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1. Introduction

Let (X, d) be a metric space and let T : X → X be a mapping. Given an element

x ∈ X, we define an orbit O(x;T ) of T at x by

O(x;T ) =
{
x, Tx, T 2x, ..., T nx, . . . .

}
. (1.1)

Then T is called T -orbitally continuous on X if for any sequence
{
xn

}
⊆ O(x;T ), we

have that xn → x∗ implies Txn → Tx∗ for each x ∈ X. The metric space X is called

T -orbitally complete if every Cauchy sequence
{
xn

}
⊆ O(x;T ) converges to a point x∗

in X. Notice that continuity implies that T -orbitally continuity and completeness implies
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T -orbitally completeness of a metric space X, but the converse may not be true. Ćirić [4]

proved the following nonunique fixed point theorem for T -orbitally continuous mappings

in T -orbitally complete metric spaces.

Theorem 1.1 (Ćirić [4]) Let T : X → X be a mapping satisfying

min
{
d(Tx, Ty), d(x, Tx), d(y, Ty)

}
−min

{
d(x, Ty), d(y, Tx)

}
≤ qd(x, y)

(1.2)

for all x, y ∈ X, where 0 ≤ q < 1. Further, if T is T -orbitally continuous and X is

T -orbitally complete, then T has a fixed point.

The purpose of the present paper is to extend the nonunique fixed point theorems of

above type to random mappings in a polish space in different direction. We state and

prove our main results in the following section.

2. Random Mappings with a Nonunique Random Fixed Point

Throughout the rest of the paper, let X denote a polish space, i.e., a complete, separable

metric space with a metric d. Let (Ω,A) denote a measurable space with σ-algebra A.

A function x : Ω → X is said to be a random variable if it is measurable. A mapping

T : Ω × X → X is called random mapping if T (., x) is measurable for each x ∈ X. A

random mapping on a metric space X is denoted by T (ω, x) or simply T (ω)x for ω ∈ Ω

and x ∈ X. A random mapping T (ω) is said to be continuous on X into itself if the

mapping T (ω, ·) is continuous on X for each ω ∈ Ω. A measurable function x : Ω → X

is called a random fixed point of the random mapping T (ω) if T (ω)x(ω) = x(ω) for all

ω ∈ Ω. Given a random variable x : Ω→ X, by a T (ω)-orbit of T (ω) at x, we mean a set

O(x;T (ω)) =
{
x(ω), T (ω)x(ω), T 2(ω)x, . . .

}
, (2.1)

for ω ∈ Ω. A random mapping T : Ω × X → X is called T (ω)-orbitally continuous,

if a sequence {xn} of measurable functions in O(x;T (ω)) converses to x implies that

T (ω)xn → T (ω)x for each ω ∈ Ω. The metric space X is called T (ω)-orbitally complete
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if every Cauchy sequence of measurable functions {xn} in O(x;T (ω)) converges to a

measurable function x on Ω into X.

The following theorem is essential and frequently used in the theory of random equations

and random fixed point theory for random operators in Polish spaces.

Theorem 2.1. Let X be a Polish space, that is, a complete and separable metric space.

Then, the following statements hold in X.

(a) If {xn(ω)} is a sequence of random variables converging to x(ω) for all ω ∈ Ω,

then x(ω) is also a random variable.

(b) If T (ω, ·) is continuous for each ω ∈ Ω and x : Ω→ X is a random variable, then

T (ω)x is also a random variable.

Our first nonunique random fixed point theorem is as follows.

Theorem 2.2. Let T (ω) be a T (ω)-orbitally continuous random mapping on a T (ω)-

orbitally complete and separable metric space X into itself satisfying for each ω ∈ Ω,

min
{
d(T (ω)x, T (ω)y), d(x, T (ω)x), d(y, T (ω)y)

}
−min

{
d(x, T (ω)y), d(y, T (ω)x)

}
≤ q(ω) d(x, y)

(2.2)

for all x, y ∈ X, where q : Ω → R+ is a measurable function satisfying 0 ≤ q(ω) < 1.

Then T (ω) has a random fixed point.

Proof. Let x : Ω → X be an arbitrary measurable function and consider the sequence{
xn

}
of successive iterates of T (ω) at x defined by

x = x0, x1 = T (ω)x, ...., xn = T (ω)xn−1 (2.3)

for each n ∈ N. Clearly,
{
xn

}
is a sequence of measurable functions on Ω into X. We

shall show that
{
xn

}
is Cauchy sequence in X. Taking x = x0 and y = x1 in (2.2), we

obtain

min
{
d(T (ω)x0, T (ω)x1), d(x0, T (ω)x0), d(x1, T (ω)x1)

}
−min

{
d(x0, T (ω)x1), (d(x1, T (ω)x0))

}
≤ q(ω) d(x0, x1)
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which further gives

min
{
d(x1, x2), d(x0, x1), d(x1, x2)

}
−min

{
d(x0, x2), d(x1, x1)

}
≤ qd(x0, x1)

or

min
{
d(x1, x2), d(x0, x1)

}
≤ qd(x0, x1).

