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Abstract. Dynamical sampling problem in which we seek to reconstruct a sequence or function in evolutionary
systems via spatiotemporal trade-off. In this paper, we present the problem of dynamical sampling in ¢> (Z)(d) and
vector shift-invariant spaces. We first give a sufficient and necessary condition under which ¢ € ¢> (Zd ) @ can be
recovered by its spatial and temporal samples. Then to illustrate our main result, we give two examples to show
that the sufficient and necessary condition in the main result is feasible. Finally, we study the dynamical sampling
problem in vector shift-invariant spaces.
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1. INTRODUCTION

The sampling theorem has attracted wide attention since its publication. It plays an important
role in digital signal processing, digital communication, and other fields. There are many types
of sampling theorem, such as Shannon sampling theorem [1, 2], sampling theorem in shift

invariant spaces [3], average sampling theorem [4, 5, 6], multi-channel sampling theorem [7,
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8, 9, 10], vector sampling theorem [12], compressed sampling [13, 14, 15, 16] and dynamic
sampling [17, 18, 19, 20, 21, 22, 23] so on.

The sampling theory is very important because it is a link between the real digital world and
the continuous function analog world. Converting a continuous function into a sequence of real
or complex is the beginning of many digital signal processing. However, in many applications,
only the function f that is sampled is not enough. To reduce costs, dynamic sampling was
proposed by Aldroubi and his collaborators. Dynamic sampling is a new sampling way since it
recovers a sequence or function in evolutionary systems via spatiotemporal trade-off. Specifi-
cally, dynamic sampling is not only the sequence or function that is sampled but also its various
states at different times.

Aldroubi et al mainly studied the uniform dynamical sampling on infinite-dimensional sepa-
rable Hilbert spaces 0?2 (Z) [19], finite-dimensional spaces[17] and shift-invariant spaces[18, 21].
And Zhang, Li, and Liu discussed periodic nonuniform dynamical sampling in ¢%(Z) and shift-
invariant spaces [22]. For high dimensional cases, Zhang and Li provided a sufficient and
necessary condition for dynamical sampling [23].

Vector sampling is motivated by applications in multichannel deconvolution and multiple
source separation. It appears in many practical applications. For example, in multiuser or multi-
access wireless communications and space-time coding with antenna arrays or telephone digital
subscriber loops [24, 25, 26, 27], multitrack magnetic recording [28], multisensor biomedical
signals [29, 30], multiple speaker (or other acoustic source) separation with microphone arrays
[31, 32], geophysical data processing [33], and multichannel image restoration [34, 35]. To the
best of our knowledge, there are no results published about vector dynamical sampling. We
want to fill this gap.

In this paper, we mainly present the dynamical sampling in ¢% (Z) (@) and vector shift-invariant
spaces. We give that how to recover ¢ € (2 (Z)(d) or f € V(¢) from the measurements. Here
V(¢) is a vector shift-invariant space (see (4.1)). Our results generalize similar ones for the

scalar dynamical sampling.
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2. PRELIMINARIES

Here and after, R is the set of real numbers, Z is the set of integer numbers. RY is the d-
dimensional Euclidean space. We use .# to denote the Fourier transform operator. For any
c € (*(Z), define the discrete Fourier transform

F(c)=28&) =Y cpe 25,

ke

Let 7(&) denote the Fourier transform of f € L% (R):

78 = [ rwe .

Let super Hilbert space (2(Z)@) := (2(Z) x --- x (2(Z). Let C = (c1,c2,--+ ,cq)’ € 2(2)9),
We define C = (€1,6, -+ ,¢4)".

Let super Hilbert space L2(R)(@) := L2(R) x --- x L2(R). Let F = (fi,f2,---,f4)" €
L*(R)@. We define F = (]/‘\1,]/‘;, ,fd>T.

Given f = (fi,f2,--, )T, g = (81,82, ,84)T € L*(R)@), we define the inner product of

f and g by

d
<f7g>L2(]R)(d) = /]R Z’Ifq(x)gq(x)dx.
q:

The norm of f is defined by ||fHL2(]R)(d) =, /<f7f>L2(]R)(d)'

A measurable function f belongs to the Wiener amalgam space W (L?) := W(LP(R)), 1 <

p < oo, if it satisfies

1A 0y = X esssup{|f(x +K)|:x € 0.1]} < oo
keZ

It is easy to see that W(L!) C L?>(R). Because ideal sampling makes sense only for continuous

functions, we work in the amalgam spaces
Wo(L7(R)) := W (L"(R)) NC(R).

