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Abstract: In this paper, with the aid of simulation mapping 𝜂 ∶  [0, ∞) × [0, ∞)  →  ℝ, we prove some Lemmas and 

fixed point result for generalized 𝒵 − contraction of the mapping 𝑔 ∶  𝑋 →  𝑋 satisfying the following conditions: 

𝜂(𝒢(𝑔𝑥, 𝑔𝑦, 𝑔𝑧), ℳ(𝑥, 𝑦, 𝑧)) ≥ 0,  

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, where 

ℳ(𝑥, 𝑦, 𝑧) =  max {𝒢(𝑥, 𝑔𝑦, 𝑔𝑦), 𝒢(𝑦, 𝑔𝑥, 𝑔𝑥), 𝒢(𝑦, 𝑔𝑧, 𝑔𝑧), 𝒢(𝑧, 𝑔𝑦, 𝑔𝑦), 𝒢(𝑧, 𝑔𝑥, 𝑔𝑥), 𝒢(𝑥, 𝑔𝑧, 𝑔𝑧)}. 

and (𝑋, 𝒢) is a 𝒢 − metric space. An example is also given to support our results. 
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1. INTRODUCTION 

A metric space is a nonempty set 𝑋 with a two-variable map 𝑑 that allows us to calculate 

the distance between two points. We must find the distance not just between integers and vectors, 
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but also between sequences and functions in higher mathematics. Numerous approaches exist in 

this sector in order to discover a suitable concept of a metric space. Many renowned 

mathematicians have considered various generalizations of a metric space. Mustafa and Sims [1] 

presented 𝐺 −metric space in 2006 and provided an essential generalization of a metric space as 

follows:  

Definition 1.1. [1] Let 𝑋 be a non empty set and 𝐺: 𝑋3  →  [0, ∞) be a map which satisfies the 

following properties:  

1. 𝐺(𝑥, 𝑦, 𝑧)  =  0 if 𝑥 =  𝑦 =  𝑧, 

2. 0 < 𝐺(𝑥, 𝑥, 𝑦) whenever 𝑥 ≠  𝑦, 

3. 𝐺(𝑥, 𝑥, 𝑦) ≤  𝐺(𝑥, 𝑦, 𝑧), 𝑦 ≠  𝑧, 

4. 𝐺(𝑥, 𝑦, 𝑧) =  𝐺(𝑥, 𝑧, 𝑦) =  𝐺(𝑦, 𝑥, 𝑧) =  𝐺(𝑧, 𝑥, 𝑦) =  𝐺(𝑦, 𝑧, 𝑥) =  𝐺(𝑧, 𝑦, 𝑥), 

5. 𝐺(𝑥, 𝑦, 𝑧) ≤  𝐺(𝑥, 𝑎, 𝑎) +  𝐺(𝑎, 𝑦, 𝑧),   ∀ 𝑥, 𝑦, 𝑧, 𝑎 ∈  𝑋. 

Then, the function 𝐺 is said to be 𝐺 − metric on 𝑋 and the pair (𝑋, 𝐺) is known as 𝐺 −

 metric space. 

Banach [2] established the Banach contraction principle, a useful conclusion in fixed point 

theory involving a contraction mapping, in 1922. 

Definition 1.2. [2] Let (𝑋, 𝑑) be a complete metric space and let 𝑓 ∶ 𝑋 → 𝑋 be a self-mapping. 

Let 𝑑(𝑓𝑥, 𝑓𝑦) < 𝑑(𝑥, 𝑦) holds for all 𝑥, 𝑦 ∈  𝑋 with 𝑥 ≠ 𝑦.Then, 𝑓 is called a contraction 

known as Banach contraction. 

Following this approach, a number of scholars expanded on it by offering various 

contractions on metric spaces [3, 4-9]. We introduce a mapping, namely the simulation function, 

and the concept of generalized 𝒵 − contraction in this paper. Khojasteh et al. [10] have 

proposed a new class of mappings known as simulation functions. Later, Argoubi et al. [11] made 

a minor change to the definition of simulation functions by removing a constraint. 