Since d(x0, x1) ≤ qd(x0, x1) is not possible view of q < 1, one has

d(x1, x2) ≤ qd(x0, x1).

Proceeding in this way, by induction, it follows that

d(xn, xn+1) ≤ qd(xn−1, xn) (2.4)

for each n ∈ N.

From (2.4) it follows that

d(xn, xn+1) ≤ qd(xn−1, xn)

≤ q2d(xn−2, xn−1)

...

≤ qnd(x0, x1).

(2.5)

Now for any positive integer p, we obtain by triangle inequality,

d(xn, xn+p) ≤ d(xn, xn+1) + ...+ d(xn+p−1, xn+p)

≤ qnd(x0, x1) + ...+ qn+p−1d(x0, x1)

≤
[
qn + qn+1 + ...+ qn+p−1

]
d(x0, x1)

≤ qn(1− qp−1)
1− q

≤ qn

1− q

→ 0 as n→∞.

(2.6)
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This shows that
{
xn

}
is a Cauchy sequence inX. The metric spaceX being T (ω)-orbitally

complete, there is a measurable function x∗ : Ω → X in X such that limn→∞ xn = x∗.

Again as T (ω) is T (ω)-orbitally continuous, we have

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈ Ω. Thus x∗ is a random fixed point of the random mapping T (ω) on X into

itself. This completes the proof. �

Corollary 2.1. Let T (ω) be a T (ω)-orbitally continuous random mapping on a T (ω)-

orbitally complete and separable metric space X into itself satisfying for each ω ∈ Ω,

d(T (ω)x, T (ω)y) ≤ q(ω) d(x, y) (2.2)

for all x, y ∈ X, where q : Ω → R+ is a measurable function satisfying 0 ≤ q(ω) < 1.

Then T (ω) has a random fixed point.

When T (ω)x = Tx for all ω ∈ Ω in Theorem 2.2, we obtain Theorem 1.1 as a corollary

which again includes the famous Banach fixed point theorem for contraction mappings

on a metric space X into X..

Theorem 2.3. Let T (ω) be a T (ω)-orbitally continuous random selfmapping of a T (ω)-

orbitally complete and separable metric space X satisfying for each ω ∈ Ω,

min
{

[d(T (ω)x, T (ω)y)]2, d(T (ω)x, T (ω)y)d(x, y), d(x, T (ω)x)d(y, T (ω)y)
}

−min
{
d(x, T (ω)x)d(y, T (ω)y), d(x, T (ω)y)d(y, T (ω)x)

}
≤ q(ω)d(x, T (ω)x)d(y, T (ω)y)

(2.7)

for all x, y ∈ X, where q : Ω → R+ is a measurable function satisfying 0 ≤ q(ω) < 1.

Then T (ω) has a random fixed point.

Proof. Let x : Ω → X be an arbitrary measurable function and consider the sequence{
xn

}
of successive iterates of T (ω) at x defined by

x0 = x, xn+1 = T (ω)xn, n = 0, 1, 2, ....
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Clearly,
{
xn

}
is a sequence of measurable functions on Ω into X. We show that

{
xn

}
is

a Cauchy sequence in X. Let x = x0 and y = x1 in (2.7) we obtain

min
{

[d(T (ω)x0, T (ω)x1))]
2, d(x0, T (ω)x0))d(x1, T (ω)x1)),

d(T (ω)x0, T (ω)x1))d(x0, x1)
}

≤ q d(x0, T (ω)x0))d(x1, T (ω)x1)

⇒ min
{

[d(x1, x2)]
2, d(x0, x1)d(x1, x2)d(x1, x2)d(x0, x1)

−min
{
d(x0, x1)d(x1, x2), d(x0, x2)d(x1, x1)

}
≤ qd(x0, x1)d(x1, x2)

⇒ min
{

[d(x1, x2)]2, d(x0, x1)d(x1, x2)
}

≤ qd(x0, x1)d(x1, x2).
(2.8)

Since

d(x0, x1)d(x1, x2) ≤ qd(x0, x1)d(x1, x2)

is not possible in view of q < 1, one has

[d(x1, x2)]
2 ≤ qd(x0, x1)d(x1, x2)

i.e. d(x1, x2) ≤ qd(x0, x1).

