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Abstract: In the present paper, some results of Ćirić [6] on a non-unique fixed point theorem on the class of 

metric spaces are extended to the class of cone metric space.  Namely, non-unique fixed point theorem is proved 

in orbitally T complete cone metric spaces under the assumption that the cone is strongly minihedral.  
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1. Introduction. 

In 1980, by generalizing the fixed point theorems of Maia type [16], Rzepecki [19] 

introduced a generalized metric dE on a set X in a way that dE : X×X → S where E is a 

Banach space and S is a normal cone in E with partial order .  In 1987, Lin [13] considered 

the notion of K-metric spaces by replacing real numbers with cone K in the metric function, 

that is, d : X×X → K. In that manuscript, some results of Khan and Imdad [12] on fixed point 

theorems were considered for K-metric spaces. Without mentioning the papers of Lin [13] 

and Rzepecki [19], in 2007, Huang and Zhang [9] announced the notion of cone metric 

spaces (CMSs) by replacing real numbers with an ordering Banach space. In that paper, they 

also discussed some properties of convergence of sequences and proved the fixed point 

theorems of contractive mapping for cone metric spaces. 
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Recently, many results on fixed point theory have been extended to cone metric 

spaces (see, e.g., [1, 2, 3, 9, 10, 11, 18, 20, 21]). Ćirić type non-unique fixed point theorems 

were considered by many authors (see, e.g.,[4, 6, 8, 14, 15, 17, 22]). In this paper, we extend 

the results of Ćirić [6] to cone metric spaces. 

2. Preliminaries. 

Throughout this paper E := (E, .) stands for a real Banach space.  

Definition 2.1. Let P := PE always be a closed non-empty subset of E. P is called cone if             

ax + by  P for all x, y  P and non-negative real numbers a, b where P  (−P) = {0} and             

P  {0}. 

Definition 2.2. For a given cone P, one can define a partial ordering (denoted by  or P) 

with respect to P by x  y if and only if y − x  P. The notation x < y indicates that x  y 

and x y while x  y will show y - x  int P, where int P denotes the interior of P. From 

now on, it is assumed that int P  .  

Definition 2.3. The cone P is called normal if there is a number K 1 for which 0  x  y 

 x   K y  holds for all x, y  E. The least positive integer K, satisfying this equation, 

is called the normal constant of P.   

Definition 2.4. The cone P is said to be regular if every increasing sequence which is 

bounded from above is convergent, that is, if {xn}n1 is a sequence such that x1  x2  … y 

for some y  E, then there is x  E such that 
n

lim  xn – x = 0. 

Lemma 2.1.  

(i)  Every regular cone is normal. 

(ii)  For each k > 1, there is a normal cone with normal constant K > k. 

(iii)  The cone P is regular if every decreasing sequence which is  

bounded from below is convergent. 

Proof of (i) and (ii) are given in [6] and the last one follows from definition. 
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Definition 2.5. Let X be a nonempty set. Suppose that the mapping  d : X×X  E satisfies 

(M1)  0  d(x, y) for all x, y  X, 

(M2)  d(x, y) = 0 if and only if x = y, 

(M3)  d(x, y)  d(x, z) + d(z, y), for all x, y  X, 

(M4)  d(x, y) = d(y, x) for all x, y  X, 

then d is called cone metric on X, and the pair (X, d) is called a cone metric space (CMS). 

Example 2.1. Let E = R
3
, P = {(x, y, z)E : x, y, z  0}, and X = R. Define d : X×X  E by 

d(x, x ) = (|x – x |, |x − x |, |x − x |, where ,  and  are positive constants. Then (X, d) 

is a CMS. Note that the cone P is normal with the normal constant K = 1. 

Definition 2.6. Let (X, d) be a CMS, x  X, and {xn}n≥1 a sequence in X. Then 

(i)  {xn}n≥1 converges to x whenever for every c  E with 0  c there is a natural number 

N, such that d(xn, x)  c for all n  N. It is denoted by 
n

lim  xn = x or xn  x. 

(ii)  {xn}n≥1 is a Cauchy sequence whenever for every c  E with 0  c there is a natural 

number N, such that d(xn, xm)  c for all n, m  N. 

(iii)  (X, d) is a complete cone metric space if every Cauchy sequence is convergent. 

Lemma 2.2. [9] Let (X, d) be a CMS, P a normal cone with normal constant K, and {xn} a 

sequence in X. Then,  

(i)  the sequence {xn} converges to x if and only if d(xn, x)  0 (or equivalently  

d(xn, x) 0),  

(ii)  the sequence {xn} is Cauchy if and only if d(xn, xm) → 0 (or equivalently  

d(xn, xm) 0 as m, n ), 

(iii)  the sequence {xn} converges to x and the sequence {yn} converges to y, then  

d(xn, yn) d(x, y). 