Definition 1.3. [11] A simulation function is a mapping 𝜁 ∶  [0, ∞)  × [0, ∞)  →  ℝ satisfying 

the following conditions:  

(𝜁1) 𝜁(𝑡, 𝑠) < 𝑠 − 𝑡for all 𝑡, 𝑠 > 0 
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 (𝜁2) if {𝑡𝑛} and {𝑠𝑛} are sequences in (0, ∞) such that 

lim
𝑛→∞

{𝑡𝑛} =  lim
𝑛→∞

{𝑠𝑛}  =  𝑙 ∈  (0, ∞), 

then 

lim
𝑛→∞

𝑠𝑢𝑝𝜁(𝑡𝑛, 𝑠𝑛)  <  0. 

 

2. MAIN RESULTS 

In this section, we prove certain Lemmas and some fixed point results for generalized 𝒵 − 

contraction in 𝒢 − metric space. 

Definition 2.1. Let (𝑋, 𝒢) be a 𝒢 − metric space, 𝑔 ∶  𝑋 →  𝑋 a mapping and 𝜂 ∈  ℤ. Then 

𝑔 is called a generalized 𝒵 − contraction with respect to 𝜂 if the following condition is 

satisfied  

𝜂(𝒢(𝑔𝑥, 𝑔𝑦, 𝑔𝑧), ℳ(𝑥, 𝑦, 𝑧)) ≥ 0,                       (1) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, where ℳ(𝑥, 𝑦, 𝑧) =

max {𝒢(𝑥, 𝑔𝑦, 𝑔𝑦), 𝒢(𝑦, 𝑔𝑥, 𝑔𝑥), 𝒢(𝑦, 𝑔𝑧, 𝑔𝑧), 𝒢(𝑧, 𝑔𝑦, 𝑔𝑦), 𝒢(𝑧, 𝑔𝑥, 𝑔𝑥), 𝒢(𝑥, 𝑔𝑧, 𝑔𝑧)}. 

Lemma 2.2. Let (𝑋, 𝒢) denote a 𝒢 − metric space and 𝑔 ∶  𝑋 →  𝑋 denote a generalized 

𝒵 − contraction with regard to ℤ. Then, for all 𝑥 ∈ 𝑋, 𝑔 is asymptotically regular. 

Proof: Let 𝑥 ∈ 𝑋 be arbitrary. If for some 𝑘 ∈ ℕ, 𝑔𝑘𝑥 = 𝑔𝑘−1𝑥, then 𝑔𝑘−1𝑥 is a fixed point 

of 𝑔. Therefore, we have 

𝒢(𝑔𝑛𝑥, 𝑔𝑛+1𝑥, 𝑔𝑛+1𝑥) = 𝒢(𝑔𝑛−𝑘+1𝑔𝑘−1𝑥, 𝑔𝑛−𝑘+2𝑔𝑘−1𝑥, 𝑔𝑛−𝑘+2𝑔𝑘−1𝑥) 

      = 𝒢(𝑔𝑛−𝑘+1𝑦, 𝑔𝑛−𝑘+2𝑦, 𝑔𝑛−𝑘+2𝑦) 

      = 𝒢(𝑦, 𝑦, 𝑦) = 0. 

Therefore, lim
𝑛→∞

𝒢(𝑔𝑛𝑥, 𝑔𝑛+1𝑥, 𝑔𝑛+1𝑥) = 0.  

So, let us suppose that 𝑔𝑛𝑥 ≠ 𝑔𝑛−1𝑥 for all 𝑛 ∈ ℕ, then it follows from (1) that  

𝜂(𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), ℳ(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥)) ≥ 0, 

since 𝑔 is a generalized contraction, where 

ℳ(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥)   = max {𝒢(𝑔𝑛𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), 𝒢(𝑔𝑛−1𝑥, 𝑔𝑛+1𝑥, 𝑔𝑛+1𝑥), 

                           𝒢(𝑔𝑛−1𝑥, 𝑔𝑛+1𝑥, 𝑔𝑛+1𝑥), 𝒢(𝑔𝑛−1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), 
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                           𝒢(𝑔𝑛−1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), 𝒢(𝑔𝑛−1𝑥, 𝑔𝑛+1𝑥, 𝑔𝑛+1𝑥),  

                           𝒢(𝑔𝑛𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥)} 

        = max{𝒢(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥), 𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥)}, since 

𝒢(𝑔𝑛+1𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥) ≤ 𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥) + 𝒢(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥). 