Proceeding in this way, by induction,

d(xn, xn+1) ≤ qd(xn−1, xn)

for each n = 1, 2, 3, .... The rest of the proof is similar to Theorem 2.2 and hence, we omit

the details. �

As a consequence of Theorem 2.2 we obtain the following corollary.
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Corollary 2.2. Let T be a T -orbitally continuous selfmapping of a T -orbitally complete

metric space X satisfying

min
{

[d(Tx, Ty)]2, d(Tx, Ty)d(x, y), d(x, Tx)d(y, Ty)
}

−min
{
d(x, Tx)d(y, Ty), d(x, Ty)d(y, Tx)

}
≤ qd(x, Tx)d(y, Ty)

(2.9)

for all x, y ∈ X, where 0 ≤ q < 1. Then T has a fixed point.

Sometimes it possible that a metric space may be complete w.r.t. a metric but may

not be complete w.r.t. another metric defined on it. Therefore, it is interesting to obtain

the fixed point theorems in such situation. Next we prove a couple of nonunique random

fixed point theorem in a metric space with two metrics defined on it.

Theorem 2.4. Let X be a metric space with two metrics d1 and d2. Let (Ω,A) be a

measurable space and let T : Ω ×X → X be a random mapping satisfying the condition

(2.2) w.r.t. d2 for each ω ∈ Ω. Further suppose that

(i) d1(x, y) ≤ d2(x, y) for all x, y ∈ X

(ii) T (ω) is a T (ω)-orbitally continuous w.r.to d1.

(iii) X is T (ω)-orbitally complete w.r.t. d1, and

(iv) X is separable metric space.

Then T (ω) has a random fixed point.

Proof. Let x : Ω → X be an arbitrary measurable function and consider the sequence{
xn

}
of successive iterations of T (ω) defined by (2.3). Then,

{
xn

}
is a sequence of

measurable functions from Ω into X. Now proceeding as in the proof of Theorem 2.2, we

obtain,

d2(xn, xn+p) ≤
qn

(1− q)
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for some positive integer p. By hypothesis (i), we have

d1(xn, xn+p) ≤ d2(xn, xn+p)

≤ qn

(1− q)
d2(x0, x1)

→ 0 as n→∞.

(2.10)

This shows that
{
xn

}
is a Cauchy sequence in X w.r.t. the metric d1. The metric space

(X, d1) being T (ω)-orbitally complete, there is a measurable function x∗ : Ω → X such

that

lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈ Ω. From the above limit, it follows that

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for each ω ∈ Ω. Thus T (ω) has a random fixed point and the proof of Theorem 2.4 is

complete.

Theorem 2.5. Let X be a metric space with two metrics d1 and d2. Let (Ω,A) be a

measurable space and let T : Ω ×X → X be a random mapping satisfying the condition

(2.7) w. r. t. the metric d2 for each ω ∈ Ω. Suppose that the following conditions hold in

X.

(i) d1(x, y) ≤ d2(x, y) for all x, y ∈ X.

(ii) T (ω) is T (ω)-orbitally continuous w.r.t. d1

(iii) X is T (ω)-orbitally complete and separable w.r.t. d1.

Then T (ω) has a random fixed point.

Proof. The proof is similar to Theorem 2.3 and therefore, we omit the details. �

3. Generalization of Ćirić Type Random Mappings with Non-

unique Random Fixed Points

In this section ,we generalize the class of Ćirić [4] type random mappings and prove

some nonunique random fixed point theorems in a separable and complete metric space.
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Theorem 3.1. Let T (ω) be a T (ω)-orbitally continuous random selfmapping of a T (ω)

-orbitally complete and separable metric space X satisfying for each ω ∈ Ω,

min
{
d(T (ω)x, T (ω)y), d(x, T (ω)x), d(y, T (ω)y)

}
−min

{
d(x, T (ω)y), d(y, T (ω))

}
≤ p(ω) min{d(x, T (ω)x), d(y, T (ω)y)}+ q(ω) d(x, y)

(3.1)

for all x, y ∈ X, where p, q : Ω→ R+ are measurable functions such that

p(ω) + q(ω) < 1 (3.2)

for all ω ∈ Ω. Then T (ω) has a random fixed point.

Proof. Let x : Ω → X be an arbitrary measurable function and consider the sequence{
xn

}
of measurable functions from Ω into X defined by (2.3). Then taking x = x0 and

y = x1 in (3.1), we obtain

min
{
d(T (ω)x0, T (ω)x1), d(x0, T (ω)x0), d(x1, T (ω)x1)

}
−min

{
d(x0, T (ω)x1), d(x1, T (ω)x0)

}
≤ p(ω) min

{
d(x0, T (ω)x0), d(x1, T (ω)x1)

}
+ q(ω)d(x0, x1)

⇒ min
{
d(x1, x1), d(x0, x1)

}
−min

{
d(x0, x2), 0

}
≤ p(ω) min

{
d(x0, x1), d(x1, x2)

}
+ q(ω)d(x0, x1)

⇒ min
{
d(x1, x2), d(x0, x1)

}
≤ p(ω) min

{
d(x0, x1), d(x1, x2)

}
+ q(ω)d(x0, x1)

(3.3)

As min
{
d(x1, x2), d(x0, x1)

}
= d(x0, x1) is not possible, we have that

min
{
d(x1, x2), d(x0, x1)

}
= d(x1, x2).