Lemma 2.3. [20] Let (X, d) be a CMS over a cone P in E. Then 
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(1)  int(P) + int(P)  int(P) and int(P)  int(P),  > 0. 

(2)  If c  0, then there exists > 0 such that b <  implies that b c. 

(3)  For any given c  0 and c0  0 there exists n0  N such that c0/n0  c. 

(4)  If an, bn are sequences in E such that an  a, bn  b, and an  bn, for all n, then a  b. 

Definition 2.7. [7] P is called minihedral cone if sup{x, y} exists for all x, y  E and strongly 

minihedral if every subset of E which is bounded from above has a supremum (equivalently, 

if every subset of E which is bounded from below has an infimum). 

Lemma 2.4.  

(i)  Every strongly minihedral normal (not necessarily closed) cone is regular. 

(ii)  Every strongly minihedral (closed) cone is normal. 

The proof of (i) is straightforward, and for (ii) see, for example, [22]. 

Example 2.2. Let E = C[0,1] with the supremum norm and  P = {f  E : f 0}. Then P is a 

cone with normal constant M = 1 which is not regular. This is clear, since the sequence x
n 
is 

monotonically decreasing but not uniformly convergent to 0. This cone, by Lemma 2.4, is not 

strongly minihedral. However, it is easy to see that the cone mentioned in Example 2.1 is 

strongly minihedral. 

Definition 2.8. A mapping T on CMS (X, d) is said to be orbitally continuous if 


in

i
limT (x) z  implies that  


in

i
limT T (x) Tz.  A CMS (X, d) is called T orbitally 

complete if every Cauchy sequence of the form  




in

i 1
T (x) ,  x  X, converges in (X, d). 

Remark 2.1. It is clear that orbital continuity of T implies orbital continuity of 
mT  for any  

m  N. 

Definition 2.9. A point z is said to be a periodic point of function T of period m if 

mT (z) z, where 0T (x) x  and 
mT (x)  is defined recursively by  m m 1T (x) T T (x) .  
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3.  Main Result. 

Theorem 3.1. Let T : X  X be an orbitally continuous mapping on CMS (X, d) over 

strongly minihedral normal cone P. Suppose that CMS (X, d) is T orbitally complete and that 

T satisfies the condition 

(3.1) min{[d(Tx, Ty)]
2
, d(x, y) d(Tx, Ty), [d(y, Ty)]

2
} 

- min{d(x, Tx) d(y, Ty), d(x, Ty) d(y, Tx)} qd(x, Tx) d(y, Ty)  

for all x, y  X and q  (0, 1), then for each x M, the sequence  




n

n 1
T (x)  converges to a 

fixed point of T.  

Proof. Fix x0  X.  

For n ≥ 1, set x1 = T(x0) and recursively xn+1 = T(xn) = T
n+1

(x0). 

It is clear that the sequence {xn} is Cauchy when the equation xn+1 =  xn holds for some  

n  N. Consider the case xn+1  xn for all n  N.  

By replacing x and y with xn−1 and xn, respectively, in (3.1), we get 

min{[d(Txn−1, Txn)]
2
, d(xn−1, xn) d(Txn−1, Txn), [d(xn, Txn)]

2
} 

    - min{d(xn−1, Txn−1) d(xn, Txn), d(xn−1, Txn) d(xn, Txn−1)} 

qd(xn−1, Txn−1) d(xn, Txn) 

or min{[d(xn, xn+1)]
2
, d(xn−1, xn) d(xn, xn+1), [d(xn, xn+1)]

2
} 

    - min{d(xn−1, xn) d(xn, xn+1), 0} qd(xn−1, xn) d(xn, xn+1) 

i.e. min{[d(xn, xn+1)]
2
, d(xn−1, xn) d(xn, xn+1)} qd(xn−1, xn) d(xn, xn+1). 

Since d(xn−1, xn) d(xn, xn+1) qd(xn−1, xn) d(xn, xn+1)  is impossible (as q < 1), we have 

 d(xn, xn+1) qd(xn−1, xn). 