If max{𝒢(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥), 𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥)} = 𝒢((𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), then  

𝜂(𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), 𝑀(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥))

= 𝜂(𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), 𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥)     ≥ 0, 

which is a contradiction. So, 𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥) < 𝒢(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥) holds. This shows 

that 𝒢(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥) is monotonically decreasing sequence of non-negative reals and so 

it must be convergent. 

Let lim
𝑛→∞

𝒢(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥) = 𝑠.   

If 𝑠 > 0, then by contraction condition 

0 ≤ lim
𝑛→∞

𝑆𝑢𝑝 𝜂 (𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), 𝑀(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥)) 

            = lim
𝑛→∞

𝑆𝑢𝑝 𝜂 (𝒢(𝑔𝑛+1𝑥, 𝑔𝑛𝑥, 𝑔𝑛𝑥), 𝑀(𝑔𝑛𝑥, 𝑔𝑛−1𝑥, 𝑔𝑛−1𝑥)) < 0, 

a contradiction and thus 𝑠 > 0 and 𝑔 is asymptotically regular. 

Lemma 2.3. Every Picard sequence converges to its unique fixed point, which is found in every 

generalized 𝒵 − contraction mapping on a complete 𝒢 − metric space where 𝑥𝑛 =  𝑔𝑥𝑛−1 for 

all 𝑛 ∈  ℕ. 

Proof: Let (𝑋, 𝒢) denote a 𝒢 − metric space and 𝑔 ∶  𝑋 → 𝑋 a mapping and 𝜁 ∈ ℤ. 

Let us first demonstrate that if 𝑔 has a fixed point, it is unique. 

If the mapping 𝑔 has two fixed points 𝑝, 𝑟 ∈ 𝑋, then 𝑑(𝑝, 𝑟) >  0. 

By (1), we get 

𝜂(𝒢(𝑔𝑝, 𝑔𝑟, 𝑔𝑟), ℳ(𝑝, 𝑟, 𝑟))  >  0, 

where 

ℳ(𝑝, 𝑟, 𝑟)

= max{𝒢(𝑝, 𝑔𝑟, 𝑔𝑟), 𝒢(𝑟, 𝑔𝑝, 𝑔𝑝), 𝒢(𝑟, 𝑔𝑟, 𝑔𝑟), 𝒢(𝑟, 𝑔𝑟, 𝑔𝑟), 𝒢(𝑝, 𝑔𝑟, 𝑔𝑟),   𝒢(𝑝, 𝑔𝑟, 𝑔𝑟)}. 

 = 𝒢(𝑝, 𝑟, 𝑟), which contradicts(𝜁2).  
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As a result, there is just one fixed point. 

Now, we shall show that if {𝑥𝑛} is a Picard sequence created by 𝑔 then lim
𝑛→∞

𝑥𝑛 = 𝑧 is only 

fixed point.  

Let 𝑥0 ∈ 𝑋 be any number, and {𝑥𝑛} be the Picard sequence, with 𝑥𝑛 =  𝑔 for all 𝑛 ∈ ℕ. 

Assume, on the other hand, that {𝑥𝑛} is not bounded. We can assume that 𝑥𝑛+𝑘 ≠  𝑥𝑛 for any 

𝑛, 𝑘 ∈  ℕ without losing generality. Because {𝑥𝑛} is unbounded, there is a subsequence {𝑥𝑛𝑘
} 

such that 𝑛1 = 1 and for each 𝑘 ∈ ℕ, 𝑛𝑘+1 is the smallest integer. 

𝒢(𝑥𝑛𝑘+1
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
) > 1and 

𝒢(𝑥𝑚, 𝑥𝑛𝑘
, 𝑥𝑛𝑘

) ≤ 1 for 𝑛𝑘 ≤ 𝑚 ≤  𝑛𝑘+1 −  1. 