Hence, from the above inequality (3.3), we obtain

d(x1, x2) ≤ α(ω)d(x0, x1),
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where α(ω) = p(ω) + q(ω) < 1 for all ω ∈ Ω. Now, proceeding as in the proof of Theorem

2.2, it is proved that T (ω) has a random fixed point.

Corollary 3.1. Let T be a T -orbitally continuous selfmapping of a T -orbitally complete

metric space X satisfying

min
{
d(Tx, Ty), d(x, Tx), d(y, Ty)

}
−min

{
d(x, Ty), d(y, Tx)

}
≤ p min{d(x, Tx), d(y, Ty)}+ q d(x, y)

(3.5)

for all x, y ∈ X, where p and q are nonnegative real numbers such that p + q < 1. Then

T has a fixed point.

Theorem 3.2. Let X be a metric space with two metrics d1 and d2. Let (Ω,A) be a

measurable space and let T : Ω ×X → X be a random mapping satisfying the inequality

(3.1) w. r. to the metric d2 for each ω ∈ Ω. Suppose that the following conditions hold

in X.

(i) d1(x, y) ≤ d2(x, y) for all x, y ∈ X.

(ii) T (ω) is T (ω) -orbitally continuous w.r.t. d1.

(iii) X is T (ω)-orbitally complete ad separable w.r.t. d1.

Then the random mapping T (ω) has a random fixed point.

Proof. The proof is similar to Theorem 2.5 and hence we omit the details. �

4. Random Fixed Points Mappings in Ordered Metric Spaces

We define an order relation ≤ in X which is a reflexive, antisymmetric and transitive

relation in X. The metric space X together with the order relation ≤ becomes a partially

ordered metric space. A random mapping T : Ω × X → X is called nondecreasing if

for any x, y ∈ X with x ≤ y we have that T (ω)x ≤ T (ω)y for all ω ∈ Ω. Similarly

random mapping T : Ω × X → X is called nonincreasing if for any x, y ∈ X, x ≤ y

implies T (ω)x ≥ T (ω)y for all ω ∈ Ω. A monotone random mapping which is either

nondecreasing or nonincreasing on X.
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The investigation of the existence of fixed points in a partially ordered metric space

was first considered in Ram and Reuriungs [10]. This study was continued in Nieto and

Rodriguer-Lopez [12] by assuming the existence of only lower solution instead of usual

approach where both the lower and upper solutions are assumed to exist for the nonlinear

equation. These fixed point theorems are then applied to obtain existence and uniqueness

results for nonlinear ordinary differential equations in the same paper. A further extension

of this idea was considered in Bhaskar and Lakshmikanthan [3] for the coupled fixed point

theorems in partially ordered metric spaces. Below we prove some nonunique random fixed

point theorems for monotone random mappings in separable and complete metric spaces.

Theorem 4.1. Let (Ω,A) be a measurable space and let X be a separable and complete

partially ordered metric space. Let T : Ω×X → X be a monotone nondecreasing random

mapping satisfying the contraction condition (2.2) for all comparable elements x and y

in X. Further if T (ω) is continuous and if there exists an element x0 ∈ X such that

x0 ≤ T (ω)x0 for all ω ∈ Ω, then the random mapping T (ω) has a random fixed point.

Further, if every pair of elements x, y ∈ X has a lower bound and an upper bound, then

T (ω) has a unique random fixed point.

Proof. Let x : Ω→ X be an arbitrary measurable function and define a sequence
{
xn

}
of successive approximations of T (ω) by

xn+1 = T (ω)xn, n = 0, 1, 2, . . . .

Clearly {xn} is a sequence of measurable functions from Ω into X such that

x0 ≤ x1 ≤ ... ≤ xn ≤ . . . . (4.1)

We show that {xn} is a Cauchy sequence in X. Taking x = x0 and y = x1 in (2.2) we

obtain

d(x1, x2) ≤ qd(x0, x1).

Processing in this way, by induction ,

d(xn, xn+1) ≤ qd(xn−1), xn)
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for each n = 1, 2, .... Then, by repeated application of the above inequality, we obtain

d(xn, xn+1) ≤ qnd(x0, x1).

Now for any positive integer m > n, by triangle inequality, we get

d(xm, xn) = d(xn, xm)

≤ d(xn, xn+1) + ..+ d(xm−1, xm)

≤ (qn + qn+1...+ qm−n)d(x0, x1)

≤ qn(1− qm−n)

1− q
d(x0, x1)

≤ qn

1− q
d(x0, x1)

→ 0 as n→∞.