Recursively, we get 

 d(xn, xn+1) qd(xn−1, xn) q
2
d(xn−2, xn-1) … q

n
d(x0, Tx0). 
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Hence, by using the triangle inequality, for any p I
+  

one has 

        d(xn, xn+p) d(xn, xn+1) + d(xn+1, xn+2) + … + d(xn+p-1, T(xn+p)) 

                n n 1 n p 1q q ... q d(x0, T(x0)) 

   =    n p 1q 1 q ... q d(x0, T(x0)) 

    


nq

1 q
d(x0, T(x0)). 

Let c int(P). Choose a natural number M0 such that  

 
 

 

nq

1 q
 d(x0, T(x0))  c for all n > M0.  

Thus, for any p  N,  

d(xn+p, xn)  c for all n > M0.  

So {xn} is a Cauchy sequence in (X, d).   

Since  (X, d) is T orbitally complete, there is some z  X such that 

 
 

 n

n 0
n n
limx limT x z.  

Regarding the orbital continuity of T, 

    

 
  n n 1

0 0
n n

T(z) limT T x limT x z,   

that is, z is a fixed point of T.  

Theorem 3.2. Let B = B(x0, r){x M | d(x0, x) r} where (X, d) is a orbitally complete cone 

metric space.  Let T be an orbitally continuous mapping of B into M and satisfies (3.1) for x, 

y B and  

(3.2)  d(x0, Tx0) (1 – q)r. 

Then T has a fixed point. 
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Proof. By (3.2), we have 

 x1 = Tx
0
 B(x

0
, r) 

and by (3.1) for x = x
0
 and y = x

1
, we have  

min{[d(Tx
0
, Tx

1
)]

2
, d(x

0
, x

1
) d(Tx

0
, Tx

1
), [d(x

1
, Tx

1
)]

2
} 

- min{d(x
0
, Tx

0
) d(x

1
, Tx

1
), d(x

0
, Tx

1
) d(x

1
, Tx

0
)}  

qd(x
0
, Tx

0
) d(x

1
, Tx

1
) 

or min{[d(x
1
, x

2
)]

2
, d(x

0
, x

1
) d(x

1
, x

2
), [d(x

1
, x

2
)]

2
} 

- min{d(x
0
, x

1
) d(x

1
, x

2
), d(x

0
, x

2
) d(x

1
, x

2
)}  

qd(x
0
, x

1
) d(x

1
, x

2
)  

which implies 

 d(x
1
, x

2
) qd(x

0
, x

1
) q(1 – q)r. 

Hence 

    d(x
0
, x

2
) d(x

0
, x

1
) + d(x

1
, x

2
)  

(1 – q)r + q(1 – q)r = (1 + q)(1 – q)r. 

Suppose that 

    d(x
0
, x

n
)  (1 + q + … + q

n-1
)(1 – q)r 

and    d(x
n-1

, x
n
) q

n-1
(1 - q)r. 

Then by (3.1) for x = xn-1 and y = xn, we have 

min{[d(Tx
n-1

, Tx
n
)]

2
, d(x

n-1
, x

n
) d(Tx

n-1
, Tx

n
), [d(x

n
, Tx

n
)]

2
} 

- min{d(x
n-1

, Tx
n-1

) d(x
n
, Tx

1
), d(x

n-1
, Tx

n
) d(x

n
, Tx

n-1
)}  

qd(x
n-1

, Tx
n-1

) d(x
n
, Tx

n
) 
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or min{[d(x
n
, x

n+1
)]

2
, d(x

n-1
, x

n
) d(x

n
, x

n+1
), [d(x

n
, x

n+1
)]

2
} 

- min{d(x
n-1

, x
n
) d(x

n
, x

n+1
), d(x

n-1
, x

n+1
) d(x

n
, x

n
)}  

qd(x
n-1

, x
n
) d(x

n
, x

n+1
) 

which implies 

d(x
n
, x

n+1
) qd(x

n-1
, x

n
) q

n
(1 – q)r. 

Therefore,  

         d(x
0
, x

n+1
) d(x

0
, x

n
) + d(x

n
, x

n+1
)  

(1 + q + … + q
n-1

)(1 – q)r + q
n
(1 - q)r 

= (1 + q + … + q
n-1

)(1 – q)r  r. 

Thus, the sequence x0, xn+1 = Txn, n 0 is contained in B.  

Also  

        d(x
n
, x

m
)  d(x

n
, x

n+1
) + … + d(x

m-1
, x

m
) 

(q
n
 + … + q

m-1
)(1 – q)r q

n
r 0. 

Since B is also orbitally complete, so u = n

n
limT (x)


 for some u B. By orbital continuity of 

T, we have 

  Tu =  n

n
limT T (x)


 = u. 

Thus, u is a fixed point of T.  

This completes the proof of the theorem. 
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