Three kinds of convolution will be used throughout this paper. For any f,g € L? (R), define

their convolution by

(F8)0 = [ flx=1s0)dy.
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For any c¢,d € ¢*(Z), define the discrete convolution by
(cxzd)( Z c(k
kEZ

For any ¢ € (>(Z), f € L*(R), define the semi-discrete convolution by

C*sdf Z c(k
keZ
Let
apl app - daid
azy az -+ ayg
A= ,
aq1 dq2 -+ 4qd

where a;; € (*(Z),1 <i<d,1 <j<dora;eW('),1<i<d1<j<d. The Fourier

transform of A is

apl ap - dayg
~ axy axp - axy
A=

aqy Aq2 - ddd

The definition of A/ is A/ = Axz A%y ---%7A or AJ = AxAx---xA. Here
4 H—/

M J
ci1 C12 -+ Cud
C21 € - Cg
A*ZA = 5
Cd1 Ca2 "+ Cdd

where ¢; j = aj1 xza1jtap*zazj+ ... +aig*zaq;,1 <i<d,1 < j<d. And

11 €12 -+ Cid

€21 €2 - (4
AxA= 3

Ca1 Ca2 - Cdd

where ¢; j = aji xa1j+ap*axj+... +ajgxaq;,1 <i<d,1<j<d.
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Semi-discrete convolution between A and C is

ayilp a2 -+ aid C1

azy dzy -+ ayqd 2
A *sd C = *sd

aqy Aaqg2 - agq Cd

a1 *sd €1+ a2 *5q €2+ ... +a14 *54 Cd

azl ¥4 C1 + a2 %54 €2+ ... +A2g *54 Cy

adl *sd C1 +aq2 *5q €2+ ... T Add *sd Cd
Take Fourier transform at both sides of above formula, then

—

2.1 (A C) = AC.

The following is the Poisson sum formula [36, Proposition 1.4.2] which is useful in sampling

theory. If Yz f(E +k) € L2(T) and Yiez | f(k)|? < oo, then

Z FE+k) = Z f(k)e_zmké, a.e. & €R.

keZ keZ

For some fixed factor m € N, the subsampling operator
S 2(2)\ D —s (7))
is defined by (S,,C) (k) = C (mk) , k € Z¢.

3. DYNAMICAL SAMPLING IN (2(Z)(¢)

3.1. Main result. The following is our main result in this section.

Theorem 3.1. Let E be the unit matrix and
ap ap - ag

azp dazp - dyg
A=

aqy Aq2 - Add
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where a;j € L*(T),i, j = 1,...d. Define

E E E

ne A(SHL RSl

(3.1 (€)= (‘m) ( E ) | (—.m )
A\mfl(é) A\mfl(ﬂ) A\mfl(é—km—l)

& € T. Then a vector x € (? (Z)(d) can be recovered in a stable way , i.e. the inverse is bounded,
from the measurements y,, = S,,A"x,n=0,1,....m— 1, if and only if there exists o0 > 0 such that

the set {& : |det<#,(E)| < o} has zero measure.

Proof. Since

m—1 m—1 .
—~ JJ 1 —2min(&
C (§_> ) ot et

—27iné 1m_1 —2min.
= Z C(n)g#_ e%

nez =0
—2mimk&
= ) C(mk)e n
n=mk
= Y C(mk)e™ ™k & e 0,1,
keZ

we have @a(g):l&l@(ﬁ)_

Here the third equality is obtained by

m=1l m, n=0modm,
(3.2) Z et =

0, otherwise.