(4.2)

This shows that
{
xn

}
is a Cauchy sequence in X. The ordered metric space X being

complete, there is a measurable function x∗ : Ω → X such that limn→∞ xn = x∗. From

the continuity of the random mapping T (ω) it follows that

x∗(ω) = lim
n→∞

xn+1(ω) = lim
n→∞

T (ω)xn(ω) = T (ω) lim
n→∞

xn(ω) = T (ω)x∗(ω) (4.3)

for all ω ∈ Ω. Thus x∗ is a random fixed point of the random mapping T (ω) on X.

If every pair of elements x, y ∈ X has a lower bound and an upper bound, then it

can be shown as in Ran and Reurings [10] that lim
n→∞

T n(ω)x = x∗(ω) for all measurable

functions x : Ω → X, where x∗ = lim
n→∞

T n(ω)x0. Thus T (ω) has a unique random fixed

point and the proof of the theorem is complete. �

Corollary 4.1. (Dhage [7]) Let (Ω,A) be a measurable space and let X be a separable and

complete partially ordered metric space. Let T : Ω×X → X be a monotone nondecreasing

random mapping satisfying

d(T (ω)x, T (ω)y) ≤ q(ω)d(x, y)

for all comparable elements x, y ∈ X, where q : Ω → R+ is a measurable function such

that q(ω) < 1 for all ω ∈ Ω. Further, if T (ω) is continuous and if there exists an element

x0 ∈ X such that x0 ≤ T (ω)x0 for all ω ∈ Ω, then the random mapping T (ω) has a
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random fixed point. Further, if every pair of elements x, y ∈ X has a lower bound and an

upper bound, then T (ω) has a unique random fixed point.

Corollary 4.2. Let X be a partially ordered complete metric space and let T : X → X

be a monotone nondecreasing mapping satisfying the contraction condition (2.7) for all

comparable elements x, y ∈ X. Further if T is continuous and if there exists an element

x0 ∈ X such that x0 ≤ Tx0, then the mapping T has a fixed point.

Corollary 4.2. (Nieto and Rodriguez-Lopez [12]) Let X be a complete metric space

and let T : X → X be a monotone nondecreasing mapping satisfying

d(Tx, Ty) ≤ qd(x, y) (4.4)

for comparable elements x, y ∈ X, where 0 ≤ q < 1. Further if T is continuous and if

there exists an element x0 ∈ X such that x0 ≤ Tx0, then the mapping T has a fixed point.

Theorem 4.2. Let (Ω,A) be a measurable space and let (X, d) be a partially ordered

complete separable metric space. Let T : Ω×X → X be a random mapping satisfying for

each ω ∈ Ω,

min
{

[d(T (ω)x, T (ω)y)]2, d(x, T (ω)x)d(y, T (ω)y), d(T (ω)x, T (ω)y)d(x, y)
}

−min
{
d(x, T (ω)y)d(y, T (ω)y), d(x, T (ω)x)d(y, T (ω)y)

}
≤ q(ω)d(x, T (ω))d(y, T (ω)y)

(4.3)

for all comparable elements x, y ∈ X, where q : Ω→ R+ is a measurable function satisfying

0 ≤ q(ω) < 1 for all ω ∈ Ω. Further if there exists an element x0 ∈ X such that

X0 ≤ T (ω)x0, then T (ω) has a fixed point.

Proof. The proof is similar to Theorem 4.1 and therefore, we omit the details. �

Theorem 4.3. Let (Ω,A) be a measurable space and let (X, d) be a partially ordered

separable metric space. Let T : Ω ×X → X be a continuous random mapping satisfying
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for each ω ∈ Ω,

min
{
d(T (ω)x, T (ω)y), d(x, T (ω)x), d(y, T (ω)y)

}
−min

{
d(x, T (ω)y), d(y, T (ω)x)

}
≤ p(ω) min

{
d(x, T (ω)x), d(y, T (ω)y)

}
+ q(ω)d(x, y)

(4.4)

for all comparable elements x, y ∈ X, where p, q : Ω→ R+ are measurable functions such

that 0 ≤ p(ω) + q(ω) < 1 for all ω ∈ Ω. If there exists an element x0 ∈ X such that

x0 ≤ T (ω)x0 for each ω ∈ Ω, then T (ω) has a random fixed point.

Proof. The proof is simple and can be obtained by closely observing the proof of

Theorem 4.1. Hence we omit the details. �

Next, we deal with the case of metric space X with two metrics d1 and d2 defined on

it and prove some nonunique random fixed point theorems on separable partially ordered

metric spaces. �

Theorem 4.4. Let (Ω, A) be a measurable space and let X be an partially ordered

metric space with two metrics d1 and d2. Let T : Ω×X → X be a nondecreasing random

mapping satisfying the contractive condition on (2.2) w.r.t. d2 for all comparable elements

x, y ∈ X. Suppose that the following conditions hold in X.