Therefore, by triangle inequality, we have 

1 < 𝒢(𝑥𝑛𝑘+1
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
) 

  ≤ 𝒢(𝑥𝑛𝑘+1
, 𝑥𝑛𝑘+1

− 1, 𝑥𝑛𝑘+1
− 1) +  𝒢(𝑥𝑛𝑘+1

− 1, 𝑥𝑛𝑘
, 𝑥𝑛𝑘

) 

  ≤  𝒢(𝑥𝑛𝑘+1
, 𝑥𝑛𝑘+1

− 1, 𝑥𝑛𝑘+1
− 1) + 1. 

Letting 𝑘 →  ∞ and using Lemma 2.2, we get  

lim
𝑘→∞

𝒢(𝑥𝑛𝑘+1
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
)  =  1, 

ℳ(𝑥𝑛𝑘+1
− 1, 𝑥𝑛𝑘−1

− 1, 𝑥𝑛𝑘−1
− 1) 

= max {𝒢(𝑥𝑛𝑘+1
− 1, 𝑔𝑥𝑛𝑘−1

− 1, 𝑔𝑥𝑛𝑘+1
− 1), 𝒢(𝑥𝑛𝑘−1

− 1, 𝑥𝑛𝑘+1
− 1, 𝑥𝑛𝑘+1

− 1), 

          𝒢(𝑥𝑛𝑘−1
− 1, 𝑥𝑛𝑘−1

− 1, 𝑥𝑛𝑘−1
− 1), 𝒢(𝑥𝑛𝑘−1

− 1, 𝑥𝑛𝑘−1
− 1, 𝑥𝑛𝑘−1

− 1), 

          𝒢(𝑥𝑛𝑘−1
− 1, 𝑔𝑥𝑛𝑘+1

− 1, 𝑔𝑥𝑛𝑘+1
− 1), 𝒢(𝑥𝑛𝑘+1

− 1, 𝑔𝑥𝑛𝑘−1
− 1, 𝑔𝑥𝑛𝑘−1

− 1). 

Now, since 𝑔 is a generalized 𝒵 − contraction, so that 

0 ≤ lim
𝑘→∞

sup 𝜂 (𝒢(𝑔𝑥𝑛𝑘+1
− 1, 𝑔𝑥𝑛𝑘−1

− 1, 𝑔𝑥𝑛𝑘+1
− 1) 

  =  lim
𝑘→∞

sup 𝜂 (𝒢(𝑥𝑛𝑘+1
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
), 𝒢(𝑥𝑛𝑘+1

 −  1, 𝑥𝑛𝑘−1
, 𝑥𝑛𝑘−1

))  < 0, 

a contradiction. This contradiction proves the result. 
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Theorem 2.4. Let (𝑋, 𝒢) be a complete 𝒢 − metric space and 𝑔 ∶  𝑋 → 𝑋 a mapping and 𝜂 ∈

ℤ and this is ageneralized𝒵 − contraction.Then, 𝑔 has a unique fixed point 𝑢 in 𝑋 and for 

every  𝑥0 ∈  𝑋 the Picard sequence {𝑥𝑛}, where 𝑥𝑛  =  𝑔𝑥𝑛−1 for all ∈ ℕ converges to the 

fixed point of 𝑔. 

Proof: Let 𝑥0 ∈ 𝑋 be arbitrary and {𝑥𝑛} be the Picard sequence, i.e. 𝑥𝑛 = 𝑔𝑥𝑛−1∀ 𝑛 ∈ ℕ. We 

shall show that this sequence is a Cauchy sequence.  

For this, let 

                                                   𝐶𝑛 = 𝑠𝑢𝑝{𝑥𝑝, 𝑥𝑟 , 𝑥𝑟: 𝑝, 𝑟 ≥ 𝑛}. 

Note that the sequence {𝑥𝑛} is monotonically decreasing sequence of the reals and by Lemma 

2.3, the sequence {𝑥𝑛} is bounded, therefore 𝐶𝑛 < ∞ for all 𝑛 ∈ ℕ. Thus, {𝐶𝑛} is monotonic 

bounded sequence, therefore converges, that is ∃ 𝐶 ≥ 0 such that 𝐶𝑛 = 𝐶. We shall show that 

𝐶 = 0. If 𝐶 > 0, then by the definition of 𝐶𝑛, for every 𝑘 ∈ ℕ, ∃ 𝑚𝑘 > 𝑛𝑘 ≥ 𝑘 and 𝐶𝑘 −

1

𝑘
< 𝒢(𝑥𝑚𝑘

, 𝑥𝑛𝑘
, 𝑥𝑛𝑘

) ≤  𝐶𝑘. 