Writing the above formula in matrix form, we have

(%)
—— L Et C(5Hh
(SmC :n—12 7:m<EE E) "
6(&271)

(3.3)
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Replacing the C in above formula with the A x7 C, we have

m—=1 ____
FuAx0)E) = Y (A0) (ﬁ>

1=0 m
I N EIN 4 (E+
=Lz
C(z)
L/ e _ CH
= — ¢ g+l E+m—1 m
= —(A¢) Ay . A
6<§+m—1>
(3.4)
Similarly, for any 2 < j < m — 1, we have
F[Su(Al +70))(E) = lmf (AT*\C) hull
m Z ml:() Z m
L (641 g (64
a m = m m
C(3)
1/ . o c(=
= (W) MED opEmy ) T
6(&271)
(3.5)
Writing (3.3), (3.4) and (3.5) in block matrix form, we have
F($40)(&) E E o £ &)
FlnA=CONE) | 1| AG) AGH e AGTE) |GG

f[Sm(Amfl*ZC)](é) A\mfl(é) A\mfl(’g'ﬂ) A\mfl(éerfl) €(§+m71)
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Let
mF (SuC)(E)
(&) — mﬁ[smm_*zc)](é)
M [Sp(A" 1 57 0)]| ()
and
c(2)
~&+l
wo-| O |, e ermw
C(em=t)
Then we have
(3.6) y(E) = Zn(E)E(E).

We can solve the equation (3.6) with respect to (&) (which we use to produce C) if <7,(&) is
invertible. Since there exists @ > 0 such that the set {& : |der.<7, ()| < a} has zero measure,
the <7, (&) has a bounded inverse. Thus a vector x € EZ(Z)(‘” can be recovered in a stable way

from the measurements y, = S,,A"x,n=0,1,....m—1. 0

3.2. Auxiliary lemma. Now, we introduce a lemma about Vandermonde block matrix.

Lemma 3.2. Let E be the unit matrix of order k, and A; (i = 1,2, ...,n) be square matrices of

order k. Here k is any natural number. If for any i, j = 1,...,n have AjA; = AjA;. Then

E E
Aq A n
(3.7) 2 e a2 = I A-a
1<j<i<n
~1 —1 —
A A

Proof. Use mathematical method of induction for n. When n = 2, we have

E O E E E E
(3.8) =
—-A; E A1 A 0 Ay—A;
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Take the determinant of both sides

E
=|Ay—Ay|.
Al Ay
Therefore (3.7) is true for n = 2.
Suppose that (3.7) holds for » — 1. By multiplication of block matrices, we have the following

matrix equations

0  Ay—A A3 — A e A— A
0 (Ay—ADAy  (A3—ADAs - (A —A)A,
0 (A2—A)AT? (A3—ADAT? o (A, —A)AT2
E 00 - 0 E 0 0 - 0
~Ay E 0 -~ 0 0O E 0 - 0
= o 0o E -0 0 —A; E -~ 0
0 0 0 E 0 0 0 E
E 00 0 0 E E
E 0 0 0 A Ay Ay
A% A% A%
000 - E 0 :
0 00 --- —A, E An-toant ol

Take the determinant of both sides, we have

E E - E Ar—A, As—AL - A—A,
Al A - A, (A2—A1A2  (A3—ApAs - (A,—A)A,

(3.9) A} A o A2 =] (A-ADAT (A3-ADAY o (A —A))A?

Anttoqnet oL Al (A2 —ADAT? (A3 —ADAT? - (A —Ap)AL?
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Since A,A»,A3,...,A, are interchangeable, we can see that A; —A; and Aj-(j =2,3,...,mi=

1,2,...,n—2) are also interchangeable. Hence, we have

(3.10)

According to the hypothesis of induction, we get

3.11)

Ay —Ay
(Ay —A1)A2

(A2 —A1)A}

(Ay—Ap)AY?

n—2
A2

An _Al
(An _A1>An

n—2
An

E
A
A3

n—2
AZ

diag(Ay —A1,A3 — Ay, -, Ap—A))

E(A>—A;) E(A,—A;)
Az(A2—Ay) An(An—Ar)
AL(An—A))

A3(Ay—Ay)

AB2 (A — Ay) A"2(A,—A)

As — Ay||A3 —Ay] - [ Ay — Ay .

E
Ay
A

A2

[T lai—A4l

2<j<i<n

Combining (3.9), (3.10) and (3.11), we get that (3.7) is also true for n. Therefore, (3.7) is true

for any natural number n according to the principle of induction. This completes the proof. [

3.3. Examples of dynamical sampling in ¢>(Z)(4). In this section, we give two examples of

sampling sequences to illustrate the main results.
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Example 3.3. For simplicity, let d =2, aj1(§) = an(&) = & — |&], where |&E] stands for the

largest integer no more than &. Suppose that

and

% ¢

Therefore, <,,(&) is reversible and <,,(&) satisfies the condition of Theorem 3.1.