(i) d1(x, y) ≤ d2(x, y) for all x, y ∈ X.

(ii) T (ω) is continuous w.r.t. d1.

(iii) X is Polish space w.r.t. d1.

Furthermore, if there exists an element x0 ∈ X such that x0 ≤ T (ω)x0 for all ω ∈ Ω, then

T (ω) has a random fixed point.

Proof. Consider the sequence
{
xn

}
of successive iterations of T (ω) at x0 defined by

xn+1 = T (ω)xn, n = 0, 1, 2, . . . .

Clearly,
{
xn

}
is a sequence of measurable functions from Ω into X w.r.t. the metric d1

such that

x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . .
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Then, it can be shown as in the proof of Theorem 4.1 that
{
xn

}
is a Cauchy sequence in

X w.r.t. the metric d2, that is, for any positive integer m > n,

d2(xm, xn) ≤ qn

1− q
d2(x0, x1).

From the hypothesis (i), it follows that

d1(xm, xn) ≤ qn

1− q
d2(x0, x1)→ 0 as n→∞.

This shows that
{
xn

}
is a Cauchy sequence w.r.t. the metric d1. The metric space

(X, d1) being complete and separable, there exists a measurable function x∗; Ω→ X such

that limn→∞ xn(ω) = x∗(ω) for each ω ∈ Ω. From the continuity of T (ω) w.r.t. d1, it

follows that

T (ω)x∗(ω) = lim
n→∞

T (ω)xn(ω) = lim
n→∞

xn+1(ω) = x∗(ω)

for all ω ∈ Ω. This proves that T (ω) has a random fixed point in X. This completes the

proof. �

Remark 4.1. The conclusion of Theorem 4.4 also remains true if we replace the

condition (2.2) with those of (4.3) and(4.4).

5. Nonunique PPF Dependant Random Fixed Point Theory

The fixed point theory of nonlinear operators with PPF dependence which is depending

upon past, present and future data was developed in Bernfield et.al.[1]. The domain space

of the nonlinear operator was taken as C(I, E), I = [a, b] ⊂ R and the range space as E, a

Banach space. An important example of such a nonlinear operator is a delay differential

equation. The PPF dependent fixed point theorems are applied to ordinary nonlinear

functional differential equations for proving the existence of solutions. Random fixed

point theory for random operators in separable Banach spaces is initiated by Hans [8] and

Spacek [13] and further developed by several authors in the literature. A brief survey of

such random fixed point theorems appears in Joshi and Bose [9].

In the present section we obtain a successful fusion of above two ideas and prove some

PPF dependent random fixed point theorems for random mappings in a separable metric
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space. In the PPF dependent classical fixed point theory, the Razumikkin or minimal

class of functions plays a significant role both in proving existence as well as uniqueness

of PPF dependent fixed points. Let E be a metric space and let I be a given closed and

bounced interval in R, the set of real numbers. Let E0 = C(I, E) denote the class of

continuous mappings from I to E. We equip the class C(J,E) with metric d0 defined by

d0(x, y) = sup
t∈J

d(x(t), y(t)).

Lemma 5.1. If (E, d) is complete then the metric space (E0, d0) is also complete.

Proof. Let
{
xn

}
be a Cauchy sequence. Then for ε > 0 there exists an n0 ∈ N such

that

d0(φm, φn) < ε

for all m > n ≥ n0. Since

d(φm(t), φn(t) < ε

for all m,n ≥ n0. Thus φn(t) is a Cauchy sequence in E. So there exists a function φ∗ ∈ E0

such that

lim
n→∞

φn(t) = φ∗(t)

for all t ∈ J or

lim
n→∞

d(φn(t), φ∗(t)) = 0

for all t ∈ J. Now

lim
n→∞

d(φn, φ) = lim
n→∞

sup
t∈J

d(φn(t), φ∗(t) = 0.

Hence φn → φ in E0 and the proof the lemma is complete. �

When E is a Banach space and let E0 = C(J,E) be a space of continuous E -valued

functions defined on J Then the minimal class of functions related to a fixed c ∈ J is

defined as

Mc =
{
φ ∈ E0 | ‖φ‖E0 = ‖φ(c)‖E

}
.