Hence,  

lim
𝑘→∞

𝒢( 𝑥𝑚𝑘
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
)  ≤  𝐶𝑘                                                      (2) 

Using (1) and the triangular inequality, we obtain  

𝒢(𝑥𝑚𝑘
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
) ≤  𝒢(𝑥𝑚𝑘−1

, 𝑥𝑛𝑘−1
, 𝑥𝑛𝑘−1

)  

≤ 𝒢(𝑥𝑚𝑘−1
, 𝑥𝑚𝑘

, 𝑥𝑚𝑘
) + 𝒢(𝑥𝑚𝑘

, 𝑥𝑛𝑘
, 𝑥𝑛𝑘

) + 𝒢(𝑥𝑛𝑘
, 𝑥𝑛𝑘−1

, 𝑥𝑛𝑘−1
). 

𝒢(𝑥𝑚𝑘−1
, 𝑥𝑚𝑘

, 𝑥𝑚𝑘
) → 0,  𝒢(𝑥𝑛𝑘

, 𝑥𝑛𝑘−1
, 𝑥𝑛𝑘−1

) → 0 as 𝑘 → ∞. 

Then, by Squeeze Theorem, we have 

lim
𝑘→∞

𝒢( 𝑥𝑚𝑘−1
, 𝑥𝑛𝑘−1

, 𝑥𝑛𝑘−1
) =  𝐶 as well 

ℳ(𝑥𝑚𝑘−1
, 𝑥𝑛𝑘−1

, 𝑥𝑛𝑘−1
)   

=  max {𝒢(𝑥𝑚𝑘−1
, 𝑔𝑥𝑛𝑘−1

, 𝑔𝑥𝑛𝑘−1
), 𝒢(𝑥𝑛𝑘−1

, 𝑔𝑥𝑚𝑘−1
, 𝑔𝑥𝑚𝑘−1

), 𝒢(𝑥𝑛𝑘−1
, 𝑔𝑥𝑛𝑘−1

, 𝑔𝑥𝑛𝑘−1
), 

         𝒢(𝑥𝑛𝑘−1
, 𝑔𝑥𝑛𝑘−1

, 𝑔𝑥𝑛𝑘−1
), 𝒢(𝑥𝑛𝑘−1

, 𝑔𝑥𝑚𝑘−1
, 𝑔𝑥𝑚𝑘−1

), 𝒢(𝑥𝑚𝑘−1
, 𝑔𝑥𝑛𝑘−1

, 𝑔𝑥𝑛𝑘−1
)}. 
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We know that 𝒢(𝑥𝑚𝑘−1
, 𝑔𝑥𝑛𝑘−1

, 𝑔𝑥𝑛𝑘−1
) = 𝐶 as well 

ℳ(𝑥𝑚𝑘−1
, 𝑥𝑛𝑘−1

, 𝑥𝑛𝑘−1
) → 0, 𝒢(𝑥𝑛𝑘

, 𝑥𝑛𝑘−1
, 𝑥𝑛𝑘−1

) → 0 as 𝑘 → ∞. 

0 ≤ lim
𝑘→∞

sup 𝜂 (𝒢 (𝑥𝑚𝑘
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
), ℳ(𝑥𝑚𝑘−1

, 𝑥𝑛𝑘−1
, 𝑥𝑛𝑘−1

) < 0. 

This contradiction proves that 𝐶 = 0  and so {𝑥𝑛}  is a Cauchy sequence. Since 𝑋  is a 

complete 𝒢 − metric space, ∃𝑢 ∈ 𝑋 such that lim
𝑛→∞

𝑥𝑛 = 𝑢. We shall show that the point u is a 

fixed point of 𝑔. Suppose 𝑔𝑢 ≠ 𝑢, then 𝒢(𝑢, 𝑔𝑢, 𝑔𝑢) > 0.  