Example 34. Let d = 2, a11(&) = an(§) = cos(2n&), a (&) = —sin(2n), apn(§) =
sin(2zw&).

It is easy to see

N | Uwe

& (%) ~ cos (m%) _ cos(RE + ) = —cos(n€) = —aTi(2),
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672\1(%) = —sin(n& + 1) = sin(né) = —a21( ) and alz(‘gz )= —sin(n&) = —alz(%) Then

L) (@) () _(a) )
)G aen)) el =)0

) and A\(%) are commutative. By Lemma 3.2, for & € R. We have

SRR

and Z(

[NS]Va)

t

|ty ) () e
= (1) () (5 ()
_ 2cos(w&)  2sin(mé)
—2sin(w&) 2cos(n&)
— 440

Therefore, <,,(&E) is reversible and <7, (&) satisfies the condition of Theorem 3.1.

4. DYNAMICAL SAMPLING IN VECTOR SHIFT-INVARIANT SPACES

4.1. Vector shift-invariant spaces. Let

o1 P12 - Qg
b= ¢.21 <P'22 ' ¢.2d |
a1 P2 -+ Paa

where ¢;; € Wo(LN),1 <i<d,1 <j<d, and ¢ satisfies (4.2). A shift-invariant space (SIS)

generated by one generator ¢ has the form

(4.1 {Z¢ (-—k)C(k): C e *(2)\? >}.

keZ

By following Theorem 4.1, V(¢) is well-defined. Denote o (A) is the spectrum of matrix A.

Theorem 4.1. If there exist constants a, b > 0 such that

keZ

4.2) asz(@szp,vx(é)eo(Zé(Hk)%(ﬂk)), EET,
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then

\/5||C||42(Z)(d> < Z ¢(- —k)C(k)

keZ

<Vb|Cll 2z

L2(R)@)

Proof. From (2.1), one has

Y, 90— k)C(k)

keZ

2
= <Z¢<-—k>c<k>72¢<-—k>0<k>>
L2(R)()

L2(R)@)

-~

- ¥ [ E i @i
keZ

_ Z/ C (E+K)P (E+R)P(E+RE(E +h)dE

keZ

-y / § (E+RB(E+RTE)dE
keZ
= [T X € ruie e
keZ

by (4.2) and Rayleigh-Ritz theorem, we have

2

o[ @@ <| Lot -new|  <p[E ©cEuE
kEZ [2(R)() 0
Note that
[ = €13z
This completes the proof. H

Assume that f € V(¢). Define fj = A« f. hj = filz. y; = Suhj. 65 = A% 9, $;(&) =
Y hi(E+K),0< j<m—1.

Lemma4.2. Let V(¢) isa SIS and f € V(@). Then

w6
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Proof. By the proof of Theorem 3.1, we have

mflA
h

i)

where h(E) = Y h(k)e 2"k Using the Poisson summation formula and the 1-periodicity of

(4.4) T (Smh) (&) =

C, we have for j=0,1,....m—1

Fun)@) = = ¥ 15 (5 )
(

iI=0
]
Theorem 4.3. Let
011 012 - g
01 00 - Py
o= . . |
Oa1 P2 0 Qaa

where ¢;j € Wo(L'),1 <i<d,1 < j<d. Define

@y <%> o, (%) . Dy <§+Z—1>
45) (€)= 3‘@ ‘EC%I) ] (5?’4) |
@:(%) @Z(%) @(%)

E €T. Then a vector f € V(¢) can be recovered in a stable way , ie. the inverse is
bounded, from the measurements yj, if and only if there exists o > 0 such that the set

{& : |deta,(E)| < o} has zero measure.
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Proof. By Lemma 4.2, for0 < j<m—1

56 = F s = 1 ¥ 5 (S e (511,

1=0 m
Let
(&)
J(E) =m vi(§)
ym-1(&)
and R
(%)
Fstl
co=| | e erme
C(=m)
Then we have
(4.6) y(&) = n(8)E (&)

15

We can solve the equation (4.6) with respect to €' (§) (which we use to produce C) if o7 (&) is

invertible. Since there exists & > 0 such that the set {& : |der<7,(E)| < o} has zero measure,

the <7,(&) has a bounded inverse. Thus a vector x € EZ(Z)(‘I) can be recovered in a stable way

from the measurements y, = S,,A"x,n=0,1,....m—1.
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