Now we are in a position to state and prove our random fixed point results concerning

the existence of random fixed points with PPF dependence.
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Theorem 5.1. Let (Ω,A) be a measurable space and E, a separable complete metric

space. Let T : Ω× E0 → E be a continuous random mapping satisfying for each ω ∈ Ω,

min
{
d(T (ω)φ, T (ω)ψ), d(φ(c, ω), T (ω)φ), d(ψ(c, ω), T (ω)ψ)

}
−min

{
d(φ(c, ω), T (ω)ψ), d(ψ(c, ω), T (ω)φ)

}
≤ q(ω) d(φ, ψ)

(5.1)

for all φ, ψ ∈ E0, where q : Ω → R+ is a measurable function satisfying 0 ≤ q(ω) < 1

for all ω ∈ Ω and c ∈ I is a fixed point. Then T (ω) has a random fixed point with PPF

dependence.

Proof. Let φ0 : Ω→ E0 be an arbitrary measurable function and define a sequence
{
xn

}
in E0 as follows. Suppose that T (ω)φ0 = x1 for some x1 ∈ E. Then choose φ1 ∈ E0 such

that φ1(c, ω) = x1 for some fixed c ∈ I and

d0(φ0, φ1) = d(φ0(c, ω), φ1(c, ω))

for all ω ∈ Ω. Again let T (ω)φ1 = x2 for some x2 ∈ E. Then choose φ2(c, ω) = x2 for the

fixed c ∈ I and

d0(φ1, φ2) = d(φ1(c, ω), φ2(c, ω))

for all ω ∈ Ω. Proceeding in this way, we obtain a sequence {φn} of points in E0 of

iterations ofn T (ω) at φ0 as

T (ω)φn−1 = xn = φn(c, ω) (5.2)

with

d0(φn−1, φn) = d(φn−1(c, ω), φn(c, ω) (5.3)

for all ω ∈ Ω. Clearly,
{
φn

}
is a sequence of measurable functions from Ω into E0.

Consequently
{
φn(c)

}
is a sequence of measurable functions from Ω into E. We show

that {φn(c, ω)} is a Cauchy sequence in E. Taking φ = φ0 and φ = φ1 in the inequality

(5.1), we obtain
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min
{
d(T (ω)φ0, T (ω)φ1), d(φ0(c, ω), T (ω)φ0), d(φ1(c, ω), T (ω)φ1)

}
−min

{
d(φ0(c, ω), T (ω)φ1), d(φ1, T (ω)φ0)

}
≤ q(ω) d0(φ0, φ1)

(5.4)

which further gives

min
{
d0(φ1, φ2), d0(φ0, φ1)

}
= min

{
d(φ1(c, ω), φ2(c, ω)), d(φ0(c, ω), φ1(c, ω))

}
= min

{
d(φ1(c, ω), φ2(c, ω)), d(φ0(c, ω), φ1(c, ω)), d(φ1(c, ω), φ2(c, ω))

}
≤ qd0(φ0, φ1).

(5.5)

Since d0(φ0, φ1) ≤ qd0(φ0, φ1), q < 1, is not possible, one has

d0(φ1, φ2) ≤ d0(φ0, φ1).

Proceeding in this way by induction,

d0(φn, φn+1) ≤ qd0(φn−1, φn) (5.6)

for all n, n = 1, 2, 3, . . .. By a repeated application of the inequality (3)

d0(φn, φn+1) ≤ qd0(φn−1, φn)

...

≤ qnd0(φ0, φ1)

(5.7)

Now for any positive integer p, by triangle inequality,

d0(φn, φn+p) ≤ d0(φn, φn+1) + · · ·+ d0(φn+p−1, φn+p)

≤ qn
(
1 + q + · · ·+ qp−1

)
d0(φ0, φ1)

≤ qn

(1− q)
d0(φ0, φ1)

→ 0 as n→∞.

(5.8)

Since

d(φn(c, ω), φn+p(c, ω)) = d0(φn(ω), φn+1(ω))
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for all ω ∈ Ω, we have that
{
T (ω)φn

}
is also Cauchy sequence in E. As E is a complete

metric space, there exists a measurable function φ∗ : Ω→ E0 such that φn → φ∗ and

T (ω)φn = φn+1(c, ω)→ φ∗(c, ω)

as n → ∞. To prove that φ∗ is a PPF dependent random fixed point of T (ω), we first

observe that since T (ω) is continuous on E0, T (ω) is a continuous at φ∗. Hence for ε > 0,

there exists a δ > 0 such that

d0(φn+1, φ
∗) < δ =⇒ d(Tφn+1, Tφ

∗) <
ε

2
.

Also since T (ω)φn → φ∗(c, ω), for γ = min
{
ε
2
, δ
}

there exists n0 ∈ N such that

d(T (ω)φn, φ
∗(c, ω)) < γ

for n ≥ n0. Thus,

d(T (ω)φ∗,φ∗(c, ω))

≤ d(T (ω)φ∗, T (ω)φn) + d(T (ω)φn, φ
∗(c, ω))

<
ε

2
+ γ < ε.