Again, using (1), we have 

0 ≤ lim
𝑘→∞

sup 𝜂 (𝒢 (𝑥𝑚𝑘
, 𝑥𝑛𝑘

, 𝑥𝑛𝑘
), ℳ(𝑥𝑚𝑘−1

, 𝑥𝑛𝑘−1
, 𝑥𝑛𝑘−1

)) < 0. 

lim
𝑛→∞

 𝒢(𝑔𝑧, 𝑔𝑥𝑛, 𝑔𝑥𝑛) = lim
𝑛→∞

 𝒢(𝑔𝑧, 𝑔𝑥𝑛+1, 𝑔𝑥𝑛+1) = 𝒢(𝑔𝑧, 𝑧, 𝑧) > 0, 

and 

ℳ(𝑧, 𝑥𝑛, 𝑥𝑛) = max {𝒢(𝑔𝑧, 𝑔𝑥𝑛, 𝑔𝑥𝑛), 𝒢(𝑥𝑛, 𝑔𝑧, 𝑔𝑧), 𝒢(𝑥𝑛, 𝑔𝑥𝑛, 𝑔𝑥𝑛), 𝒢(𝑥𝑛, 𝑔𝑥𝑛, 𝑔𝑥𝑛), 

                         𝒢(𝑥𝑛, 𝑔𝑧, 𝑔𝑧), 𝒢(𝑧, 𝑔𝑥𝑛, 𝑔𝑥𝑛)}. 

Therefore, ℳ(𝑧, 𝑥𝑛, 𝑥𝑛) →  𝒢(𝑔𝑧, 𝑧, 𝑧) as 𝑛 → ∞.  

By contractive condition, 

0 ≤ 𝜂(𝒢(𝑔𝑧, 𝑔𝑥𝑛, 𝑔𝑥𝑛), ℳ(𝑧, 𝑥𝑛, 𝑥𝑛)) → 𝜂(𝒢(𝑔𝑧, 𝑧, 𝑧), ℳ(𝑔𝑧, 𝑧, 𝑧)) as 𝑛 → ∞. 

By (𝜁2),we have 𝜂(𝒢(𝑔𝑧, 𝑧, 𝑧), ℳ(𝑔𝑧, 𝑧, 𝑧))  <  0 which contradicts the contraction condition. 

That means 𝑔𝑧 =  𝑧 and 𝑧 is the unique fixed point of 𝑔. 

Example 2.5. Let 𝑋 =  [0, 1] and 𝑔 ∶  𝑋 →  𝑋 → ℝ be defined by 

𝒢(𝑥, 𝑦, 𝑧)  =  𝑚𝑎𝑥{|𝑥 −  𝑦|, |𝑦 −  𝑧|, |𝑧 −  𝑥|}. 

Then (𝑋, 𝒢) is a complete 𝒢-Metric space.  

Define a mapping 𝑔 ∶  𝑋 →  𝑋 as 𝑔𝑥 =  
𝑥 

𝑥+1
 for all 𝑥 ∈  𝑋.  𝑔 is a continuous function but it 

is not a Banach contraction. But it is a generalized 𝒵 − contraction with respect to 𝜂 ∈  𝒵, 

where  

𝜂(𝑡, 𝑠) =  
𝑠 

𝑠+1
−  𝑡for all 𝑡, 𝑠 ∈  [0, ∞). 
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Indeed, 𝑖𝑓 𝑥, 𝑦 ∈  𝑋, then by a simple calculation it can be shown that 

𝜂(𝒢(𝑔𝑥, 𝑔𝑦, 𝑔𝑧), ℳ(𝑥, 𝑦, 𝑧)) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋,   

where 

ℳ(𝑥, 𝑦, 𝑧) = max {𝒢(𝑥, 𝑔𝑦, 𝑔𝑦), 𝒢(𝑦, 𝑔𝑥, 𝑔𝑥), 𝒢(𝑦, 𝑔𝑧, 𝑔𝑧), 𝒢(𝑧, 𝑔𝑦, 𝑔𝑦), 𝒢(𝑧, 𝑔𝑥, 𝑔𝑥),  

                    𝒢(𝑥, 𝑔𝑧, 𝑔𝑧)}. 

Clearly, 0 is the fixed point of 𝑔. 
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