T (x), T (y)) ≤ d(x, y)

for all x, y ∈ X. T : X → X is called asymptotically nonexpansive (see Goebel and

Kirk [3]) if there exists a sequence of positive numbers (kn)n∈N, with limn→∞kn = 1, such

that

d(T (x), T (y)) ≤ knd(x, y)
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for all x, y ∈ X. It is known (see [3]) that the class of asymptotically nonexpansive

mappings is wider than the class of nonexpansive mappings.

A well known result which was proved independently by Sine [9] and Soardi [10] in

hyperconvex spaces (see [1], [2]) states that the fixed point property for noexpansive

mappings holds in a bounded hyperconvex space. Further, it has been proved by Khamsi

[5] that: if T : H → H, where (H, ρ) is a bounded hyperconvex metric space and T

is an asymptotically nonexpansive mapping, then T has approximate fixed points, that

is, inf {ρ(x, Tx) : x ∈∈ H} = 0. Recently, Künzi and Otafudu [6] have introduced and

studied the concept of q-hyperconvexity in T0-quasi-metric spaces and obtained certain

fixed point theorems there in. In this note we continue our studies of this concept by

generalizing the above result of Khamsi [5] and show that an asymptotically nonexpansive

mapping on a bounded q-hyperconvex T0-quasi-metric space has approximate fixed points.

2. Preliminaries

For the convenience of the reader and in order to fix our terminology we recall the

following concepts.

Definition 2.1. Let X be a set and let d : X ×X → [0,∞) be a function mapping into

the set [0,∞) of the nonnegative reals. Then d is called a quasi-pseudometric on X if

(a) d(x, x) = 0 for all x ∈ X,

(b) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We shall say that d is a T0-quasi-metric provided that d also satisfies the following

condition: For each x, y ∈ X,

d(x, y) = 0 = d(y, x) implies that x = y.

Remark 2.2. In some cases we need to replace [0,∞) by [0,∞] (where for a d attaining

the value ∞ the triangle inequality is interpreted in the obvious way). In such a case we

shall speak of an extended quasi-pseudometric. In the following we sometimes apply con-

cepts from the theory of quasi-pseudometrics to extended quasi-pseudometrics (without

changing the usual definitions of these concepts).
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Remark 2.3. Let d be a quasi-pseudometric on a set X, then d−1 : X × X → [0,∞)

defined by d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasi-pseudometric, called

the conjugate quasi-pseudometric of d. As usual, a quasi-pseudometric d on X such that

d = d−1 is called a pseudometric. Note that for any T0-quasi-pseudometric d, ds =

max{d, d−1} = d ∨ d−1 is a pseudometric (metric).

Let (X, d) be a quasi-pseudometric space. For each x ∈ X and ε > 0, Bd(x, ε) = {y ∈

X : d(x, y) < ε} denotes the open ε-ball at x. The collection of all “open” balls yields

a base for a topology τ(d). It is called the topology induced by d on X. Similarly we set

for each x ∈ X and ε ≥ 0, Cd(x, ε) = {y ∈ X : d(x, y) ≤ ε}. Note that this latter set is

τ(d−1)-closed, but not τ(d)-closed in general.

3. q−Hyper convexity

In this section we recall some results on q-hyperconvexity. Some recent further work

about q-hyperconvexity can be found in [4], [6] and [7].

Definition 3.1. [4, Definition 2]. A quasi-pseudometric space (X, d) is called q-hyperconvex

provided that for each family (xi)i∈I of points in X and families of nonnegative real num-

bers (ri)i∈I and (si)i∈I the following condition holds: If d(xi, xj) ≤ ri + sj whenever

i, j ∈ I, then ⋂
i∈I

(Cd(xi, ri) ∩ Cd−1(xi, si)) 6= ∅.

Remark 3.2. If d and d−1 are identical and ri = si for i ∈ I in Definition 3.1, then

(Cd(xi, ri)) and (Cd−1(xi, si)) coincide and then we recover the well known definition of

hyperconvexity due to Aronszajn and Panitchpakdi [1].

The following examples are basic, but important.

Example 3.3. ([4, Example 1], compare [8, Example 2). Let the set R of the reals be

equipped with the T0-quasi-metric u(x, y) = max {x− y, 0} whenever x, y ∈ R. Then

(R, u) is q-hyperconvex.
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Corollary 3.4. ([4, Corollary 1]). The quasi-pseudometric subspace [0,∞) of (R, u) is

q-hyperconvex.

Example 3.5. ([4, Example 2]). Let R be equipped with its standard metric us(x, y) =

|x− y| whenever x, y ∈ R. Then (R, us) is not q-hyperconvex.

Proposition 3.6. ([4, Proposition 2]) (a) If (X, d) is a(n extended) q-hyperconvex (re-

sp. q-hypercomplete, metrically convex) quasi-pseudometric space, then (X, d−1) is q-

hyperconvex (resp. q-hypercomplete, metrically convex).

(b) If (X, d) is a q-hyperconvex (resp. q-hypercomplete) quasi-pseudometric space, then

the metric space (X, ds) is hyperconvex (resp. hypercomplete). However, the corresponding

statement for “metrically convex” does not hold.

The following definition can be found in [6] (compare [5] and [9]).

Definition 3.7. ([6, Definition 8]). Let (X, d) be a T0-quasi-metric space. We say that a

mapping T : (X, d)→ (X, d) has approximate fixed points if infx∈Xd
s(x, T (x)) = 0.

4. Main Result

We first recall the following interesting result due to Khamsi [5].

Theorem 4.1. Let (H, ρ) be a bounded hyperconvex metric space and T : H −→ H be

asymptotically nonexpansive mapping. Then T has approximate fixed points, i.e. inf{ρ(x, T (x)) :

x ∈ H} = 0.

The following result generalizes the above theorem to the setting of q-hyperconvex

T0-quasi-metric spaces.

Theorem 4.2. Let (X, d) be a bounded q-hyperconvex T0-quasi-metric space and T :

X → X be asymptotically nonexpansive mapping. Then T has approximate fixed points,

i.e. infx∈Xd
s(x, T (x)) = 0.
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Proof. Since T : X −→ X is asymptotically nonexpansive, there exists a sequence of

nonnegative real numbers (kn)n∈N, with limn→∞kn = 1, such that

d(T n(x), T n(y)) ≤ knd(x, y)

for all x, y ∈ X.

We shall first show that T : (X, ds) → (X, ds) is asymptotically nonexpansive. Since

for any x, y ∈ X, we have

d−1(T n(x), T n(y)) = d(T n(y), T n(x)) ≤ knd(y, x) = knd
−1(x, y)

with limn→∞kn = 1, we see that T : (X, d−1)→ (X, d−1) is asymptotically nonexpansive.

Therefore

d(T n(x), T n(y)) ≤ knd(x, y) ≤ knd
s(x, y)

and

d−1(T n(x), T n(y)) ≤ knd
−1(x, y) ≤ knd

s(x, y)

for all x, y ∈ X. Hence

ds(T n(x), T n(y)) ≤ knd
s(x, y

for all x, y ∈ X with limn→∞kn = 1 and so, T : (X, ds) → (X, ds) is asymptotically

nonexpansive.

By assumption (X, ds) is bounded and by Proposition 3.1 (b) it is hyperconvex. There-

fore by Theorem 4.1 T has approximative fixed points, i.e. infx∈Xd
s(x, T (x)) = 0 and the

conclusion holds.�
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