(5.6)

Since ε is arbitrary, we have

T (ω)φ∗(ω) = φ∗(c, ω)

for all ω ∈ Ω. This completes the proof. �

As a consequence of Theorem 5.1 we obtain the following PPF dependent random fixed

result of Dhage [6] as a special case.

Corollary 5.1. (Dhage [6])Let (Ω,A) be a measurable space and E, a separable complete

metric space. Let T : Ω × E0 → E be a continuous random mapping satisfying for each

ω ∈ Ω,

d(T (ω)φ, T (ω)ψ) ≤ q(ω) d0(φ, ψ)

for all φ, ψ ∈ E0, where q : Ω → R+ is a measurable function satisfying 0 ≤ q(ω) < 1

for all ω ∈ Ω and c ∈ I is a fixed point. Then T (ω) has a random fixed point with PPF

dependence.
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Again, As a consequence of Theorem 5.1 we obtain the following corollary which is also

new to the literature.

Corollary 5.2. Let E a complete metric space. Let T : Ω × E0 → E be a continuous

mapping satisfying

min
{
d(Tφ, Tψ), d(φ(c), Tφ), d(ψ(c), Tψ)

}
−min

{
d(φ(c), Tψ), d(ψ(c), Tφ)

}
≤ q d0(φ, ψ)

(5.7)

for all φ, ψ ∈ E0, where 0 ≤ q < 1 and c ∈ I is a fixed point. Then T has a fixed point

with PPF dependence.

From Corollary 5.2 we obtain

Corollary 5.3. (Bernfeld et. al. [1]) Let E a complete metric space. Let T : E0 → E

be a continuous mapping satisfying

d(Tφ, Tψ) ≤ q d0(φ, ψ)

for all φ, ψ ∈ E0, where 0 ≤ q(ω) < 1 and c ∈ I is a fixed point. Then T has a fixed point

with PPF dependence.

Theorem 5.2. Let (Ω,A) be a measurable space and E a complete separable metric

space. Let T : Ω× E0 → E be a continuous random mapping satisfying for each ω ∈ Ω,

min
{
d(T (ω)φ, T (ω)ψ), d(φ(c, ω), T (ω)φ), d(ψ(c, ω), T (ω)ψ)

}
−min

{
d(φ(c, ω), T (ω)ψ), d(ψ(c, ω), T (ω)φ)

}
≤ p(ω) min

{
d(φ(c, ω), T (ω)φ), d(ψ(c, ω), T (ω)ψ)

}
+ q(ω)d0(φ, ψ)

(5.8)

for all φ, ψ ∈ E0, where c ∈ I is a fixed point and p, q : Ω→ R+ are measurable functions

satisfying 0 ≤ p(ω) + q(ω) < 1 for all ω ∈ Ω. Then T (ω) has a PPF dependent random

fixed point.

Proof. The proof is similar to Theorem 5.1 with appropriate modifications. We omit

the details. �
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Corollary 5.2. Let E be a complete metric space and let T : E0 → E be a continuous

mapping satisfying

min
{
d(Tφ, Tψ), d(φ(c), Tφ), d(ψ(c), Tψ)

}
−min

{
d(φ(c), Tψ), d(ψ(c), Tφ)

}
≤ pmin

{
d(φ(c), Tφ), d(ψ(c), Tψ)

}
+ qd0(φ, ψ)

(5.9)

for all φ, ψ ∈ E0, where c ∈ I is a fixed point and p, q are nonnegative real numbers such

that p+ q < 1. Then T has a PPF dependent fixed point.

Corollary 5.2 is again new to the subject of PPF dependent classical fixed point theory

initiated by Bernfeld et. al [1] and includes some well-known classical PPF dependent

fixed point theorems in Banach spaces. �

Theorem 5.2 also remains true if we replace the contractive condition (5.1) by

min
{

[d(T (ω)φ, T (ω)ψ]2, d(φ(c, ω), T (ω)φ)d(ψ(c, ω), T (ω)ψ),

d(T (ω)φ, T (ω)ψ), d(ψ(c, ω), φ(c, ω))
}

−min
{
d(φ(c, ω), T (ω)φ)d(ψ(c, ω), T (ω)ψ), d(φ(c, ω), T (ω)ψ)d(ψ(c, ω), T (ω)φ)

}
≤ q(ω)d(φ(c, ω), T (ω)φ)d(ψ(c, ω), T (ω)ψ)

(5.10)

for all ω ∈ Ω and for all φ, ψ ∈ E0, where c ∈ I is fixed and q : Ω → R+ is a measurable

function satisfying 0 ≤ q(ω) < 1 for all ω ∈ Ω.

Finally, while concluding this paper we mention that the random fixed point results

of this paper may be extended to two, three and four mappings to prove the random

common fixed point theorems in Polish spaces along the similar lines with appropriate

modifications. Some of the results along this line will be reported elsewhere.
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